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Outline

¢ Summary of magnetic flyer technique on Z

¢ Independent, self-consistent measurements show
agreement with ab-initio models to 1 Mbar
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We’ve developed techniques on Z for
accurate EOS studies—both major advances
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Isentropic Compression Experiments (ICE)*

Magnetically produced Isentropic Compression
Experiments (ICE) to provide measurement
of continuous compression curves
- previously unavailable at Mbar pressures

* Developed with LLNL

Magnetically launched flyer plates

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to ~ 27 km/s
- exceeds gas gun velocities by ~ 3X and
pressures by ~ 4X with similar accuracy
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Sandia Z accelerator

11.5 MJ stored energy
~22 MA peak current
~200 ns rise time
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Z generates large amplitude ramp
waves for studying quasi-isentropic compression

Velocity
interferometry

Specimen
% ‘ (Anode _‘:U
™% x x x x_x Gap s
< B N
% KCathode o
| node Cathode ‘?,
3 . Samples N
o
B=pn,J o

— 2

Magnetic Pressure

1.2
0.8
0.4 1 Pressure applied to
a planar specimen
0 — |
2.25 2.5 2.15

Time, microseconds

» Shockless loading for 200-300 ns
* Multiple experiments/shot (4-12)

« Same loading history (A-B comparison)

 Versatile (simultaneous Lo/Hi T)

C.A. Hall, et al., Rev. Sci. Instrum. 72, 1 (2001) "1
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';,7
developed for EOS data at multi-Mbar pressures

Ultra-high velocity flyer plates have been
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Ultra-high velocity flyer plates are being
developed for EOS data at multi-Mbar pressures

Flyer Plate

Flat, intact
flyer plates

Velocity (km/s)

Sample
Al flyer plate e ,
215 e
=<
>10
3X gas guns S Deuterium
O 5 - Shock Velocity
>
0
| | 0O 10 20 30 40 50
30 80

Time (microseconds)

280 330 Time (ns) '11 Sandia

National
Laboratories




% The ICE / flyer plate experiment
requires accurate knowledge of MHD effects
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Surface Velocity (km/s)

Al/LiF Interface Velocity (km/s)
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New conductivity models are validated
through comparison with flyer plate experiments
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R.W. Lemke, et al., Phys. Plasmas 10, 1092 (2003)
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State-of-the-art conductivity model
developed for Al — treatment of
conductivity in liquid-vapor phase
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Simulation code is ALEGRA: 2D, 3D,
radiation magneto-hydrodynamics (MHD)

e ALEGRA physics:

Self-consistent coupling of power flow to load (circuit model).

Resistive MHD: self-consistent coupling of EQS, conductivity, Joule heating,
hydrodynamics, and magnetic diffusion.

e Simulation methodology:

Measurements provide the basis for model development and validation: current
and flyerimaterial velocity serve as benchmarks.

Semi-emperical circuit model: requires models of time dependent current loss
(£aow IMpedance) and short circuit (crowbar).

Zaow and crowbar models calibrated for a specific charge voltage (standard &
shaped voltage shots require separate calibration).

Apply model to produce existing data; predict future shot performance.
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} Power is coupled to the load via
inductance which is determined by geometry

Initial 2D geometry of flyer
plate load; perpendicular
slice through coaxial
region (~2 nH)

Geometry prior to impact;
electrode deformation
significantly increases load
inductance (~7-8 nH)
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V 1 '
% Shock breakout of stepped targets
S

uggests bowing due to magnetic pressure gradients

Line Imaging VISAR
diagnostic over
~8 mm line

Measurements indicate
the flyer is only bowed

in the horizontal

direction
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Careful analysis suggests a
planar shock of over 2.5 mm width at impact
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Predictive MHD requires accurate
circuit description of Z with crowbar and loss models

Circuit Driven MHD Simulation

Z MITLs, Convolute, and Load R Lm Lccﬂlute Lim

material science
experiment

flyerfanode \\

pathode

R.W. Lemke, et al., Phys. Plasmas 10, 1867 (2003) "1
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Simulations provide significant amount

of information regarding the electrodynamics

load inductance
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Current (MA)

2D circuit driven MHD reproduces
measured flyer velocity and load and MITL currents

load current & flyer velocity
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Excellent agreement between
simulated and measured flyer velocity
throughout entire trajectory
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Simulation provides insight into the
state of the flyer plate upon impact
with the target
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We are also gaining insight

into MHD effects on the “ideal” pulse shape
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Rapid expansion early in time results in extra “push”

Magnetic force applied to compressible gas/plasma layer results in
delayed, steepened upper part of profile for high-pressure loads
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Load designs to increase pressure and
flyer velocity are being guided by MHD simulations

Shot #3 Side Section View
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We have demonstrated shock-less

acceleration of flyers to greater than 27 km/s

Velocity (km/s)

30 6000
~27.2 km/s

25 A + 5000

20 A + 4000

15 A + 3000

10 A + 2000
5 A + 1000
0 f& T T T T T T 0
2400 2450 2500 2550 2600 2650 2700 2750 2800

Time (ns)

Sandia
National
Laboratories



\

Aluminum experimental
configuration utilizes symmetric impact

\/ VISAR
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Shock Velocity (km/s)

Flyer plate technique has been validated
against high-pressure Hugoniot of Aluminum
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Outline

¢ Summary of magnetic flyer technique on Z

¢ Independent, self-consistent measurements show
agreement with ab-initio models to 1 Mbar
— Primary Hugoniot — Hugoniot Temperature
— Reverberation — Re-shock Temperature

— Re-shock Pressure

¢ Release response of aluminum calibrated for impedance
matching technique

— Main source of potential systematic uncertainty

¢ Conclusions & Future directions
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Sandia experimental configuration
utilizes an impedance matching method
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Experimental data indicate this
method provides very good quality pressure drive
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Data to 1 Mbar obtained on liquid D, to
help resolve discrepancy in high-pressure response
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Shock reverberation timing is sensitive
to the density compression achieved by first shock
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Reverb timing corroborates the stiff
response inferred from the Hugoniot measurements
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Re-shock also provides insight into
density compression along the Principal Hugoniot
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Aluminum Shock Velocity (km/s)

Re-shock using aluminum and a-quartz
anvils also indicate stiff response on the Hugoniot
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Aluminum Shock Velocity (km/s)
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Complete consistency observed between
Hugoniot, reverb, and re-shock measurements
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Analysis of temperature nearing completion —
results consistent with mechanical measurements

Hugoniot Temperature
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determining weighted averages
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Hugoniot temperatures in very good agreement with stiffer
models — consistent with mechanical measurements
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Reshock temperatures also show
better agreement with the stiffer EOS models
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Outline

¢ Summary of magnetic flyer technique on Z

¢ Independent, self-consistent measurements show
agreement with ab-initio models to 1 Mbar
— Primary Hugoniot — Hugoniot Temperature
— Reverberation — Re-shock Temperature

— Re-shock Pressure

¢ Release response of aluminum calibrated for impedance
matching technique

— Main source of potential systematic uncertainty

¢ Conclusions & Future directions
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Low density silica aerogel has been
used to perform aluminum release experiments
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Aerogel experiments allow us to directly

easure the effect of release from high pressure
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Pressure (Mbar)

Release measurement yields P-u, point
through which the release isentrope must pass
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The Hugoniot for aerogel
has been measured in the region of interest
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been verified over the stress range of ~250-500 GPa

Release isentrope predictions have
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Fraction Difference

Statistical analysis does not indicate
systematically stiff or soft release in 3700
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We have analyzed four
other models commonly used for aluminum
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Aluminum results can be
understood by considering model behaviors

50000

3711 significantly
overestimates the

Hugoniot temperature

resulting in soft release
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We have also obtained full
release data for aluminum from ~5 Mbar

Clearly observe two
distinct features at the
LiF witness plate
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Outline

¢ Summary of magnetic flyer technique on Z

¢ Independent, self-consistent measurements show
agreement with ab-initio models to 1 Mbar
— Primary Hugoniot — Hugoniot Temperature
— Reverberation — Re-shock Temperature

— Re-shock Pressure

¢ Release response of aluminum calibrated for impedance
matching technique

— Main source of potential systematic uncertainty

& Conclusions & Future directions

Sandia
National
Laboratories



\

We are distinguishing
between EOS models for liquid deuterium

Measurement
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Excellent agreement with both a
chemical picture model and an ab-initio model
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Both a chemical picture (Kerley 03) and an
ab-inito (SNL GGA 03) model accurately reproduce
the EOS data obtained in all of the flyer plate experiments

M.D. Knudson, et al., Phys. Rev. B, accepted for publication (2004)
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What do these results
tell us about deuterium in the Mbar regime?
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At ~100-150 GPa deuterium is likely fully
dissociated and roughly 50% ionized — Hugoniot likely
approaches 4-fold compression from the higher density side o
naia

G.l. Kerley, SAND Report 2003-3613 M.P. Desjarlais, Phys. Rev. B 68, 064204 (2003)
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Conclusions

¢ Ultra-high velocity flyer plate experiments becoming routine

onZ

— Shock-less acceleration to ~27 km/s

— Fully predictive, self-consistent, 2-D MHD capability

¢ Technique has been validated for Equation of State

Absolute Hugoniot measurements on aluminum to ~8 Mbar

Aluminum release behavior has been calibrated

Deuterium Hugoniot response is stiff, at least to ~1.2 Mbar

Multiple, self-consistent measurements confirm stiff response

ab-initio models provide very good description of hydrogen and

its isotopes

mh
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p Future direction

¢ Extend D, results to higher pressures

— Plans to extend flyer velocity to > 30 km/s on Z

» ~10 Mbar states in aluminum and ~1.5 Mbar state in D,
— Predicted flyer velocity to > 40 km/s on ZR (2007)

» ~15 Mbar states in aluminum and ~ 2.5 Mbar states in D,

¢ Perform similar study on H,/D, mixtures and HD

— ldentify any potential isotopic differences

¢ Continue to address aluminum release

— Qualify aluminum release from pressure greater than 5 Mbar
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