
Enabling Autonomic Scientific Applications within the Common
Component Architecture ∗

Hua Liu and Manish Parashar
The Applied Software Systems Laboratory

Dept of Electrical and Computer Engineering,
Rutgers University, Piscataway, NJ08854, USA
Email:{marialiu, parashar}@caip.rutgers.edu

Benjamin A. Allan, Sophia Lefantzi, and Jaideep Ray
Sandia National Lab, Livermore, USA

Email:{baallan, slefant, jairay}@ca.sandia.gov

Abstract

Emerging scientific applications are increasingly large, dynamic and complex, and require program-
ming systems that enable the application to detect and dynamically respond to changing application
state and execution context by adapting their behaviors and interactions. In this paper, we present an
extension of the CCAFFEINE Common Component Architecture framework using Accord to enable such
self-managing autonomic scientific applications. Accord supports the definition of autonomic compo-
nents with programmable behaviors and interactions, and to enable runtime composition and manage-
ment of these components using dynamically defined rules. The design, implementation, operation and
evaluations of two self-managing simulations, the simulations ofCH4 ignition and shock hydrodynam-
ics, are presented.

1 Introduction

Parallel/distributed simulations are playing an increasingly important role in science and engineering
and are rapidly becoming critical research modalities. Emerging high performance parallel and dis-
tributed computing systems are enabling a new generation of simulations that are based on seamless,
aggregation and interactions. For example, it is possible to conceive a new generation of scientific and
engineering simulations that symbiotically and opportunistically combine computations, experiments,
observations, and real-time data, and can provide important insights into complex phenomena.

∗The research presented in this paper is supported in part by the National Science Foundation via grants numbers ACI
9984357, EIA 0103674, EIA-0120934, and CNS-0305495, and by DOE ASCI/ASAP via grant number 82-1052856.

1

SAND2005-1129C

However, the emerging computing systems introduce a new set of challenges due to their scale and
complexity. Furthermore, the emerging simulations and the phenomena they model are similarly large,
complex, multi-phased/multi-scale, dynamic, and heterogeneous (in time, space, and state). These sim-
ulations implement various numerical algorithms, physical constitutive models, domain discretizations,
domain partitioners, communication/interaction models, and a variety of data structures. Codes are de-
signed with parameterizations in mind, so that numerical experiments may be conducted by changing
a small set of inputs. The choices of algorithms and models have performance implications which are
not typically known a priori. Advanced adaptive solution techniques, such as variable step time integra-
tors and adaptive mesh refinement, add a new dimension to the complexity - the application realization
changes as the simulation proceeds. This dynamism poses a new set of application development and
runtime management challenges. For example, component behaviors and their compositions can no
longer be statically defined. Further, their performance characteristics can no longer be derived from a
small synthetic run as they depend on the state of the simulations and the underlying system. Algorithms
that worked well at the beginning of the simulation become suboptimal as the solution deviates from the
space the algorithm was optimized for. For example, suboptimal, communication-heavy sections of the
code become a bottleneck if the computational load drops sufficiently as an adaptive mesh simulation
coarsens its mesh due to a lack of gradient.

Addressing the challenges outlined above requires a programming system that enables specification
of applications which can detect and dynamically respond during execution to changes in both the exe-
cution environment and application states. This requirement suggests that: (1) The applications should
be composed from discrete, self-managing components which incorporate separate specifications for
all of functional, non-functional and interaction-coordination behaviors. (2) The specifications of com-
putational (functional) behaviors, interaction and coordination behaviors and non-functional behaviors
(e.g. performance, fault detection and recovery, etc.) should be separated so that their combinations are
composable. (3) The interface definitions of these components should be separated from their implemen-
tations to enable heterogeneous components to interact and to enable dynamic selection of components.

Component-based software architectures do address some of these requirements. Specifically, the
Common Component Architecture (CCA) and its implementation CCAFFEINE framework address the
requirements of high-performance parallel scientific applications and have been successfully used [13,
12, 11]. The CCA architecture supports application maintainability and extensibility. Further, the mod-
ularization achieved by componentization opens up the potential to change scientific computing in a
fundamental way - components can be now be dynamically loadable and their behaviors modified based
on current application state and requirements and the execution context. However, this requires ex-
tending CCA to enables components that can manage their behaviors and interactions in an autonomic
manner.

In this paper, we present such an extension of the CCA CCAFFEINE framework using the Accord [15]
programming system. Accord enables the definition of autonomic components with programmable be-
haviors and interactions, and to enable runtime composition and management of these components using
dynamically defined rules. The design, implementation, operation and evaluation of two self-managing
simulations,CH4 ignition and shock hydrodynamics, are presented.

The rest of the paper is organized as the follows. Section 2 presents a conceptual overview of Accord
programming framework. Section3 introduces CCAFFEINE and presents the design and implementa-
tion of its Accord-based autonomic extension. Section 4 presents the design, operation and evaluation
of two autonomic scientific applications. Section 5 investigates related approaches and techniques. Sec-

2

tion 6 presents a conclusion.

2 The Accord Programming Framework

The Accord programming system [15] addresses the programming challenges outlined above, by ex-
tending existing programming systems to enable autonomic applications. Accord realizes three funda-
mental separations: (1) a separation of computations from coordination and interactions; (2) a separation
of non-functional aspects (e.g. resource requirements, performance) from functional behaviors, and (3)
a separation of policy and mechanism - policies in the form of rules are used to orchestrate a repertoire
of mechanisms to achieve context-aware adaptive runtime computational behaviors and coordination
and interaction relationships based on functional, performance, and QoS requirements. Accord is part
of Project AutoMate [3], which is investigating autonomic solutions, based on the strategies used by
biological systems, to deal with challenges of complexity, dynamism, heterogeneity and uncertainty.
Its goal is to realize systems and applications that are capable of managing (i.e., configuring, adapting,
optimizing, protecting, healing) themselves. The key components of Accord are described below.

Accord Programming Model:Accord extends existing distributed programming models, i.e., object,
component and service based models, to support autonomic self-management capabilities. Specifically
it extends the entities and composition rules defined by the underlying programming model to enable
computational and composition/interaction behaviors to be defined at runtime using high-level rules.
The resultingautonomic elementsand theirautonomic compositionare described below. Note that other
aspects of the programming model, i.e., operations, model of computation and rules for composition are
inherited and maintained by Accord.

Autonomic Elements:An autonomic element extends programming elements (i.e., objects, compo-
nents, services) to define a self-contained modular software unit with specified interfaces and explicit
context dependencies. Additionally, an autonomic element encapsulates rules, constraints and mech-
anisms for self-management, and can dynamically interact with other elements and the system. An
autonomic element is illustrated in Figure 1 and is defined by 3 ports:

The functional port (Γ) defines a set of func-

Computational

Element

Element

Manager

Operational Port

Control Port

Functional Port

Autonomic Element

Element Manager

Sensor

Invocation

Function Interface

Invocation
 Actuator

Invocation

Internal state
 rules
 context

Figure 1. An autonomic element in Accord.

tional behaviorsγ provided and used by the ele-
ment. γ ∈ Ω × Λ, whereΩ is the set of inputs
andΛ is the set of outputs of the element, andγ
defines a valid input-output set.

Thecontrol port (
∑

) is the set of tuples (σ, ξ),
whereσ is a set of sensors and actuators exported
by the element, andξ is the constraint set that controls access to the sensors/actuators. Sensors are
interfaces that provide information about the element while actuators are interfaces for modifying the
state of the element. Constraints are based on state, context and/or high-level access polices.

The operational port (Θ) defines the interfaces to formulate, dynamically inject and manage rules
that are used to manage the runtime behavior of the element, and the interactions between elements,
between elements and their environments, and the coordination within an application.

Each autonomic element is associated with an element manager (possibly embedded) that is delegated
to manage its execution. The element manager monitors the state of the element and its context, and
controls the execution of rules. Note that element managers may cooperate with other element managers
to fulfill application objectives.

3

Rules in Accord:Rules incorporate high-level guidance and practical human knowledge in the form
of if-then expressions, i.e., IFconditionTHEN actions, similar to production rule, case-based reasoning
and expert systems.Conditionis a logical combination of element (and environment) sensors, function
interfaces and events.Actionsconsist of a sequence of invocations of element and/or system sensors/
actuators, and other interfaces. A rule fires when its condition expression evaluates to be true and causes
the corresponding actions to be executed. A priority based mechanism is used to resolve conflicts [14].
Two classes of rules are defined: (1)Behavioral rulesthat control the runtime functional behaviors of
an autonomic element (e.g., the dynamic selection of algorithms, data representation, input/output for-
mat used by the element). (2)Interaction rulesthat control the interactions between elements, between
elements and their environment, and the coordination within an autonomic application (e.g., communi-
cation mechanism, composition and coordination of the elements). Note that behaviors and interactions
expressed by these rules are defined by the model of computation and the rules for composition of the
underlying programming model.

Behavioral rules are executed by an element manager associated with a single element without affect-
ing other elements. Interaction rules define interactions among elements. For each interaction pattern, a
set of interaction rules are defined and dynamically injected into the interacting elements. The coordi-
nated execution of these rules results in the desired interaction and coordination behaviors between the
elements.

Autonomic composition in Accord:Dynamic composition enables relationships between elements to
be established and modified at runtime. Operationally, dynamic composition consists of a composition
plan or workflow generation and execution. Plans may be created at runtime, possibly based on dy-
namically defined objectives, policies, and applications and system context and content. Plan execution
involves discovering elements, configuring them and defining interaction relationships and mechanisms.
This may result in elements being added, replaced or removed or the interaction relationships between
elements being changed.

In Accord, composition plans may be generated using the
Application workflow

Interaction

rules
 Interaction

rules

Interaction

rules

Composition Manager

Interaction

rules

Figure 2. Autonomic application exe-
cution in Accord.

Accord Composition Engine (ACE) [4] and are expressed
in XML. Element discovery uses the content-based middle-
ware and discovery service, which are part of AutoMate [3].
Plan execution is achieved by a peer-to-peer control network
of element managers and agents. A composition relation-
ship between two elements is defined by the control struc-
ture (e.g., loop, branch) and/or the communication mecha-
nism (e.g., RPC, shared-space) used. A Composition Man-
ager translates this into a suite of interaction rules, which
are then injected into corresponding element managers. El-
ement managers execute the rules to establish control and
communication relationships among these elements in a de-
centralized manner. Rules can be similarly used to add or
delete elements. Note that the interaction rules must be based on the core primitives provided by the
system. Accord defines a library of rule-sets for common control and communications relationships
between elements. The decomposition procedure will guarantee that the local behaviors of individual
elements will coordinate to achieve the application’s objectives. Runtime negotiation protocols pro-
vided by Accord address runtime conflicts and conflicting decisions caused by a dynamic and uncertain

4

environment.
Accord decouples interaction and coordination from computation, and enables both these behaviors

to be managed at runtime using rules. This enables autonomic elements to change their behaviors,
and to dynamically establish/terminate/change interaction relationships with other elements. Deploying
and executing rules does impact performance, however, it increases the robustness of the applications
and their ability to manage dynamism. Further, our observations indicate that the runtime changes to
interaction relationships are infrequent and their overheads are relatively small. As a result, the time
spent to establish and modify interaction relationships is small as compared to typical computation
times. A prototype implementation and evaluation of its performance overheads is presented in [14].

3 An Autonomic Component Framework using CCAFFEINE and Accord

CCAFFEINE [6], a Sandia National Laboratories framework implementation compliant with the CCA
core specification, provides the fast and lightweight glue to integrate external and portable compo-
nent peers into a SCMD (Single Component Multiple Data) style parallel application. Fast means that
the CCAFFEINE glue does not get between components in a way that slows down their interactions.
Lightweight means that CCAFFEINE only provides the functionality necessary to link components to-
gether and bring them into an executable state.

In order to enable the runtime self-managing scientific applications, we develop an autonomic com-
ponent framework using Accord and CCAFFEINE. The autonomic framework allows CCAFFEINE
components to instantiate and expose control ports composed of sensors and actuators. It also intro-
duces two specialized types of components: (1)Component Managerthat monitors and manages the
computational behaviors of individual components, e.g., selecting the optimal algorithms and modifying
internal states, and (2)Composition Manager that manages, adapts and optimizes the execution of an
application at runtime. These manager components encapsulate the Accord operational port.

Both, Component Manager and Composition Manager components are peers of user components and
other system components, providing and/or using ports that are connected to other ports by the CCAF-
FEINE framework. The two manager components are not part of the CCAFFEINE framework, and con-
sequently provide the programmers the flexibly to integrate them into their applications only as needed.
For example, assuming there are 3 components ‘A’, ‘B’, and ‘C’ in one application, programmers can
integrate two Component Managers components, ‘CMA’ and ‘CMB’, to manage component ‘A’ and ‘B’
separately by making ‘A’ use theRulePortprovided by ‘CMA’ and ‘B’ use theRulePortprovided by
‘CMB’. Programmers could also integrate only one Component Manager ‘CM’ to manage both ‘A’ and
‘B’ by making ‘A’ and ‘B’ use theRulePortprovided by ‘CM’. As we can see from the example, compo-
nent ‘C’ does not use theRulePort, and therefore it will not be controlled by any Component Managers.
Similarly, programmers can choose to use the Composition Manager or not. The architectures of the two
manager components are described in the following sections.

Our design of the Component Manager and Composition Manager is based on the following observa-
tions and considerations.

• Scientific applications may contain tens of components, but only a few of them need to be dy-
namically monitored and controlled. Therefore, we encapsulate the manager functionalities into
two component types and provide programmers with the flexibility of integrating them with other
components in the applications.

5

• The manager functionalities are provided by components instead of being integrated with the
CCAFFEINE framework. This prevents the framework from being ‘overweight’ and thus avoids
the consequent performance and maintenance implications.

• By encapsulating the manager functionality into these components and providing abstract inter-
faces for invoking this functionality, we can modify and improve the manager functionality without
affecting other components and the framework. We can either add additional functionality into the
manager components, or create other components that deal with specific functions and integrate
them with the manager components via the ‘uses/provides design pattern’ [1].

3.1 Component Manager

The Component Manager provides a port
class RulePort: public virtual Port {

public:

 RulePort(): Port() {}

 virtual ~RulePort() {}

 virtual void loadRules(const char* fileName) throw(string) = 0;

 virtual void addSensor(Sensor* snr) throw(string) = 0;

 virtual void addActuator(Actuator *atr) throw(string) = 0;

 virtual void fire() throw(string) = 0;

};

Figure 3. The RulePortprovided by Component Man-
ager and Composition Manager

namedRulePort, as shown in Figure 3. In-
stances of the Component Manager are in-
stantiated after the other applications com-
ponents are instantiated and their ports are
connected within the CCAFFEINE frame-
work. This is done in two steps: (1) Man-
aged component instances need to expose their
sensors and actuators to the Component Man-
ager instances by invoking the ‘addSensor’
and ‘addActuator’ functions, and (2) Rules
to manage the components should be loaded
into the Component Manager instances, possibly from a disk file, by invoking the ‘loadRules’ function.
The initialization of Component Manager instances is a one-time operation.

Scientific application often are executed as a series of computation phases. Between two succes-
sive phases, computation inside components and communication between components are paused, and
components are reconfigured for the next mathematical calculation. This is called the quiet state. Man-
agement functionalities need to be performed during these quiet states. The managed components invoke
the ‘fire’ function to inform the Component Managers that they have entered into a quiet state. These
managed components must be programmed by users to invoke the ‘fire’ function, for example, at the
beginning/end of each phase or once every several phases, to establish the optimization/adaptation fre-
quency.

In most cases, no state needs to be carried between two successive computation phases. This means
that the components are ‘stateless’, and often they are reset with a new set of parameters at the beginning
of different phases. In our prototype implementation, Component Managers will execute rules to change
the configuration parameters only at quiet states. Since these parameters are applied during the next
computation phase, the changing of parameters is tantamount to changing the computational behaviors
of the managed components.

The CCAFFEINE framework employs a SCMD model, which says that all the components in one ap-
plication are copied to all the involved nodes, as illustrated in Figure 4. Component Manager instances
on each node independently evaluate and execute the rules to manage and possibly change the compu-
tational behaviors of the managed components. The result of this independence is that at the same time
step, the managed components on different nodes will demonstrate different computational behaviors,

6

since they work on different data and in different execution environments. For example, the managed
component instance ‘A1’ on node ‘X’ is asked to use algorithm ‘m’, while at the same time step, the
component instance ‘A2’ on node ‘Y’ uses algorithm ‘n’. The different computational behaviors demon-
strated by individual instances of the same component are made transparent to other component instances
by the inherent encapsulation characteristic of components, since these instances (‘A1’ and ‘A2’ in our
example) still implement the same abstract interface. Therefore, consistent computation across all the
nodes can be guaranteed.

People may argue that hard-encoding these control information within the components can provide
the similar capabilities. However, this assumes that all possible states of the application and execution
environment and all required adaptations are known a prior and are coded into the components, which is
not always possible. Separating the management and control behaviors from computation and making
them programmable at runtime provides the following benefits:

• The programming complexity is decreased. We separate the control logic from other computa-
tion and specify the logic as (possibly dynamically defined) rule. This reduces the size of the
components and allows them to specialize in the task that they are meant to perform.

• The components’ reusability is increased. Users need only to modify the rules instead of modify-
ing the internal implementation of the components to make them suitable for other applications.

• Often, the nature of the adaptations are not known a priori and may depend on the current exe-
cution state and context of the application itself. The separation makes dynamic specification of
adaptation rules possible.

3.2 Composition Manager

The Composition Manager also provides

Composition

Manager

Driver
 A
 B

Neo
-
CCA framework

Node x

Component

Manager

Composition

Manager

Driver
 A
 B

Neo
-
CCA framework

Node y

Component

Manager

Composition

Manager

Driver
 A
 B

Neo
-
CCA framework

Node z

Component

Manager

Figure 4. The architecture of an autonomic compo-
nent applications using Accord and the CCAFFEINE
framework

aRulePort, shown in Figure 3. The instances
of the Composition Manger are initialized
by receiving the sensors and actuators ex-
posed by the managed components using the
‘addSensor’ and ‘addActuator’, and loading
in the rules (possibly from a disk file) us-
ing the ‘loadRules’ function. Managed com-
ponents will notify the Composition Man-
ager instances of the quiet state by invoking
the ‘fire’ function. The Composition Man-
ager instances then evaluate the rules based
on the current context and state, and if their
conditions evaluate to true, execute the asso-
ciated actions. Actions may change the be-
havior of a managed component and/or re-
place managed component instances that have
failed or are not operating suitably.

When replacing a managed component instances, the new component does not need to provide and
use the exactly same ports as the old one. However, the new component must at least provide all the

7

active ports (which are used by other components in the application) of the old component. If the
new component uses some ports that cannot be provided by the existing components in the application,
replacement with the new component may require instantiating new components.

The Composition Manager instances on different nodes may independently generate different replace-
ment plans based on their local execution contexts. There are two cases (see Figure 4): (1) The Compo-
sition Manager on node x proposes to replace component instance ‘A’ with ‘A1’, and the Composition
Manager on node y wants to replace component instance ‘B’ with ‘B1’. In this case, either both the plans
are propagated to all the nodes or they are declined. (2) The Composition Manager on node x proposes
to replace ‘A’ with ‘A1’, while the Composition Manager on node y proposes to replace ‘A’ with ‘A2’.
In this case, either both nodes should replace ‘A’ with ‘A1’ or with ‘A2’ on all nodes to conform to the
SCMD model. Therefore, negotiation is needed among all the Composition Managers to choose one
replacement plan that is acceptable to all the managers.

In our current prototype, replacement plans are assigned one of two different priorities. A high priority
means that the replacement is necessary, for example, the old components cannot work correctly or have
failed. The low priority means that the replacement is optional, for example, the new components have
better performance than the old ones - the old components however still work correctly. In case of a
conflict, replacement plans with higher priority are propagated to and accepted by all the managers. If
there are multiple high priority plans, a runtime error is generated and reported to the users. For plans
with a low priority, a cost model is used to approximate the performance gains of each plan and the plan
with the best overall gain is selected and applied by all managers.

As mentioned in the previous sections, many runtime situations cannot be predicted at development
time. Therefore, the Composition Manager provides an channel for user interaction [16]. The user can
use this channel to monitor and control the application (e.g., pause the execution of the application) and
to inject new rules into the application.

4 Illustrative Applications and Experimental Evaluations

In this section we will present examples of how the CCAFFEINE-based Accord framework was used
to optimize scientific simulations by dynamically changing algorithms in response to simulation param-
eters and to increase the stability by replacing failed components at runtime. In both cases, the Accord
framework executed a set of rules to determine the self-optimizing and self-healing strategies.

4.1 Self-optimization: CH4 Ignition

4.1.1 Problem Description

Realistic simulations of igniting systems (even simple ones like a stoichiometric mixture of methane
and air) present many of the characteristics that bedevil scientific simulations. The simulation processes
are represented by a set of chemical reactions, which do not appear simultaneously - rather, they appear
(and disappear) when the fuel (methane) and oxidiser (oxygen) react and give rise to the various inter-
mediate chemical species. The rates at which these processes operate vary over orders of magnitude;
further, with the liberation of heat, there are states where various processes negate each other leading
to conditions where various “intermediate” species might exist at almost constant levels (such states are
called equilibrium states). A mixture ofCH4 and air at 300K is considered to be at equilibrium; igniting
it by abruptly raising its temperature to 1800K constitutes a non-equilibrium state, at which point a large
number (but not all) the chemical processes are activated.

8

Thereafter, one could proceed in one of two ways. One could evolve in increments of time (timesteps)
small enough that the fastest process is well resolved in time; alternatively, one could exploit the smooth
temporal evolution with high order algorithms to take larger timesteps, at the cost of increased storage
and some inter- and extrapolations. High order algorithms are more robust and will provide an answer;
choosing an optimal algorithm provides robustness and time savings. The choice of the algorithm can,
to a first approximation, be decided by the “degree of non-equilibrium” i.e. in our case, the starting
temperature.

The species and the reactions they participate in are

Time [ms]
0 0.1 0.2 0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

10-4 Temperature [K]
XO2

XOH

XH2O

XCH4

XCO

Temperature

H2O

O2

CO

CH4

OH

Figure 5. Evolution of tempera-
ture T and the mole fractions of
O2, OH, H2O, CH4 and CO as a
function of time when a stoichiometric
mixture of methane and air is ignited at
1800K.

described by thechemical mechanism. We use the GRI
1.2 [2] CH4–Air mechanism with32 species and177 re-
versible reactions, specified in the CHEMKIN [10] for-
mat. Thermo-chemical data is read in from files, pro-
cessed, and used to compute the chemical source terms.
We assume that the volume of the gas expands uniformly
to keep pressure uniform in space and time. While this is
physically unrealistic, it neither mitigates the mathemati-
cal severity of the problem nor does it have a bearing on
the optimization process.

Fig. 7 (top) shows the original code for0D ignition.
TheThermoChemistry component embodies the chemi-
cal interactions - it provides the source terms for temper-
ature and species due to chemistry.ThermoChemistry
is a thin C++ wrapper around Fortran 77 subroutines ab-
stracted from pre-existing codes for chemically reacting
flow [18]. Initializer imposes the initial condition – a
vector of double precision numbers specifying the (stoi-
chiometric) mass fractions forCH4 andO2 and zero for
the rest, exceptN2 which rounds up the sum of mass frac-
tions to1. The initial temperature is1800 K, and the initial pressure is1 atm. Cvode is an implicit
stiff/non-stiff integrator that time-advances the system as it ignites (Fig. 5). This is a thin wrapper
around the Cvode [8] integrator library.

Cvodecontains a set of algorithms (called backward difference formula orBDF) numbered from 1
to 5, indicating the order of accuracy of the algorithm.BDF5 is the highest order method and is most
accurate and robust ; it may, however, not always be the quickest. In the process of evolving the simula-
tion in time, the equationG in Ref is evaluated repeatedly. The bulk of the time is spent in evaluatingG;
thus reducing the number ofG evaluation is a sufficient indication of speed. As the chemistry becomes
more complex,G evaluations are expected to be the only parameter of any consequence.

In the next two subsections, we describe the process of generating the rules (to specify the optimal
algorithm based on the temperature), discuss the execution of theCH4 ignition simulation based on these
rules (using CCAFFEINE-Accord framework), and compare the rule-based simulation with a non-rule-
based one to demonstrate the improvement in performance.

9

Figure 6. Left: Comparison of BDFi at different temperature. Right: The comparison of the perfor-
mance of the Accord based CH4 ignition simulation and the original one.

4.1.2 Rule Generation

As shown in Figure 6 (Left), the performance ofBDFi varies at different temperatures. Therefore, to
achieve the best performance, the simulation needs to dynamically select the optimal algorithm accord-
ing to current ignition temperature.

To generate the rules, an ignition problem was specified with a starting temperature and a given (sto-
ichimetric) proportion of the fuel and air. During the execution, we increased the temperature gradually,
executed the application, and generated rules as follows:

IF 1000 <= temperature < 2000 THEN BDF 3
IF 2000 <= temperature < 2200 THEN BDF 4
IF 2200 <= temperature THEN BDF 3

4.1.3 Accord EnabledCH4 Ignition Simulation

The rules obtained from a simplified problem

Initializer

Rule

Executor

Cvode

Thermo

Chemistry

Ref

Component

Manager

Provide ports

Use ports

Initializer
 Cvode

Thermo

Chemistry

Ref

Original CH4Air simulation

Accord enabled CH4Air simulation

Figure 7. Component “wiring” schematic for the
CH4 ignition problem, without Accord (on the
top) and with Accord (below).

are used for theCH4 ignition simulation (shown
in Figure 7). In the original application (shown in
Figure 7 on the top),Initializer always invokes
the Cvode component using the sameBDF al-
gorithm without regard to the changing tempera-
ture. In the Accord enabled application, we added
two components,ComponentManager to read
in rules from a disk file and notifyRuleExecu-
tor of the optimalBDF algorithm. This is done
by evaluating the rules based on the current tem-
perature. TheRuleExecutor then sets theBDF
algorithm onCvode before invoking it. We go
through theRuleExecutor to optimizeCvode in
order to keepCvodeunchanged; a direct connec-
tion betweenComponentManagerandCvode would have required changes toCvode to accept and

10

implement the dictates of theComponentManager. Cvode thus remains a pristinely scientific compo-
nent.

TheRuleExecutor sends the temperature and the variable used byCvodeas theBDF parameter to
theComponentManagerwhere they are interpreted as a sensor and an actuator respectively. Based on
rules, theComponentManageridentifies an optimalBDF parameter and returns it to theRuleExecu-
tor , which then proceeds to set it onCvodepreparatory to invoking it to solve a problem. This process
is repeated before everyCvode invocation.

As shown in Figure 6 (Right), the rule-based execution decreases the number of invocation to equation
G in Ref component. Since the bulk of the time is spent in this, we see a clear computational saving. As
the problem becomes more complex (the computational cost ofG increase), the savings inG evaluations
translate to a proportionately larger savings in runtime. While it is not difficult to believe that the use
of an optimal strategy to solve a problem is beneficial, we have shownhow this might be achieved in a
general manner, by exploiting a generic rule-interpreter and an orchestrator to manage a purely scientific
package, which, further, needs no changes.

The same set of components can be used to simulate another ignition problem with a mixture ofH2 and
air. We loadCvode, ThermoChemistry, andRef components with different initialization parameters,
and provideComponentManagerwith new rules as follows:
IF 1000 <= temperature < 1200 THEN BDF 2
IF 1200 <= temperature < 1800 THEN BDF 4
IF 1800 <= temperature < 2400 THEN BDF 3
IF 2400 <= temperature THEN BDF 4

Since we separate the controllable logic of selecting the optimal algorithm from other implementation
logic and express them in rules, all the involved components can be reused for theH2 ignition simulation
without modifying their implementation and re-compiling them. As we mentioned in Section 3.1, the
reusability of components is increased.

4.2 Self-healing: Shock Hydrodynamics Problem

4.2.1 Problem Description

In this example we show how runtime replacement of components may affect the robustness of simula-
tion codes. We simulate the interaction of a hydrodynamic shock with a density-stratified interface. The
system is modelled using the 2D Euler equation (inviscid Navier-Stokes); details of the equations used
and the interaction are in [20, 21, 22]. The governing equations (the compressible Euler equations) in
conservative form are:

Ut + F(U)x + G(U)y = 0 (1)

where

U = {ρ, ρu, ρv, ρe, ρζ}T ,

F(U) = {ρu, ρu2 + p, ρuv, (ρe + p)u, ρζu}T ,

G(U) = {ρv, ρuv, ρv2 + p, (ρe + p)v, ρζv}T ,

ρe is the total energy, related to the pressurep by p = (γ − 1)(ρe − 1
2
ρ(u2 + v2)) andζ is an interface

tracking function. We have used the conservative level set formulation of Mulder et. al [17] to track the

11

interface. The basic idea is as follows : Consider a functionζ(x, t) which is defined everywhere in the
domain. Then a particular value defines the interface. In our case, we initially useζ(x, 0) = +1(0) in
the incident (transmitted) gas. We define the interface asζ(x, t) = 0.5. The functionζ(x, t) is governed
by the partial differential equationDζ/Dt = 0, resulting in the last equation in the system above. We
use the ideal gas law as the equation of state. The equations are solved on a uniform cell-centered mesh
i.e. the mesh divides the domain into small rectangular cells and fluid variables are defined and indexed
at the cell centers. In 1D, the equation would be solved as

Un+1 = Un +
∆t

∆x

(
Fn+1/2

i+1/2 −Fn+1/2
i−1/2

)
(2)

The Godunov method is used to

Figure 8. “Wiring” diagram of the shock-hydrodynamics simula-
tion. A second-order Runge-Kutta (RK2)integrator drives Invis-
cidFlux component – transformation into left and right (primi-
tive) states is done by Statesand the Riemann problem solved
by GodunovFlux. Sundry other components for determining
characteristics’ speeds (u + a, u - a, u), cell-centered interpola-
tions etc. complete the code.

determineFn+1/2
i+1/2 at the cell in-

terfaces in order to evaluate the RHS.
This involves transforming the equa-
tion at each cell into Riemann In-
variants in theX andY directions;
constructing the states on the left
and right of a cell interface using
slope-limiters and upwinding. Since
the left and right states are not iden-
tical, a Riemann problem [23] is
setup, which is solved (iteratively)
to obtain the fluxesFn+1/2

i+1/2 . The
construction of left and right states
holds true for most finite volume
methods; solving an exact Riemann
problem could be substituted by a
gas-kinetics scheme (e.g.Equilib-
rium Flux Method [19]).

In Fig. 8 we see the assembly
of components. We see a Runge-
Kutta time integrator (RK2) with
an InviscidFlux component sup-
plying the right-hand-side of the
equation, patch-by-patch. This com-
ponent uses aConstructLRStates
component to set up a Riemann problem at each cell interface which is then passed toGodunovFlux
for the Riemann solution. AConicalInterfaceIC component sets up the problem - a shock tube with
Air and Freon (density ratio 3) separated by an oblique interface which is ruptured by a Mach 3.5 shock.
The shock tube has reflecting boundary conditions above and below and outflow on the right. Godunov
methods withRK2 become unstable for stronger shocks and larger density ratio. One solution is to
replaceRK2 with a 3rdorder Runge-Kutta scheme, which includes a part of the imaginary axis in its
stability region; a cheap solution (but better for an illustration of the flexibility afforded by components)
is to replaceGodunovFlux with EFMFlux , based on a gas-kinetic scheme [19].

12

Whether a certain algorithm (Godunov, in this case) will work for a given set of simulation parameters
(the Mach number and the density ratio in this case) is not knowna priori. In the best of cases, an algo-
rithm will operate for some time before failing to converge and indicating an error; at other times, it will
work “reliably” and produce wrong (evenqualitativelywrong) results. In the case where an error can be
identified, we have the option of dynamically replacing one algorithm by another by simply replacing
the component implementing the algorithm; of course the same change needs to be performed across
all the processors. While the dynamic changing of components does raise some fundamental issues
(e.g. in this case, the simulation is neither purely EFM-based nor Godunov-based, and is not mathe-
matically consistent either), and is expected that the results will be at least qualitatively correct. Since
such simulations often require substantial computational resources, obtaining qualitative answers may
be preferable to simply exiting with an error. In this example we will demonstrate this dynamic replace-
ment ofGodunovFlux with EFMFlux (triggered by aGodunovFlux error) and provide qualitatively
correct results.

4.2.2 Accord-enabled Shock-Hydrodynamics Problem

To enable the dynamic replacement of theGodunovFlux component with theEFMFlux component,
a CompositionManagercomponent is added to the shock-hydrodynamics simulation. TheComposi-
tionManager provides aRulePort, which is used byShockDriver andGodunovFlux.

During initialization,GodunovFlux exposes its internal state as a sensor toCompositionManager
via invoking the ‘addSensor’ function, andCompositionManager reads in the rules from a disk file.
Dynamical replacement of components can only be performed at quiet states, which is determined and
explicitly programmed inShockDriver by invoking the ‘fire’ function to notifyCompositionManager.
TheCompositionManagerthen inquires the internal state ofGodunovFlux to check the rule condition
and determine the dynamic replacement plan.

CompositionManager instances on different nodes independently generate the replacement plans,
which may differ. Only one plan is selected and propagated to all the nodes. Since our problem in-
volves stability and correctness - i.e. the entire simulation fails to proceed if even one processor reports
the unsuitability ofGodunovFlux - a plan forreplacementis heeded by all processors. To perform the
replacement,CompositionManagerinstances will (1) locate and instantiateEFMFlux from the compo-
nent repository, (2) detect all the provides and uses ports ofGodunovFlux, as well as all the components
connected to it (in our case,InviscidFlux usingDiffPort andPropertiesPortprovided byGodunovFlux,
andGasPropertiesprovidingPropPortused byGodunovFlux), (3) disconnectGodunovFlux, (4) con-
nectEFMFlux to InviscidFlux andGasProperties, and finally (5) destroyGodunovFlux instances.
From the next calculation step,EFMFlux is used instead ofGodunovFlux. However, other compo-
nents in the application will not notice the replacement, since only the abstract interfaces (ports) are
visible to them while the implementations are hidden behind.

The key requirement is that the dynamic replacement must be completed at the same time, so that
the new component will be used by all the nodes from the next calculation iteration. This is achieved
by theblockingfunction ‘fire’. CompositionManager instances will be synchronized before the ‘fire’
function returns. The ‘fire’ function is designed as an atomic operation, which guarantees that either the
replacement is completed successfully or not performed at all.

13

5 Related Work

Related research efforts in systems supporting dynamically adaptive applications can be classified
based on the nature of the adaptations they support. In systems supportingstatically-defined adaptations,
the adaptation codes must be coded into the application code and be defined at compile time. Systems
that enable adaptations by extending an existing programming languages, for example [7], or by defining
new adaptation languages, for example [9], fall into this category.

With statically-defined adaptation enabling applications to dynamically customize/adapt their behav-
iors at runtime, the possible adaptation must be known a priori and must be coded into the application.
If new adaptations are required or applications requirements change, the application code has to be
modified and the applications re-compiled.

In systems supportingdynamically-defined adaptation, adaptations (in the form of code, scripts or
rules) can be added, removed and modified at runtime. Accord and [25] fall into this category. These
systems separate adaptation as an aspect and express it in terms of rules (conditions and actions) that can
be dynamically managed. In [25], adaptations are only performed on pre-defined method invocations,
similar to ‘injectors’ and ‘filters’ [5]. Adaptation behaviors across multiple invocation are not supported.
In Accord, rules are systematically composed of pre-defined sensors and actuators to provide more
comprehensive adaptation behaviors. The adaptations can occur at any quiet state rather than at pre-
defined method invocations.

ALua [24] is probably most closely related to Accord. Both these systems separate configuration
from computation and perform interaction/coordination and adaptation in an interpretive manner. And
they both support the execution of dynamically defined adaptation specification (code, scripts, rules)
in an even-driven manner to adapt application behaviors. However, Accord allows more control to
guarantee the correctness and consistency of programs during and after adaptation by using elements
(objects, components, and services) as the adaptation units. The adaptation of individual elements, such
as setting the value of a variable or selecting an algorithm, are encapsulated within these elements and
access to them is controlled by the sensors/actuators constraints (specified b y their control ports). The
addition/deletion/replacement of elements is restricted by their functional signatures (specified by their
functional ports) and system requirements (specified by their operational ports).

6 Conclusion and Future Work

In this paper, we presented Accord, which builds on existing programming frameworks to enable
autonomic applications via extending the elements (objects, components, and services) and composi-
tion rules defined by the underlying frameworks to enable computational and composition/interaction
behaviors to be defined at runtime using high-level rules. We implemented a prototype based on CCA
CCAFFEINE framework to enable the self-optimization and self-healing features of scientific simula-
tions. An experimental evaluation of the performance was also presented.

In CCA CCAFFEINE framework, the communication mechanism between components is restricted
to functional calls and their coordination relationships are pre-defined and unable to be changed at run-
time for the purpose of high-performance. Therefore, our current work discussed in this paper mainly
focus on adapting individual components and replacing components at runtime. We will implement
the other aspects of dynamic composition proposed in Accord using other frameworks, for example,
OGSA/WSRF, to demonstrate the dynamic changing of communication paradigms (RPC, messaging,

14

et.c) and coordination models according to the changing environment. Future research includes the
dynamic and opportunistic composition of autonomic elements, rules, execution and management of
autonomic applications.

References

[1] CCA forum. http://www.cca-forum.org/.
[2] GRI-Mech. http://www.me.berkeley.edu/grimech/.
[3] M. Agarwal, V. Bhat, Z. Li, H. Liu, V. Matossian, V. Putty, C. Schmidt, G. Zhang, S. Hariri, and M. Parashar.

AutoMate: Enabling autonomic applications on the grid. InProceedings of the Autonomic Computing
Workshop, Seattle, WA, 2003.

[4] M. Agarwal and M. Parashar. Enabling autonomic compositions in Grid environments. InProceedings of the
4th International Workshop on Grid Computing, pages 34–41, Phoenix, AZ, 2003. IEEE Computer Society
Press.

[5] M. Aksit and Z. Choukair. Dynamic, adaptive and reconfigurable systems overview and prospective vision.
In Proceedings of the 23rd international conference on distributed computing systems workshops, pages
84–89, Providence, Rhode Island, 2003. IEEE.

[6] B. A. Allan, R. C. Armstrong, A. P. Wolfe, J. Ray, D. E. Bernholdt, and J. A. Kohl. The CCA core specifi-
cation in a distributed memory SPMD framework.Concurrency Computation, 14(5):323–345, 2002.

[7] P. Boinot, R. Marlet, J. Noýe, G. Muller, and C. Consell. A declarative approach for designing and develop-
ing adaptive components. InProceedings of the 15th IEEE International Conference on Automated Software
Engineering, pages 111–119. IEEE, 2000.

[8] S. D. Cohen and A. C. Hindmarsh. Cvode, a stiff/nonstiff ode solver in c.Computers in Physics, 10(2):138–
143, 1996.

[9] G. Duzan, J. Loyall, and R. Schantz. Building adaptive distributed applications with middleware and aspects.
In Proceedings of the 3rd international conference on Aspect-oriented software development, pages 66–73,
Lancaster, UK, 2004. ACM.

[10] R. Kee, F. Rupley, and J. Miller. Chemkin-ii: A fortran chemical kinetics package for the analysis of gas
phase chemical kinetics. Sandia Report SAND89-8009B, Sandia National Labs., Livermore, CA, August
1993.

[11] J. P. Kenny, S. B. Benson, Y. Alexeev, J. Sarich, C. L. Janssen, L. C. McInness, M. Krishnan, J. Nieplocha,
E. Jurrus, C. Fahlstrom, and T. L. Windus. Ccomponent-Based Integration of Chemistry and Optimization
Software.J. Comput Chem, 25:1717–1725, 2004.

[12] S. Lefantzi, J. Ray, C. A. Kennedy, and H. N. Najm. A component-based toolkit for reacting flows with
high order spatial discretizations on structured adaptively refined meshes.Progress in Computational Fluid
Dynamics, 2004. In press.

[13] S. Lefantzi, J. Ray, and H. N. Najm. Using the common component architecture to design high perfor-
mance scientific simulation codes. InProceedings of the International Parallel and Distributed Processing
Symposium, Nice, France, 2003.

[14] H. Liu and M. Parashar. DIOS++: A framework for rule-based autonomic management of distributed sci-
entific applications. InProceedings of the 9th International Euro-Par Conference (Euro-Par 2003), Lecture
Notes in Computer Science, pages 66–73, Klagenfurt, Austria, 2003. Springer-Verlag.

[15] H. Liu, M. Parashar, and S. Hariri. A component-based programming framework for autonomic applica-
tions. InProceedings of the 1st IEEE International Conference on Autonomic Computing (ICAC-04), IEEE
Computer Society Press, pages 278 – 279, New York, NY, 2004.

[16] V. Mann, V. Matossian, R. Muralidhar, and M. Parashar. DISCOVER: An environment for web-based in-
teraction and steering of high-performance scientific applications.Concurrency and Computation: Practice
and Experience, 13(8-9):737 754, 2001.

15

[17] W. Mulder, S. Osher, and J. Sethian. Computing Interface Motion in Compressible Gas Dynamics.J. Comp.
Phys., 100:p209, 1992.

[18] H. Najm and P. Wyckoff. Premixed flame response to unsteady strain-rate and curvature.Combustion and
Flame, 110(1-2):92–112, 1997.

[19] D. I. Pullin. Direct Simulation Methods for Compressible Ideal Gas Flow.J. Comp. Phys., 34:231–244,
1980.

[20] J. Ray, R. Samtaney, and N. J. Zabusky. Shock Interactions with Heavy Gaseous Elliptic Cylinders : Two
Leeward-Side Shock Competition Models and a Heuristic Model for Interfacial Circulation Deposition at
Early Times.Phys. Fluids, 12(3):707–716, March 2000.

[21] R. Samtaney, J. Ray, and N. J. Zabusky. Baroclinic Circulation Generation on Shock Accelerated Slow/Fast
Gas Interfaces.Phys. Fluids, 10(5):1217–1230, May 1998.

[22] R. Samtaney and N. Zabusky. Circulation Deposition on Shock-Accelerated Planar and Curved Density
Stratified Interfaces : Models and Scaling laws.J. Fluid Mech., 269:45–85, 1994.

[23] J. Smoller.Shock Waves and Reaction-Diffusion Equations, Series of Comprehensive Studies in Mathemat-
ics. Springer-Verlag, 1982.

[24] C. Ururahy, N. Rodriguez, and R. Ierusalimschy. ALua: Flexibility for parallel programming.Computer
Languages, 28(2):155–180, 2002.

[25] Z. Yang, B. H. C. Cheng, R. E. K. Stirewalt, J. Sowell, S. M. Sadjadi, and P. K. McKinley. An aspect oriented
approach to dynamic adaptation. InProceedings of the first workshop on Self-healing systems, pages 85–92,
Charleston, South Carolina, 2002. ACM.

16

