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SUMMARY & CONCLUSIONS

This paper documents research into the use of an adaptive 
cultural model and collective intelligence as a means of 
characterizing the reliability of bulk power networks.  
Historically, utilities support the reliable design and operation 
of bulk power networks through first-order contingency 
analysis.  In contingency analyses the list of candidate 
elements for disruption are identified by engineers a priori
based on the rate at which the elements failure through the 
course of normal grid operation. 

The new method, an implementation of particle swarm 
analysis, a swarm of ‘virtual power engineers’ successfully 
identified the set of network elements which, if disrupted, 
would possibly lead to a cascading series of events resulting in 
the most wide spread damage. The methodology is technology 
independent: it can be applied on not only for reliability 
analysis of bulk power systems, but also other energy systems 
or transportation systems.  The methodology is scale neutral: it 
can be applied to power distribution networks at the local,
state or regional level.

1.  INTRODUCTION

The objective of this research was the development of 
tools and techniques for the identification of critical nodes 
within the national bulk power system.  These are nodes that, 
if disrupted would cause the most widespread, immediate 
damage.  

Traditional contingency analyses performed by utilities 
are single point contingency analyses, focusing on identifying 
the single most critical element.  In addition, analyses 
performed by utilities focus primarily on those elements which 
have a naturally occurring high failure rate, typically 
generation.  Substations, transmission lines, etc. have low 
failure rates and so have low likelihood of inclusion in 
traditional investigations performed by utilities.   The 
possibility of SCADA failures are also not considered in 
traditional analyses and are clearly vulnerable points.  Finally, 
synergistic effects of multiple, simultaneous damage nodes 
that can amplify the impact are not considered in traditional 
contingency analyses. In rough orders of magnitude, there are 
10,000 potential points of attack in the western U.S. grid, 
45,000 points in the north-east and 5,000 points in the Texas 
area.  These are only the major generation and transmission 
elements and do not include command and control elements or 
elements that might be critical to a particular region.  

Through the identification of critical elements and the 
quantification of the consequences of their failure, site/node 
specific vulnerability analyses can be focused at those 
locations where additional security measures could be 
effectively implemented. In particular, with appropriate sizing 
and placement within the grid, distributed generation in the 
form of regional power parks may reduce or even prevent the 
impact of widespread network power outages. Even without 
additional security measures, increased awareness of sensitive 
nodes can provide a basis for more effective national, state, 
and local emergency planning.  Locations and types of critical 
nodes can be used to preposition spares, deploy security 
forces, or be points where additional site security measures 
can be employed.

Identification of critical nodes or points of vulnerability 
within such a large, complex system is a daunting 
computational task.  This research was focused on those 
situations where simultaneous, multiple points within the 
system would be attacked.  To overcome the computational 
difficulties associated with traditional methods of vulnerability 
analysis, an artificial intelligence (AI) method was developed 
and applied to a variety of bulk power test cases constructed 
by the Institute of Electrical and Electronic Engineers (IEEE).  
The approach has a foundation in a branch of cultural 
psychology that can be used to model adaptive group behavior 
similar to that observed in flocks of birds and schools of fish.  

2.  BACKGROUND

Historically, utilities identify single points of vulnerability 
through a first-order contingency analysis.  The list of 
candidate elements for disruption are identified a priori 
typically based on the rate at which the elements fail through 
the course of normal grid operation.  Based on their naturally 
occurring failure rates, elements are randomly chosen from the 
list and removed from service.  The reaction of the grid to the 
disruption is analyzed using a computer model of the power 
redistribution that results.  Reliability indices are collected and 
the simulation of contingencies continue until convergence is 
reached.  

The number of contingencies can explode rapidly: for a 
simple system of 69 potential points of failure, there are nearly 
6x1012 different possible contingencies that could occur.  As 
noted previously, bulk power systems may involve on the 
order of tens of thousands of potential points of failure.  For 
very large systems, the list is typically dominated by 
generation elements since transmission and substation failures 
are rare under normal bulk power system operation. The 
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response of the bulk power system to these first-order 
contingencies is the basis for scheduling maintenance, setting 
reserve margins, emergency planning, etc.  Unfortunately, as 
evidenced by the outages in 1996 and 2003, transmission lines 
can easily be home to initiating events that cascades quickly.  

The objective of this research was to explore alternative, 
nontraditional methods of identifying critical elements in a 
bulk power system to improve contingency analysis.  With the 
computational power available today, enumeration of all 
possible single point contingencies is a possibility. However,
nonlinearities and synergistic effects preclude simply 
exploring and ordering all first-order contingencies.

The focus of this research was the development of a 
methodology that can be used to identify the second-, third-, 
and higher order contingencies. Contingency analysis has 
been the focus of much research the past few years but the 
emphasis has remained on naturally occurring failures rates.  It 
was decided that, rather than duplicating the direction of these 
research efforts, a more theoretical systems approach would be 
emphasized.  

A trio of very different approaches was investigated.  The 
first involves complexity theory and network theory in 
particular.  Network theory has been applied extensively on a 
wider variety of complex networks including communication 
networks, the Internet, and even power systems.  The goal of 
these efforts has been to characterize the robustness, fragility, 
and attack tolerance of complex networks.  Large networks 
can be typically classified into two groups: homogeneous and 
non-homogeneous.  Nodes in homogeneous networks typically 
have roughly the same number of connections.  Random 
graphs and small-world networks are examples of 
homogeneous networks.  Nonhomogeneous, or scale-free 
networks are largely homogeneous, but contain a few nodes 
that are highly connected.  The Internet and World Wide Web 
are examples of scale-free networks.  Scale-free networks 
typically result from an evolving system with preferential 
points of interconnection.  The robustness (or inversely, the
fragility) of large networks is characterized by their diameter, 
the average length of the shortest path between two nodes.  
The fragility of a network is investigated as highly connected 
elements are removed and the diameter of the network 
changes.

A second approach investigated involves characterizing 
the bulk power system as a complex series of n-dimensional 
polyhedra, similar in many ways to a large crystal.  The 
vulnerable points on the grid expose themselves as ‘cleavage’ 
points in the crystalline structure.  Polyhedral dynamics, a 
branch of set theory that deals with the topological 
relationships between finite sets, is employed to relate the 
various elements of the power network to a simplicial 
structure and to identify the vulnerable points in the network.  

The final and most promising research focused on the use 
of an AI-based approach founded in cultural psychology.  The 
swarming behavior of flocks of birds and schools of fish are 
used as a basis for finding the optimum combination of 
network nodes to be disrupted to cause the most damage.

This paper focuses on the most promising of these 
approaches.  The fundamentals of particle swarm optimization 
are presented and the implementation is then discussed and the 

results from a number of test cases are provided.  Finally, 
conclusions of the research and recommendations for future 
efforts are presented.  For additional details the reader is 
referred to the full report [1]. 

3.  PARTICAL SWARM OPTIMIZATION

The fundamental concepts associated with particle 
swarms were developed in 1995 by Kennedy and Eberhart [2].  
Particle swarm optimization (PSO) is regarded as being of the 
family of evolutionary strategies for problem solving.  Other 
members of this family include, for example, genetic 
algorithms and evolutionary programming.  While heavily 
influenced by the philosophy of evolutionary strategies, PSO 
differs significantly from these “survival of the fittest” 
algorithms in that it is based on a social cooperative 
perspective: individuals working with others in a common 
social group to solve problems.  Contrary to the algorithms in 
Darwinism-based paradigms, individuals are not replaced by 
better performing individuals; rather, the individuals in a 
swarm model adapt to the environment by gathering 
information and processing that information as a group.  In a 
swarm model it is not the individual who changes, but rather 
the knowledge of the individual that changes from iteration to 
iteration.

It should be noted that PSO is also closely related to the 
area of cellular automata, which is a discrete time, discrete 
state virtual machine where the current state of each cell of the 
system is determined by its most recent past and the states of 
those cells in the immediate proximity.

Since 1995 PSO has been used by a number of authors to 
address a wide variety of applications including optimization 
of reactive power and voltage control for a bulk power system 
[4,5].  Swarm intelligence is particularly suited for our 
problem due to its evasion of local minima.

As noted by Kennedy and Eberhart [140, p288], in a very 
simple sense an individual reacts and adapts to their 
environment, including other individuals, through three major 
principles: evaluating, comparing, and imitating.  Individuals 
can identify desirable goals and objectives of their social 
group within the environment and have their own perception 
of their behavior relative to environment.  They can also 
compare their behavior to the behavior of other individuals in 
achieving those goals and then imitate the behavior of those 
individuals who are seen as having behavior conducive to 
achieving those goals.  By adapting in this fashion, individuals 
take advantage of the experiences of those individuals around 
them in much the same fashion as a school of fish takes 
advantage of the many eyes available to the group to warn of 
danger and the subsequent reaction of the group to avoid the 
danger.

Stepping quickly away from the metaphors, let an 
individual with a certain behavior set be described as a particle 
with a certain position.  The change in the behavior of the 
individual as it seeks to imitate the behavior of successful 
individuals is characterized by the velocity of the particle.  
A particle is distinguished by its:

- current position and velocity,



- value of that position,
- best position achieved thus far,
- best current position achieved by those particles in its 

neighborhood.
A swarm is characterized by a set of particles and one or 

more neighborhoods describing the social structures of those 
particles.  Each particle in the swarm changes position and 
velocity through a combination of it own past best experiences 
as well as the best experiences of it neighbors.  This ability to 
gain and gather experiences individually and from the 
neighborhood provides the individual particle with memory.  
This capacity for memory is important since it allows the 
algorithm to exploit information via a local search (through 
the experience of each individual) and it also emphasizes 
exploration of the search space with a global search (through 
the combined experiences of the neighboring particles).  This 
balance of local exploitation and global exploration results in a 
very robust search algorithm.

The traditional swarm equations take the form [129]:

v i,t1  c1v i,t  c2( pi,t  x i,t)  c3( pg,t  x i,t) (1)

xi,t1  xi,t  vi,t1
(2)

where: 

x i,t ;v i,t   position;velocity of particle i at time t

pi,t   position of best performance of particle  i through time t

pg,t   position of best performance of group through time t

c i   coefficients

The meaning behind each of the terms in the above 
equations will be discussed in the following section, but to tie 
this all together, let us use the example of a flock of birds.  
The specific objective of this ‘social’ group is to minimize the 
distance between themselves and a source of food (such as a 
cornfield).  

2.  APPROACH

In the following discussion, the analogy between a team 
of engineers and a swarm will be exploited.  It is important to 
understand that the analogy results from a serendipitous 
situation and not from any attempt to actually model the social 
behavior of a group of engineers.  The algorithm operates 
quite distinctly from the analogy; however, the analogy 
provides a unique vehicle for discussion purposes.

In our application of a swarm paradigm the swarm will 
consist of a number of engineers linked together into a loose 
social structure (i.e. a team) with the goal of finding the 
combination of power grid elements, which if disrupted, 
would cause maximum disruption to the national bulk power 
system.  A particle in the swarm will equate to an engineer and 
a swarm neighborhood or social network will equate to a 
engineering team.  Note that this can be generalized further in 
the sense of having a engineering team modeled as a member 
of a larger organization.  

The ‘position’ of each engineer is analogous to the choice 
of power grid elements each engineer has made from a long 
list of potential elements while ‘the ‘’velocity’ of each 

engineer relates to the probability of the engineer choosing a 
particular element.  Each engineer on the team will have 
access to education, training and a variety of independent 
information sources.  This knowledge base will be periodically 
queried and a decision on the suggested best course of action 
will be provided to the individuals.  The phrase ‘suggested’ is 
used since there is a certain degree of interpretation and free 
will that lend uncertainty to the actual course of action taken 
by the individual engineer.

In general, the position of the particle at a particular time 
is a continuous variable.  However, in our situation, the 
positions x i,t , pi,t , pg ,t

can take on only binary values {0,1}.  

The individual best pi,t
will take on values of 1 if the 

individual best performance occurred when position xi,t 1

and similarly, pi,t
will take on values of 0 if the individual 

best performance occurred when position xi,t  0 .  Following 

the example of Kennedy and Eberhart [129], we will assume 
that the velocity v i,t represents the probability that the 

position takes a value of 1.  The probability of the null 
position xi,t  0 is therefore 1 vi,t

.  The change in position is 

then given by evaluating: if (rand( ) S(vi,t )) then xi,t 1; 

else xi,t  0 .  

The transform expression S(vi,t )  1/[1  exp(avi ,t )] is 

controlled by the slope parameter a, where the slope at the 
origin is a/4.  Typically, from an application point of view, 

this sigmoid function is limited over the range     [vmax ,vmax ]

(Figure 1).  This prevents the velocity from being driven to 
zero too quickly and forces exploration of new positions. 

With the above formulation, the analysis can proceed 
equally from two directions with the overall goal of causing as 
much damage as possible.  First, we can take the perspective 
of the engineering team composed of individual engineers.  In 

this case, conceptually, the term     c2 ( pi, t  xi, t ) represents the 

individual’s contribution of knowledge to the overall objective 
of the team.  This knowledge may consist of such things as 
personal experience, unique training or specific educational 

background.  On the other hand, the term     c3 ( pg, t  xi, t )

represents the contribution of the individual engineers 
knowledge to the collective knowledge of the complete power 
grid analysis team including the team goals and objectives.  

Figure 1  Sigmoid Function



Alternatively, it is possible to formulate the problem as a 
engineering organization with particular goals and objectives, 

    c3 ( pg, t  xi, t ) , composed of committees/teams with their own 

unique knowledge base to draw upon,     c4 ( pc, t  xi, t ) .  Finally, 

we can extend the velocity equation to account for all three 
levels of social dynamics: 

    

vi, t1  c1vi, t  c2 ( pi, t  xi, t ) 

c
3
( p

g, t
x

i, t
)c

4
( p

c, i
x

i, t
)

(3)

(In the following analysis, only the first three terms are 

considered.)  In all cases, the coefficients     c j ,(i  j) represent 

the value placed on the level of contribution of each social 
segment (individual, team, or group) to achieving the 
objective.  Typically the contribution level can change 
dynamically as knowledge is lost/gained/obscured in the 
course of the search for the optimum course of action.  These 
coefficients are therefore treated as random variables that are 
re-evaluated at each stage of the analysis.  Any alternative 
course of action is therefore a weighted average of the 
individual best course and the group best course of action, e.g. 

    

c2 p
i
 c3 pg

c2  c3

.  

The coefficient c1 on the velocity term represents the 

momentum toward change in achieving the objective.  In the 
simplest situation, the desire to achieve a particular goal or 
objective remains constant throughout the search for the best 
scenario.  However, it is realistic to assume that this 
momentum may be greater the further away from the hoped 
for best solution and become smaller as the accumulation of 
individual and group knowledge begins to focus the 
alternative courses of action into the one that best in achieves 
the objective.

3.  IMPLEMENTATION

3.1 Buzzard Software

The above equations for particle swarm optimization have 
been implemented in software.  The Buzzard is a software 
program that acts as an instigator to computer models of large 
complex systems by introducing a failure in a set of 
components, e.g. a contingency.  The algorithm embedded 
within Buzzard is independent of the particular system model 
or infrastructure, but the most recent application has been for 
Buzzard in the power system contingency analysis.

Buzzard uses the previously discussed AI-based swarm 
theory algorithm to develop a set of scenarios for disrupting 
the system.  These scenarios are introduced into the system 
and incite a reaction from the system.  The reactions that result 
are observed by Buzzard and a new set of scenarios are 
constructed automatically by Buzzard to stimulate the 
disrupting the critical nodes of the system.  These new 
scenarios are constructed in an evolutionary fashion such that 
Buzzard seeks new and more effective provocations to disrupt 
the system.

The complexity of the scenarios is predetermined by the 
user along with the particular measures that characterize the 
impact of the scenarios on the system.

The evolutionary strategies within Buzzard differ 
significantly from approaches that commonly apply genetic-
based algorithms as a basis for their search algorithms. 
Contrary to the algorithms in Darwinism-based paradigms, 
individuals are not replaced by better performing individuals.  
Rather, the individuals within Buzzard adapt to the 
environment by gathering information and processing that 
information as a group.  In this approach it is not the 
individual who changes, but rather the knowledge of the 
individual that changes each time a new scenario is generated.

In addition, unlike genetic-based algorithms, the 
algorithms within Buzzard are less susceptible to being 
trapped within local minima.  Buzzard algorithms are all 
coded in C/C++ and are scalable to the particular size of 
system being analyzed.

3.2 Power Flow Software

Implementation involved interfacing the Buzzard 
software directly with an actual power flow simulation 
program.  This would provide the capability to observe (within 
the constraints of the simulation model) the impact of 
disrupting the power system.  However, this presented some 
difficulties.  Given the vast number of contingency scenarios 
to be investigated, the computational burden would still be 
substantial.  

As an approximation, it was decided to make a number of 
simplifying assumptions. First, since a complete 
characterization of network reliability measure is not needed,
only deterministic performance measures need to be 
considered.  Second, after a network disruption, only the very 
immediate impact on the power flow in the grid would be 
characterized and collected for each scenario.

Since many performance assessment results must be 
compared during contingency analysis, there is a need to 
reduce the voluminous output of a power grid simulation to a 
manageable number of performance measures.  All formal 
contingency assessments involve comparing a single index, or 
multiple indices, against some simple numeric standard.  Also 
relevant to contingency analysis is the identification of failure 
criteria.  These failure criteria include capacity deficiency, line 
overload, system separation with load loss, bus isolation with 
load loss, voltage collapse, MVAR limit violations, and non-
convergent situations (which surrogate network instabilities).  
When a contingency fails, either an index is greater than some 
critical value or is outside of some believed-stable region of 
index values, or some failure criterion is met.  These 
performance indices can themselves be the direct product of a 
contingency analysis model, without any intermediate 
derivation of more precise information such as power flow 
calculations, at the expense of precision and accuracy.  Indices 
that avoid full power flow calculations to determine post-
contingency voltage levels at each bus have shown promise in 
reducing computation time while still supporting ranking and 
screening procedures.



Such an approach was chosen here; the measure chosen, 
line voltage and current over-rating, is commonly used in 
contingency analysis of bulk power systems.  Line over-rating 
is expressed as a percentage of the allowable load, either 
voltage or current, that is placed on the system.  Under normal 
operation, a line rating of 100% is typical. It was felt that the 
change in line over-rating immediately subsequent to a 
disruption would provide at least a qualitative measure of the 
severity of the disruption.

To compare contingencies, a single performance measure 
or cost function was developed: the sum of all line over-
ratings which exceed a particular criteria.  Critical over-ratings 
vary slightly from area to area (105%-110%) but for the 
purposes of this study a single criterion is used.  Unless 
specifically noted otherwise, a limit of 110% is used as the 
critical level for all the cases discussed.

To characterize the performance of a network before and 
after disruption, two open source power flow packages were 
employed.  The first was developed by New Mexico State 
University under contract to Sandia National Laboratories.  
The second is a product with a long history that has been 
developed by the Bonneville Power Association (BPA).  Over 
the past 20 years, BPA has been actively involved with the 
development of power system analysis software.  In 1991, 
BPA, in partnership with WECC and the Electric Power 
Research Institute (EPRI), began development of an enhanced 
power flow package referred to as the Interactive Power Flow 
(IPF) program.  Both the NMSU and BPA/IPF program were 
used in the analyses.

3.3 Test Case 

The IEEE 300 bus test system was chosen as the basis for 
the initial investigation. The IEEE 300 bus test case was 
initially developed by the IEEE Test Systems Task Force in 
1993 based on data from a northeast power pool.  The 

particular data set used in this analysis is available from the 
University of Washington Power System Test Case Archive. 
The site provides World Wide Web access to power system 
data (test cases) and is maintained by Richard D. Christie, a 
Professor at the University of Washington, Seattle, 
Washington, USA (christie@ee.washington.edu).  The system 
consists of three connected regions as depicted in Figure 2 
with 69 generators and 298 busses, transformers, etc. available 
for disruption.

4. APPLICATION

For the initial investigation it was decided that a subset of 
the IEEE 300 RTS would be sufficient.  A reduced test system 
was developed, focusing only on the 69 generators in the 
network.  This network is depicted in Figure 2, with the 
generators identified and numbered.  (Generators 65-69 are 
included in the computer model as reserve generators.)

Cost Critical Set: 3 node scenario

342 31 (191) 40 (236) 33 (213)

151 31 (191) 40 (236) 42 (239)

105 31 (191) 40 (236) 41 (238)

104 31 (191) 40 (236) 29 (187)

095 31 (191) 32 (198) 42 (239)

082 31 (191) 39 (233) 42 (239)

050 31 (191) 40 (236) 28 (186)

030 31 (191) 32 (198) 43 (241)

Table 1.  Optimal 3 Node Sets: Truth
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The number of possible node combinations is incredibly 
large even when limiting the analysis to the 69 generators.  
When limiting the allowable number of potential critical nodes 
to 2 there are 2,346 possible contingencies, while for 3 critical 
nodes the possible scenarios explodes to 52,394 and for 9 
there are 56,672,074,888.  Validation and verification of the 
algorithms is obviously very difficult and verges on being 
computationally impossible.  

The focus is on identifying the best combination of 
modeling parameters to identify the best 2 or 3 critical nodes 
since it was possible to actually enumerate all possible node 
combinations of these sizes.  Table 1 presents the results of an 
exhaustive search for the best combination of 3 nodes from a 
set of 69 possible nodes.  The cost (damage) associated with 
each node combination is provided as well as the names and 

bus reference number (in parentheses) of each node.  
(It is also important to note that the set of seven solutions 

summarized in the above tables reflect (effectively) multiple, 
optimal solutions, since the differences between the costs are 
negligible. In retrospect, the choice of the standard IEEE 300 
RTS was unfortunate.  There are a large percentage of network 
elements that can have very similar operational impact on the 
performance of the system.  In addition, these sets differ in 
their value (cost) by only roughly 5%.  This made validation a 
bit more challenging than would be expected from an actual 
bulk power system.)

Those nodes belonging to a critical set of 3 are 
highlighted in Figure 2.  In addition to identifying sets of 
critical nodes, the physical location of the nodes in the 
network can provide insight into sensitive areas within the 

Figure 2: Node Designations for Simple Example

No. of 
Nodes

Team
Size

Penalty 
Cost

Momentum Vmax Iterations Cost Critical 
Node Set

First 
Top 7

Alt 
Cost

3 5 10000 1.0 5 175 90103 31,29,40 175 90103
7 10000 1.0 5 125 90095 31,32,42 125 90095
9 10000 1.0 5 3525 90342 31,33,40 450 90105

No. of
Nodes

Team
Size

Penalty 
Cost

Momentum Vmax Iterations Cost Critical 
Node Set

3 7 10000 1.0 5.0 150 90151 31,40,42
7 10000 1.0 5.5 150 89095 31,35,63
7 10000 1.0 6.0 150 88359 9,31,51

Table 2.  Summary of Investigations for Various Momentum, Vmax Values



network. Table 2 presents various summaries for scenarios 
involving a engineering teams of size 3, 7, and 9 and a 
potential set of 3 nodes.  The number of iterations was 
artificially capped at 150; no exhaustive attempt at 
identification of the final optimum set was conducted.  

It became clear that by reducing the momentum factor, 
the convergence to the optimum set of nodes is slower.  The 
number of potential critical nodes with high probability of 
selection as a critical nodes is still rather large for a 
momentum of 0.90 and decreases rapidly as the momentum 
factor is raised to 0.95 and then finally to 1.0.  This can be 
useful if, rather than attempting to identify a specific set of X 
critical nodes, it is simply desired to identify a larger set of 
important critical nodes perhaps with the intent of identifying 
vulnerable regions within a bulk power network.

Alternatively, the impact of vmax on the identification of 
the optimal set critical nodes is less distinct.  For a specific 
momentum, in this case 1.0, the cost function quickly focuses 
on the selection of 3 nodes.  Larger values of vmax allow the 
search for the optimum to extend over a broader region of 
support and the algorithm is less likely to be ‘stuck’ in a local 
minimum.

Figure 3 is provides a snapshot of the velocities for a few 
of the 69 potential nodes from a typical simulation.  Recall 
that the velocity of a node is a measure of the probability that 
the node will be selected for membership into the set of X 
critical nodes.  The velocities provide insight into not only the 
optimum set of nodes but also can be used to identify other 
nodes who are just outside the selection criteria.  These nodes 
may warrant additional attention when intangible selection 
criteria are included, e.g. military or economic value of node.  

5. CONCLUSIONS

It is clear that the Buzzard software coupled with a 
traditional power flow analysis program can be used to 
identify critical elements within large complex bulk power 
systems.  The algorithms are consistent with traditional 
methods that identify critical single point contingencies in the 
sense that the new approach can also be used to characterize 
single point contingencies.  For small numbers of potential 
attack sites (e.g. 2-3) on relatively small systems (69 nodes) it 
was possible to enumerate all possible contingencies and in 
every case the nodes identified through enumeration 
corresponded to the nodes identified using the Buzzard 
algorithm.

The software very quickly identifies one of the multiple 
‘best’ solutions.  As mentioned previously, for the given cost 

function, there are a number of best solutions that are very 
close in value.  The algorithm typically finds a solution that is 
within 0.3% of the value of the true optimum, but may require 
5000 iterations to find the final ‘best’ combination of critical 
nodes. 

The existence of multiple, sub-optimal solutions with very 
similar total critical node values poses a bit of a dilemma: it is 
important to be aware of similar ‘optimal’ solutions, but it 
clouds identification of the ‘best’.  It is suggested that a small 
number of additional searches be conducted with various 
initial seed values before identifying a specific set of critical 
node sets.  In addition, the velocity vector provides 
considerable insight into the existence of these potential 
members of the optimal set.  High residual velocities at the 
completion of the simulation are key indicators of potential 
optimal set membership.

Two key considerations that need to be understood and 
possibly investigated in a more formal fashion in future 
efforts: sensitivity to vmax and the penalty associated with 
exceeding the allowable number of critical node locations.  
The choice of vmax impacts the search algorithm by 
constraining the search to be either more locally focused or 
allowing the search to extend to a more global solution space.  

Typically,     3  vmax  6, with smaller values being associated 

with local search and larger values allowing the search to 
broaden.  Penalties over the range of 1000 to 10,000 were used 
to force the number of selected critical nodes to be 
approximately the user specified values.   High penalties 
coupled with low values of vmax resulted in lengthy 
simulations until convergence.
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