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SUMMARY & CONCLUSIONS

This paper documents research into the use of an adaptive
cultural model and collective intelligence as a means of
characterizing the reliability of bulk power networks.
Historically, utilities support the reliable design and operation
of bulk power networks through first-order contingency
analysis. In contingency analyses the list of candidate
elements for disruption are identified by engineers a priori
based on the rate at which the elements failure through the
course of normal grid operation.

The new method, an implementation of particle swarm
analysis, a swarm of ‘virtual power engineers’ successfully
identified the set of network elements which, if disrupted,
would possibly lead to a cascading series of events resulting in
the most wide spread damage. The methodology is technology
independent: it can be applied on not only for reliability
analysis of bulk power systems, but also other energy systems
or transportation systems. The methodology is scale neutral: it
can be applied to power distribution networks at the local,
state or regional level.

1. INTRODUCTION

The objective of this research was the development of
tools and techniques for the identification of critical nodes
within the national bulk power system. These are nodes that,
if disrupted would cause the most widespread, immediate
damage.

Traditional contingency analyses performed by utilities
are single point contingency analyses, focusing on identifying
the single most critical element. In addition, analyses
performed by utilities focus primarily on those elements which
have a mnaturally occurring high failure rate, typically
generation.  Substations, transmission lines, etc. have low
failure rates and so have low likelihood of inclusion in
traditional investigations performed by utilities. The
possibility of SCADA failures are also not considered in
traditional analyses and are clearly vulnerable points. Finally,
synergistic effects of multiple, simultaneous damage nodes
that can amplify the impact are not considered in traditional
contingency analyses. In rough orders of magnitude, there are
10,000 potential points of attack in the western U.S. grid,
45,000 points in the north-east and 5,000 points in the Texas
area. These are only the major generation and transmission
elements and do not include command and control elements or
elements that might be critical to a particular region.

Through the identification of critical elements and the
quantification of the consequences of their failure, site/node
specific vulnerability analyses can be focused at those
locations where additional security measures could be
effectively implemented. In particular, with appropriate sizing
and placement within the grid, distributed generation in the
form of regional power parks may reduce or even prevent the
impact of widespread network power outages. Even without
additional security measures, increased awareness of sensitive
nodes can provide a basis for more effective national, state,
and local emergency planning. Locations and types of critical
nodes can be used to preposition spares, deploy security
forces, or be points where additional site security measures
can be employed.

Identification of critical nodes or points of vulnerability
within such a large, complex system is a daunting
computational task. This research was focused on those
situations where simultaneous, multiple points within the
system would be attacked. To overcome the computational
difficulties associated with traditional methods of vulnerability
analysis, an artificial intelligence (AI) method was developed
and applied to a variety of bulk power test cases constructed
by the Institute of Electrical and Electronic Engineers (IEEE).
The approach has a foundation in a branch of cultural
psychology that can be used to model adaptive group behavior
similar to that observed in flocks of birds and schools of fish.

2. BACKGROUND

Historically, utilities identify single points of vulnerability
through a first-order contingency analysis. The list of
candidate elements for disruption are identified a priori
typically based on the rate at which the elements fail through
the course of normal grid operation. Based on their naturally
occurring failure rates, elements are randomly chosen from the
list and removed from service. The reaction of the grid to the
disruption is analyzed using a computer model of the power
redistribution that results. Reliability indices are collected and
the simulation of contingencies continue until convergence is
reached.

The number of contingencies can explode rapidly: for a
simple system of 69 potential points of failure, there are nearly
6x10" different possible contingencies that could occur. As
noted previously, bulk power systems may involve on the
order of tens of thousands of potential points of failure. For
very large systems, the list is typically dominated by
generation elements since transmission and substation failures
are rare under normal bulk power system operation. The



response of the bulk power system to these first-order
contingencies is the basis for scheduling maintenance, setting
reserve margins, emergency planning, etc. Unfortunately, as
evidenced by the outages in 1996 and 2003, transmission lines
can easily be home to initiating events that cascades quickly.

The objective of this research was to explore alternative,
nontraditional methods of identifying critical elements in a
bulk power system to improve contingency analysis. With the
computational power available today, enumeration of all
possible single point contingencies is a possibility. However,
nonlinearities and synergistic effects preclude simply
exploring and ordering all first-order contingencies.

The focus of this research was the development of a
methodology that can be used to identify the second-, third-,
and higher order contingencies. Contingency analysis has
been the focus of much research the past few years but the
emphasis has remained on naturally occurring failures rates. It
was decided that, rather than duplicating the direction of these
research efforts, a more theoretical systems approach would be
emphasized.

A trio of very different approaches was investigated. The
first involves complexity theory and network theory in
particular. Network theory has been applied extensively on a
wider variety of complex networks including communication
networks, the Internet, and even power systems. The goal of
these efforts has been to characterize the robustness, fragility,
and attack tolerance of complex networks. Large networks
can be typically classified into two groups: homogeneous and
non-homogeneous. Nodes in homogeneous networks typically
have roughly the same number of connections. Random
graphs and small-world networks are examples of
homogeneous networks. Nonhomogeneous, or scale-free
networks are largely homogeneous, but contain a few nodes
that are highly connected. The Internet and World Wide Web
are examples of scale-free networks. Scale-free networks
typically result from an evolving system with preferential
points of interconnection. The robustness (or inversely, the
fragility) of large networks is characterized by their diameter,
the average length of the shortest path between two nodes.
The fragility of a network is investigated as highly connected
elements are removed and the diameter of the network
changes.

A second approach investigated involves characterizing
the bulk power system as a complex series of n-dimensional
polyhedra, similar in many ways to a large crystal. The
vulnerable points on the grid expose themselves as ‘cleavage’
points in the crystalline structure. Polyhedral dynamics, a
branch of set theory that deals with the topological
relationships between finite sets, is employed to relate the
various elements of the power network to a simplicial
structure and to identify the vulnerable points in the network.

The final and most promising research focused on the use
of an Al-based approach founded in cultural psychology. The
swarming behavior of flocks of birds and schools of fish are
used as a basis for finding the optimum combination of
network nodes to be disrupted to cause the most damage.

This paper focuses on the most promising of these
approaches. The fundamentals of particle swarm optimization
are presented and the implementation is then discussed and the

results from a number of test cases are provided. Finally,
conclusions of the research and recommendations for future
efforts are presented. For additional details the reader is
referred to the full report [1].

3. PARTICAL SWARM OPTIMIZATION

The fundamental concepts associated with particle
swarms were developed in 1995 by Kennedy and Eberhart [2].
Particle swarm optimization (PSO) is regarded as being of the
family of evolutionary strategies for problem solving. Other
members of this family include, for example, genetic
algorithms and evolutionary programming. While heavily
influenced by the philosophy of evolutionary strategies, PSO
differs significantly from these “survival of the fittest”
algorithms in that it is based on a social cooperative
perspective: individuals working with others in a common
social group to solve problems. Contrary to the algorithms in
Darwinism-based paradigms, individuals are not replaced by
better performing individuals; rather, the individuals in a
swarm model adapt to the environment by gathering
information and processing that information as a group. In a
swarm model it is not the individual who changes, but rather
the knowledge of the individual that changes from iteration to
iteration.

It should be noted that PSO is also closely related to the
area of cellular automata, which is a discrete time, discrete
state virtual machine where the current state of each cell of the
system is determined by its most recent past and the states of
those cells in the immediate proximity.

Since 1995 PSO has been used by a number of authors to
address a wide variety of applications including optimization
of reactive power and voltage control for a bulk power system
[4,5]. Swarm intelligence is particularly suited for our
problem due to its evasion of local minima.

As noted by Kennedy and Eberhart [140, p288], in a very
simple sense an individual reacts and adapts to their
environment, including other individuals, through three major
principles: evaluating, comparing, and imitating. Individuals
can identify desirable goals and objectives of their social
group within the environment and have their own perception
of their behavior relative to environment. They can also
compare their behavior to the behavior of other individuals in
achieving those goals and then imitate the behavior of those
individuals who are seen as having behavior conducive to
achieving those goals. By adapting in this fashion, individuals
take advantage of the experiences of those individuals around
them in much the same fashion as a school of fish takes
advantage of the many eyes available to the group to warn of
danger and the subsequent reaction of the group to avoid the
danger.

Stepping quickly away from the metaphors, let an
individual with a certain behavior set be described as a particle
with a certain position. The change in the behavior of the
individual as it seeks to imitate the behavior of successful
individuals is characterized by the velocity of the particle.

A particle is distinguished by its:
- current position and velocity,



- value of that position,

- Dbest position achieved thus far,

- best current position achieved by those particles in its

neighborhood.

A swarm is characterized by a set of particles and one or
more neighborhoods describing the social structures of those
particles. Each particle in the swarm changes position and
velocity through a combination of it own past best experiences
as well as the best experiences of it neighbors. This ability to
gain and gather experiences individually and from the
neighborhood provides the individual particle with memory.
This capacity for memory is important since it allows the
algorithm to exploit information via a local search (through
the experience of each individual) and it also emphasizes
exploration of the search space with a global search (through
the combined experiences of the neighboring particles). This
balance of local exploitation and global exploration results in a
very robust search algorithm.

The traditional swarm equations take the form [129]:

Via =CVi, te(p,—x,)+ Cs(pg,t —-x;,)
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where:
x,,;v;, = position;velocity of particle i at time ¢
p,, = position of best performance of particle 7 through time ¢

P, = position of best performance of group through time ¢

¢, = coefficients

The meaning behind each of the terms in the above
equations will be discussed in the following section, but to tie
this all together, let us use the example of a flock of birds.
The specific objective of this ‘social’ group is to minimize the
distance between themselves and a source of food (such as a
cornfield).

2. APPROACH

In the following discussion, the analogy between a team
of engineers and a swarm will be exploited. It is important to
understand that the analogy results from a serendipitous
situation and not from any attempt to actually model the social
behavior of a group of engineers. The algorithm operates
quite distinctly from the analogy; however, the analogy
provides a unique vehicle for discussion purposes.

In our application of a swarm paradigm the swarm will
consist of a number of engineers linked together into a loose
social structure (i.e. a team) with the goal of finding the
combination of power grid elements, which if disrupted,
would cause maximum disruption to the national bulk power
system. A particle in the swarm will equate to an engineer and
a swarm neighborhood or social network will equate to a
engineering team. Note that this can be generalized further in
the sense of having a engineering team modeled as a member
of a larger organization.

The “position’ of each engineer is analogous to the choice
of power grid elements each engineer has made from a long
list of potential elements while ‘the “’velocity’ of each

engineer relates to the probability of the engineer choosing a
particular element. Each engineer on the team will have
access to education, training and a variety of independent
information sources. This knowledge base will be periodically
queried and a decision on the suggested best course of action
will be provided to the individuals. The phrase ‘suggested’ is
used since there is a certain degree of interpretation and free
will that lend uncertainty to the actual course of action taken
by the individual engineer.

In general, the position of the particle at a particular time
is a continuous variable. However, in our situation, the
positions x, . p, , p,, can take on only binary values {0,1}.

The individual best D will take on values of 1 if the
individual best performance occurred when position x , =1
and similarly, D will take on values of 0 if the indiV{dual
best performance occurred when position x,, =0. Following

the example of Kennedy and Eberhart [129], we will assume
that the velocity v,, represents the probability that the

position takes a value of 1. The probability of the null
position x,, =0 is therefore 1—v,,. The change in position is
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Figure 1 Sigmoid Function
then given by evaluating: if (rand()< S(v,,)) then x , =1;
else x,,=0.
The transform expression S(vl. =11+ exp(—avi )l s

controlled by the slope parameter a, where the slope at the
origin is a/4. Typically, from an application point of view,
this sigmoid function is limited over the range [-v . .V, .. ]
(Figure 1). This prevents the velocity from being driven to
zero too quickly and forces exploration of new positions.

With the above formulation, the analysis can proceed
equally from two directions with the overall goal of causing as
much damage as possible. First, we can take the perspective
of the engineering team composed of individual engineers. In

%

this case, conceptually, the term ¢,(p;, — x;,) represents the

individual’s contribution of knowledge to the overall objective
of the team. This knowledge may consist of such things as
personal experience, unique training or specific educational

background. On the other hand, the term c¢;( Pg. —xi,t)

represents the contribution of the individual engineers
knowledge to the collective knowledge of the complete power
grid analysis team including the team goals and objectives.



Alternatively, it is possible to formulate the problem as a
engineering organization with particular goals and objectives,

o(p ot~ % ,), composed of committees/teams with their own

unique knowledge base to draw upon, ¢,(p,, — x;,). Finally,
we can extend the velocity equation to account for all three

levels of social dynamics:

Vi = Vi, T (P, =X )+
3)
G (pg,t X )+C4(pc,i_xi,t

(In the following analysis, only the first three terms are
considered.) In all cases, the coefficients ¢,,(i# j)represent

the value placed on the level of contribution of each social
segment (individual, team, or group) to achieving the
objective.  Typically the contribution level can change
dynamically as knowledge is lost/gained/obscured in the
course of the search for the optimum course of action. These
coefficients are therefore treated as random variables that are
re-evaluated at each stage of the analysis. Any alternative
course of action is therefore a weighted average of the
individual best course and the group best course of action, e.g.

CzPl.+C3Pg

¢, +e

The coefficient ¢, on the velocity term represents the
momentum toward change in achieving the objective. In the
simplest situation, the desire to achieve a particular goal or
objective remains constant throughout the search for the best
scenario. However, it is realistic to assume that this
momentum may be greater the further away from the hoped
for best solution and become smaller as the accumulation of
individual and group knowledge begins to focus the
alternative courses of action into the one that best in achieves
the objective.

3. IMPLEMENTATION
3.1 Buzzard Software

The above equations for particle swarm optimization have
been implemented in software. The Buzzard is a software
program that acts as an instigator to computer models of large
complex systems by introducing a failure in a set of
components, e.g. a contingency. The algorithm embedded
within Buzzard is independent of the particular system model
or infrastructure, but the most recent application has been for
Buzzard in the power system contingency analysis.

Buzzard uses the previously discussed Al-based swarm
theory algorithm to develop a set of scenarios for disrupting
the system. These scenarios are introduced into the system
and incite a reaction from the system. The reactions that result
are observed by Buzzard and a new set of scenarios are
constructed automatically by Buzzard to stimulate the
disrupting the critical nodes of the system. These new
scenarios are constructed in an evolutionary fashion such that
Buzzard seeks new and more effective provocations to disrupt
the system.

The complexity of the scenarios is predetermined by the
user along with the particular measures that characterize the
impact of the scenarios on the system.

The evolutionary strategies within Buzzard differ
significantly from approaches that commonly apply genetic-
based algorithms as a basis for their search algorithms.
Contrary to the algorithms in Darwinism-based paradigms,
individuals are not replaced by better performing individuals.
Rather, the individuals within Buzzard adapt to the
environment by gathering information and processing that
information as a group. In this approach it is not the
individual who changes, but rather the knowledge of the
individual that changes each time a new scenario is generated.

In addition, unlike genetic-based algorithms, the
algorithms within Buzzard are less susceptible to being
trapped within local minima. Buzzard algorithms are all
coded in C/C++ and are scalable to the particular size of
system being analyzed.

3.2 Power Flow Software

Implementation involved interfacing the Buzzard
software directly with an actual power flow simulation
program. This would provide the capability to observe (within
the constraints of the simulation model) the impact of
disrupting the power system. However, this presented some
difficulties. Given the vast number of contingency scenarios
to be investigated, the computational burden would still be
substantial.

As an approximation, it was decided to make a number of
simplifying  assumptions.  First, since a complete
characterization of network reliability measure is not needed,
only deterministic performance measures need to be
considered. Second, after a network disruption, only the very
immediate impact on the power flow in the grid would be
characterized and collected for each scenario.

Since many performance assessment results must be
compared during contingency analysis, there is a need to
reduce the voluminous output of a power grid simulation to a
manageable number of performance measures. All formal
contingency assessments involve comparing a single index, or
multiple indices, against some simple numeric standard. Also
relevant to contingency analysis is the identification of failure
criteria. These failure criteria include capacity deficiency, line
overload, system separation with load loss, bus isolation with
load loss, voltage collapse, MVAR limit violations, and non-
convergent situations (which surrogate network instabilities).
When a contingency fails, either an index is greater than some
critical value or is outside of some believed-stable region of
index values, or some failure criterion is met. These
performance indices can themselves be the direct product of a
contingency analysis model, without any intermediate
derivation of more precise information such as power flow
calculations, at the expense of precision and accuracy. Indices
that avoid full power flow calculations to determine post-
contingency voltage levels at each bus have shown promise in
reducing computation time while still supporting ranking and
screening procedures.



Such an approach was chosen here; the measure chosen,
line voltage and current over-rating, is commonly used in
contingency analysis of bulk power systems. Line over-rating
is expressed as a percentage of the allowable load, either
voltage or current, that is placed on the system. Under normal
operation, a line rating of 100% is typical. It was felt that the
change in line over-rating immediately subsequent to a
disruption would provide at least a qualitative measure of the
severity of the disruption.

To compare contingencies, a single performance measure
or cost function was developed: the sum of all line over-
ratings which exceed a particular criteria. Critical over-ratings
vary slightly from area to area (105%-110%) but for the
purposes of this study a single criterion is used. Unless
specifically noted otherwise, a limit of 110% is used as the
critical level for all the cases discussed.

To characterize the performance of a network before and
after disruption, two open source power flow packages were
employed. The first was developed by New Mexico State
University under contract to Sandia National Laboratories.
The second is a product with a long history that has been
developed by the Bonneville Power Association (BPA). Over
the past 20 years, BPA has been actively involved with the
development of power system analysis software. In 1991,
BPA, in partnership with WECC and the Electric Power
Research Institute (EPRI), began development of an enhanced
power flow package referred to as the Interactive Power Flow
(IPF) program. Both the NMSU and BPA/IPF program were
used in the analyses.

3.3 Test Case

The IEEE 300 bus test system was chosen as the basis for
the initial investigation. The IEEE 300 bus test case was
initially developed by the IEEE Test Systems Task Force in
1993 based on data from a northeast power pool. The

Cost | Critical Set: 3 node scenario
342 | 31(191) | 40 (236) | 33 (213)
151 | 31(191) | 40 (236) | 42 (239)
105 | 31(191) | 40 (236) | 41 (238)
104 | 31(191) | 40 (236) | 29 (187)
095 | 31(191) | 32(198) | 42 (239)
082 | 31(191) | 39(233) | 42 (239)
050 | 31(191) | 40 (236) | 28 (186)
030 | 31(191) | 32(198) | 43 (241)

Table 1. Optimal 3 Node Sets: Truth

particular data set used in this analysis is available from the
University of Washington Power System Test Case Archive.
The site provides World Wide Web access to power system
data (test cases) and is maintained by Richard D. Christie, a
Professor at the University of Washington, Seattle,
Washington, USA (christie@ee.washington.edu). The system
consists of three connected regions as depicted in Figure 2
with 69 generators and 298 busses, transformers, etc. available
for disruption.

4. APPLICATION

For the initial investigation it was decided that a subset of
the IEEE 300 RTS would be sufficient. A reduced test system
was developed, focusing only on the 69 generators in the
network. This network is depicted in Figure 2, with the
generators identified and numbered. (Generators 65-69 are
included in the computer model as reserve generators.)


mailto:christie@ee.washington.edu

No. of | Team | Penalty | Momentum | Vmax | Iterations | Cost Critical First Alt
Nodes | Size Cost Node Set Top 7 Cost
3 5 10000 1.0 5 175 90103 31,29,40 175 90103
7 10000 1.0 5 125 90095 31,32,42 125 90095
9 10000 1.0 5 3525 90342 31,33,40 450 90105
No. of | Team | Penalty | Momentum | Vmax | Iterations | Cost Critical
Nodes | Size Cost Node Set
3 7 10000 1.0 5.0 150 90151 31,40,42
7 10000 1.0 5.5 150 89095 31,35,63
7 10000 1.0 6.0 150 88359 9,31,51

Table 2. Summary of Investigations for Various Momentum, V,,,, Values

The number of possible node combinations is incredibly
large even when limiting the analysis to the 69 generators.
When limiting the allowable number of potential critical nodes
to 2 there are 2,346 possible contingencies, while for 3 critical
nodes the possible scenarios explodes to 52,394 and for 9
there are 56,672,074,888. Validation and verification of the
algorithms is obviously very difficult and verges on being
computationally impossible.

The focus is on identifying the best combination of
modeling parameters to identify the best 2 or 3 critical nodes
since it was possible to actually enumerate all possible node
combinations of these sizes. Table 1 presents the results of an
exhaustive search for the best combination of 3 nodes from a
set of 69 possible nodes. The cost (damage) associated with
each node combination is provided as well as the names and
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bus reference number (in parentheses) of each node.

(It is also important to note that the set of seven solutions
summarized in the above tables reflect (effectively) multiple,
optimal solutions, since the differences between the costs are
negligible. In retrospect, the choice of the standard IEEE 300
RTS was unfortunate. There are a large percentage of network
elements that can have very similar operational impact on the
performance of the system. In addition, these sets differ in
their value (cost) by only roughly 5%. This made validation a
bit more challenging than would be expected from an actual
bulk power system.)

Those nodes belonging to a critical set of 3 are
highlighted in Figure 2. In addition to identifying sets of
critical nodes, the physical location of the nodes in the
network can provide insight into sensitive areas within the
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Figure 2: Node Designations for Simple Example



network. Table 2 presents various summaries for scenarios
involving a engineering teams of size 3, 7, and 9 and a
potential set of 3 nodes. The number of iterations was
artificially capped at 150; no exhaustive attempt at
identification of the final optimum set was conducted.

It became clear that by reducing the momentum factor,
the convergence to the optimum set of nodes is slower. The
number of potential critical nodes with high probability of
selection as a critical nodes is still rather large for a
momentum of 0.90 and decreases rapidly as the momentum
factor is raised to 0.95 and then finally to 1.0. This can be
useful if, rather than attempting to identify a specific set of X
critical nodes, it is simply desired to identify a larger set of
important critical nodes perhaps with the intent of identifying
vulnerable regions within a bulk power network.

Alternatively, the impact of v,,, on the identification of
the optimal set critical nodes is less distinct. For a specific
momentum, in this case 1.0, the cost function quickly focuses
on the selection of 3 nodes. Larger values of v,,,, allow the
search for the optimum to extend over a broader region of
support and the algorithm is less likely to be ‘stuck’ in a local
minimum.

Figure 3 is provides a snapshot of the velocities for a few
of the 69 potential nodes from a typical simulation. Recall
that the velocity of a node is a measure of the probability that
the node will be selected for membership into the set of X
critical nodes. The velocities provide insight into not only the
optimum set of nodes but also can be used to identify other
nodes who are just outside the selection criteria. These nodes
may warrant additional attention when intangible selection
criteria are included, e.g. military or economic value of node.

5. CONCLUSIONS

It is clear that the Buzzard software coupled with a
traditional power flow analysis program can be used to
identify critical elements within large complex bulk power
systems. The algorithms are consistent with traditional
methods that identify critical single point contingencies in the
sense that the new approach can also be used to characterize
single point contingencies. For small numbers of potential
attack sites (e.g. 2-3) on relatively small systems (69 nodes) it
was possible to enumerate all possible contingencies and in
every case the nodes identified through enumeration
corresponded to the nodes identified using the Buzzard
algorithm.

The software very quickly identifies one of the multiple
‘best’ solutions. As mentioned previously, for the given cost

function, there are a number of best solutions that are very
close in value. The algorithm typically finds a solution that is
within 0.3% of the value of the true optimum, but may require
5000 iterations to find the final ‘best’ combination of critical
nodes.

The existence of multiple, sub-optimal solutions with very
similar total critical node values poses a bit of a dilemma: it is
important to be aware of similar ‘optimal’ solutions, but it
clouds identification of the ‘best’. It is suggested that a small
number of additional searches be conducted with various
initial seed values before identifying a specific set of critical
node sets. In addition, the velocity vector provides
considerable insight into the existence of these potential
members of the optimal set. High residual velocities at the
completion of the simulation are key indicators of potential
optimal set membership.

Two key considerations that need to be understood and
possibly investigated in a more formal fashion in future
efforts: sensitivity to v,, and the penalty associated with
exceeding the allowable number of critical node locations.
The choice of v,, impacts the search algorithm by
constraining the search to be either more locally focused or
allowing the search to extend to a more global solution space.

Typically, 3<v_ <6, with smaller values being associated
with local search and larger values allowing the search to
broaden. Penalties over the range of 1000 to 10,000 were used
to force the number of selected critical nodes to be
approximately the user specified values.  High penalties
coupled with low values of v,, resulted in lengthy

simulations until convergence.
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