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 Summary of magnetic flyer technique on Z

 Independent, self-consistent measurements show 

agreement with ab-initio models to 1 Mbar

– Primary Hugoniot

– Reverberation

– Re-shock Pressure

 Release response of aluminum calibrated for impedance 

matching technique

– Main source of potential systematic uncertainty

 Conclusions & Future directions

Outline

– Hugoniot Temperature

– Re-shock Temperature
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Isentropic Compression Experiments (ICE)*

Magnetically launched flyer plates

We’ve developed techniques on Z for
accurate EOS studies—both major advances

Magnetically produced Isentropic Compression
Experiments (ICE) to provide measurement

of continuous compression curves
- previously unavailable at Mbar pressures

Magnetically driven flyer plates for shock
Hugoniot experiments at velocities to ~ 27 km/s

- exceeds gas gun velocities by ~ 3X and
pressures by ~ 4X with similar accuracy

* Developed with LLNL



11.5 MJ stored energy

~22 MA peak current

~200 ns rise time

Sandia Z accelerator

Target Chamber



B = µ0 J

P = B 2 / 2 µ0
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• Shockless loading for 200-300 ns

• Multiple experiments/shot (4-12)

• Same loading history (A-B comparison)

• Versatile (simultaneous Lo/Hi T)

C.A. Hall, et al., Rev. Sci. Instrum. 72, 1 (2001)
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Ultra-high velocity flyer plates have been
developed for EOS data at multi-Mbar pressures

M.D. Knudson, et al., J. Impact Eng., 29, 377 (2003) 



Ultra-high velocity flyer plates are being
developed for EOS data at multi-Mbar pressures
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Cathode
Anode/“sample”/flyer

Undisturbed material

The ICE / flyer plate experiment
requires accurate knowledge of MHD effects



New conductivity models are validated
through comparison with flyer plate experiments
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State-of-the-art conductivity model
developed for Al – treatment of

conductivity in liquid-vapor phase
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R.W. Lemke, et al., Phys. Plasmas 10, 1092 (2003) M.P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001)



Simulation code is ALEGRA: 2D, 3D,
radiation magneto-hydrodynamics (MHD)



Power is coupled to the load via
inductance which is determined by geometry

Initial 2D geometry of flyer 
plate load; perpendicular 

slice through coaxial 
region (~2 nH)

Geometry prior to impact; 
electrode deformation 

significantly increases load 
inductance (~7-8 nH)



Shock breakout of stepped targets
suggests bowing due to magnetic pressure gradients

Line Imaging VISAR

diagnostic over

~8 mm line

Measurements indicate

the flyer is only bowed

in the horizontal

direction



Careful analysis suggests a
planar shock of over 2.5 mm width at impact
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Predictive MHD requires accurate
circuit description of Z with crowbar and loss models

R.W. Lemke, et al., Phys. Plasmas 10, 1867 (2003)



Simulations provide significant amount
of information regarding the electrodynamics



2D circuit driven MHD reproduces
measured flyer velocity and load and MITL currents

Excellent agreement between 

simulated and measured flyer velocity 

throughout entire trajectory

Simulation provides insight into the 

state of the flyer plate upon impact 

with the target



We are also gaining insight
into MHD effects on the “ideal” pulse shape

Rapid expansion early in time results in extra “push”

Magnetic force applied to compressible gas/plasma layer results in 
delayed, steepened upper part of profile for high-pressure loads



       Shot #3 Side Section View

 Top Section View

Load designs to increase pressure and
flyer velocity are being guided by MHD simulations
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We have demonstrated shock-less 
acceleration of flyers to greater than 27 km/s

~27.2 km/s



Aluminum experimental
configuration utilizes symmetric impact

Measure:
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Flyer plate technique has been validated
against high-pressure Hugoniot of Aluminum
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M.D. Knudson, et al., J. Appl. Phys. 94, 4420 (2003)



 Summary of magnetic flyer technique on Z

 Independent, self-consistent measurements show 

agreement with ab-initio models to 1 Mbar

– Primary Hugoniot

– Reverberation

– Re-shock Pressure

 Release response of aluminum calibrated for impedance 

matching technique

– Main source of potential systematic uncertainty

 Conclusions & Future directions

Outline

– Hugoniot Temperature

– Re-shock Temperature



Sandia experimental configuration
utilizes an impedance matching method
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Experimental data indicate this
method provides very good quality pressure drive
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Data to 1 Mbar obtained on liquid D2 to
help resolve discrepancy in high-pressure response
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Reverb timing corroborates the stiff
response inferred from the Hugoniot measurements
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Re-shock also provides insight into
density compression along the Principal Hugoniot

Deuterium Shock Velocity (km/s)
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Re-shock using aluminum and -quartz
anvils also indicate stiff response on the Hugoniot

Deuterium Shock Velocity (km/s)
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Comparison of Z re-shock data
with laser driven experiments (Nike and Omega)

Deuterium Shock Velocity (km/s)
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Density Compression
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Analysis of temperature nearing completion –
results consistent with mechanical measurements

G. Dunham, et al., Rev. Sci. Instrum., accepted (2004)

Hugoniot temperatures in very good agreement with stiffer 
models – consistent with mechanical measurements

Hugoniot Temperature

P
(T

)

Statistical analysis performed to 

test validity of individual 

uncertainties prior to use in 

determining weighted averages

J.E. Bailey, et al., in preparation
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 Summary of magnetic flyer technique on Z

 Independent, self-consistent measurements show 

agreement with ab-initio models to 1 Mbar

– Primary Hugoniot

– Reverberation

– Re-shock Pressure

 Release response of aluminum calibrated for impedance 

matching technique

– Main source of potential systematic uncertainty
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– Hugoniot Temperature
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Low density silica aerogel has been
used to perform aluminum release experiments
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Aerogel experiments allow us to directly
measure the effect of release from high pressure
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M.D. Knudson, et al., in preparation

The Hugoniot for aerogel
has been measured in the region of interest
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Release isentrope predictions have
been verified over the stress range of ~250-500 GPa

M.D. Knudson, et al., in preparation
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We have analyzed four
other models commonly used for aluminum
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Statistical analysis does indicate
systematics in some aluminum models
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Aluminum results can be
understood by considering model behaviors

3711 significantly 

overestimates the 

Hugoniot temperature 

resulting in soft release 

response

3719 exhibits a zero 

latent heat of fusion an 

has errors near melt 

regions – i.e. ~1-2 

Mbar on Hugoniot



We have also obtained full
release data for aluminum from ~5 Mbar

Tentatively explain these

features to a fast vapor

and a slower bulk

component

Clearly observe two

distinct features at the

LiF witness plate

M.D. Knudson, et al., in preparation
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 Summary of magnetic flyer technique on Z

 Independent, self-consistent measurements show 

agreement with ab-initio models to 1 Mbar

– Primary Hugoniot

– Reverberation

– Re-shock Pressure

 Release response of aluminum calibrated for impedance 

matching technique

– Main source of potential systematic uncertainty

 Conclusions & Future directions

Outline

– Hugoniot Temperature

– Re-shock Temperature



We are distinguishing
between EOS models for liquid deuterium

Measurement
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Excellent agreement with both a
chemical picture model and an ab-initio model

Deuterium Shock Velocity (km/s)
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Both a chemical picture (Kerley 03) and an

ab-inito (SNL GGA 03) model accurately reproduce

the EOS data obtained in all of the flyer plate experiments

M.D. Knudson, et al., Phys. Rev. B, accepted for publication (2004)



What do these results
tell us about deuterium in the Mbar regime?

At ~100-150 GPa deuterium is likely fully

dissociated and roughly 50% ionized – Hugoniot likely

approaches 4-fold compression from the higher density side
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G.I. Kerley, SAND Report 2003-3613 M.P. Desjarlais, Phys. Rev. B 68, 064204 (2003)



Conclusions

 Ultra-high velocity flyer plate experiments becoming routine 

on Z

– Shock-less acceleration to ~27 km/s

– Fully predictive, self-consistent, 2-D MHD capability

 Technique has been validated for Equation of State

– Absolute Hugoniot measurements on aluminum to ~8 Mbar

– Aluminum release behavior has been calibrated

– Deuterium Hugoniot response is stiff, at least to ~1.2 Mbar

– Multiple, self-consistent measurements confirm stiff response

– ab-initio models provide very good description of hydrogen and 

its isotopes



Future direction

 Extend D2 results to higher pressures

– Plans to extend flyer velocity to > 30 km/s on Z

» ~10 Mbar states in aluminum and ~1.5 Mbar state in D2

– Predicted flyer velocity to > 40 km/s on ZR (2007)

» ~15 Mbar states in aluminum and ~ 2.5 Mbar states in D2

 Perform similar study on H2/D2 mixtures and HD

– Identify any potential isotopic differences

 Continue to address aluminum release

– Qualify aluminum release from pressure greater than 5 Mbar


