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The intent of this paper is to point out a connecting bridge between several disparate views of 
model validation, and to argue for an associated split that I believe should occur in the 
conceptualization and articulation of model validation.  Such a split fairly recently occurred with 
model verification, where it was recognized that Code Verification is different from “Solution or 
Calculation” Verification. The former is “code-centric” and the latter is “application-centric”. 
Both are legitimate types of verification, but are very different in nature and implementation. In 
the following I propose a similar split for model validation, into “model-centric” and 
“application-centric” types of validation. The discussion hinges on the expectation that the model 
is to be validated before use in an extrapolative prediction away from the validation point(s) in 
the parameter space. The cited references give deeper support to the brief presentation here.  
 
I argue that there are at least three distinct aspects to model validation. These are: 
 

1. model accuracy characterization — model results comparison against relevant 
experimental data to quantify the bias (and uncertainty thereof) of the model predictions 
relative to the data 

2. model adequacy assessment — implies the further step of comparing the characterized 
model error or bias against some prescribed accuracy requirement for the purpose of 
accepting or rejecting the model for the intended application 

3. augmentation of the original model with a representation of the resolution uncertainty 
of the validation experiment(s). 

 
Most people active in model verification and validation are familiar with the first 2 items. The 
third item is discussed in detail below. With regard to Item 1, many technical details still remain 
to be worked out, e.g., for statistical assessment of agreement between time-varying vector-field 
outputs of model and experiment. While these are currently being worked on, many examples can 
already be cited where the simpler case of accuracy comparison for scalar outputs of model and 
experiment have been accomplished with reasonable rigor. So, Item 1 seems to already be 
practical to apply in some simple cases, and will probably quickly become more widely 
applicable in more complex cases. 
 
In a particular validation exercise, let us assume that the accuracy characterization aspect can be 
accomplished in a reasonable and practical manner. Let us also assume that the model adequacy 
assessment, Item 2 above, can also be accomplished, and that this results in an indicated model 
accuracy that lies within stated accuracy requirements. Accordingly, the model is “accepted”. Can 
it be pronounced ‘validated’ at this point? I argue ‘NO’, in the following context. We are not yet 
free to proceed with the model for use in interpolation or extrapolation and to claim that we used 
a ‘validated model’ in the prediction. The reason is that, before interpolating or extrapolating with 
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the model, we must first accomplish Item 3 above. That is, we must first augment the model with 
a representation of the resolution uncertainty of the validation experiment(s). The resolution 
uncertainty of the validation experiment(s) sets the uncertainty level to within which the model 
can be ascertained to agree with reality.  
 
The resolution quality of the validation activity is governed by the tightness of control on 
boundary conditions, materials, and geometry; accuracy and precision of the experimental 
apparatus, measurement equipment, and measurements; number of repeat experiments, etc.  The 
resolution uncertainty to be defined below is somewhat different from, but in the same spirit as, 
the “validation uncertainty” that Coleman and Stern ([1]) present in their validation theory. 
However, I advocate using the concept of a resolution limit in a different way than Coleman et al. 
Instead of reporting that this is the uncertainty level within which the model can be validated, I 
advocate use of the quantity as an uncertainty term that is mapped back into the model to form 
what is called the “combined or augmented model” with which interpolatory or extrapolatory 
predictions are to be performed. The combined model is a {deterministic model + uncertainty 
representation} that implicitly embodies the resolution uncertainty of the validation experiments. 
(For deterministic models that are significantly biased from the data, the combined model can 
also be augmented with a bias correction as discussed in [2].) 
 
This “validation requirement” on the model, before it can be used in prediction, is analogous to 
requiring that, e.g., experimental uncertainties be included in the representation of material 
property data. This is something that especially those performing model validation recognize as 
essential. Consider a simple example. Figure 1 shows a straight line through the data determined 
by a Least-Squares regression. The straight line can be recognized as a deterministic model of the 
nominal material-property behavior over the tested temperature range. However, the deterministic 
model alone does not suffice to define material-property value at some given value of the state 
variable. The actual material-property data deviates significantly from the regression line, i.e., 
from the deterministic model. That is, the deterministic model does not sufficiently reflect the 
actual measured values, but must be augmented as follow to more accurately represent the data. 
 
The random deviations of the data about the regression line are deemed to be caused by random 
deviations in the experiments and measurements in going from point to point. (Otherwise, the 
deterministic model would be formulated to go from point to point to more appropriately 
represent the precisely known material-property behavior.) Such random deviations derive from 
various sources of uncertainties that incur different realizations at different measurement points. 
Such sources include deviations of applied boundary condition from experimental set points; use 
of different nominally identical measurement sensors and/or reading instrumentation that are 
really only within certain accuracy tolerances of each other; and unit-to-unit differences in 
nominally identical experimental units, geometries, materials, etc.  Point to point random 
deviations of such uncertainty sources are manifested in the observed random scatter in the 
experimental data as it rises with a distinct upward trend as the value of the state variable 
increases. The upward trend of the data is captured by the slope of the regression line. The line 
also serves as a deterministic reference function about which the random deviations of the data 
can be parameterized by the standard deviation or ‘standard error’ of the data about the regression 
line.  
 
To use only the deterministic trend line and neglect the deviations of the data about the linear 
model is to imply exact knowledge of the material property value as a function of the state-
variable value. This misrepresents our actual state of knowledge. The material-property model 
must also reflect the uncertainty of the property measurements. This is set by the quality of the 
material characterization experiments, manifested in the scatter of the data about the reference 



trend line, and modeled by the standard deviation of the data about the trend line. This uncertainty 
can be mapped into the deterministic model through its ordinate-intercept parameter. This 
parameter can be made to vary with a standard deviation and probability density function (PDF) 
given by the standard error and PDF of the data about the regression line. Hence, the 
deterministic model of nominal property behavior (the line) is augmented with an uncertainty 
model to obtain a combined model that best represents the state of knowledge of the material 
behavior.  
 

 
 

Figure 1:  Material property measurements and Least-Squares regression line through the data. 
 
The experimental resolution uncertainty that must be carried in the combined model is the 
“extraneous” uncertainty that exists in the validation experiments but not in the application 
space, and is not separately characterized elsewhere. For example, the random variability in the 
data will have a contribution due to sensor accuracy uncertainty if different sensors are used at the 
different measurement points. If the particular sensors used have random bias errors (random 
accuracy errors) that are reasonably represented by the manufacturer-published accuracy 
uncertainty of the sensors, then the associated variance may be subtracted from the variance of 
the data about the mean trend line discussed above.4 The result is called the reduced 
                                                 
4 A straight subtraction of variances presumes a linear convolution of independent contributing 
uncertainties, which is often adequate for most engineering purposes. The subtraction is accomplished by 
first performing a linear forward propagation of the applicable uncertainty, such that Var[response]due to 

model input factor = Var[model input factor]*[∂response/ ∂input_factor]. The involved partial derivatives are 
usually approximated by a one-sided or central difference, but care should be taken to assess derivative 
accuracy with respect to interactions between difference step size, model noise, and model solver 
tolerances ([3]). The propagated variance is then subtracted from the total experimental variance of the data 
about the mean trend line. (Because we are differencing, the model being used to form the derivatives does 
not need to be accurate in an absolute sense, but only in a much weaker relative sense with respect to trend 
information. This is somewhat comforting because the model being used is the subject of validation in the 
first place.)  
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experimental variance. Because some of the original variance in the data would be due to sensor 
variability, and we have this independently characterized, we can use this knowledge to decrease 
the resolution-uncertainty “penalty” from the validation experiments that must be carried along 
with the model. If a separate characterization of sensor bias uncertainty from the manufacturer or 
some other source was not available, then we would not be able to commensurately reduce the 
experimental variance. 
 
Now consider a contributor to the data variance that also exists in the application setting. For 
example, assume that the different data points are obtained from different but nominally identical 
experimental units that embody the unit-to-unit variability that would be seen in the application 
setting. Let the “unit” be a component or subsystem of a larger system. The validated model of 
the unit is eventually to be part of a larger system model. Let experimental response of the 
component depend on the spatial-average density of packaging foam in the unit. If we have some 
way of measuring foam average density, then the variations in the response data due to variations 
in foam average density could be subtracted from the observed response variance. However, 
when the resulting augmented model of the component is merged with the rest of the system 
model, the effect of the foam density uncertainty would then have to be explicitly added back in. 
This could be accomplished by treating the foam density parameter as an uncertain variable in the 
system model. 
  
A better approach is probably to not subtract out the foam’s effect on the experimental variance in 
the first place. This preserves the “Top-Down” uncertainty characterization ([4]), where the foam 
uncertainty effects are implicitly carried in the augmented model. Therefore the effects would not 
have to be separately modeled in the system model. This approach consolidates the uncertainty 
of all the factors sampled in the validation experiments into a single variance representation that 
is carried in the augmented model. In several situations with complex models having many such 
input factors, the author has carried the experimental variance through a single parameter in the 
augmented model, much like the variance of the data in Figure 1 is carried via the variance of the 
y-intercept parameter of the linear property model. Mapping each submodels’ elemental 
uncertainties into the system model through one or a few parameters per submodel allows better 
modularization and management of complexity in system-level uncertainty models and 
calculations. Then substantially fewer uncertain parameters must be manipulated and managed at 
the system level.  
 
Of course, any uncertain factors that exist in the application setting that are not sampled in the 
validation experiments must be explicitly modeled with a Bottom-Up uncertainty propagation. 
Consider a case where a custom batch of specially controlled low-variance packaging foam is 
produced for use in the validation experiments. This might be done to isolate for examination the 
effects of other variance contributors in the model validation activity. The response variance 
associated with the (known) density variance of the custom foam would first be subtracted from 
the total experimental variance. Then, the effect of the actual density variance of the standard 
production foam (used in the application setting) would be incorporated into predictions by 
either: A) propagating the effect of the actual foam variance in through the variance 
representation of the augmented unit-level model; or B) separately modeling foam density effects 
via an explicit uncertain parameter in the system-level model. 
 
Finally, consider a different case than has been assumed in Figure 1. Consider the case where the 
same sensor is used at all the measurement points of Figure 1. Then the data points would each 
have uncertainty bars about them. The uncertainty derives from the fact that the sensor has some 
                                                                                                                                                 
 



accuracy uncertainty. The sensor output at each data point would therefore have a common or 
systematic bias error that is associated with the particular sensor. Since we do not know what the 
particular sensor’s bias error is, we assign a characteristic uncertainty magnitude to the sensor, 
from manufacturer specifications or some other characterization activity. This sensor uncertainty 
(variance) at the data points is then linearly convolved (summed) with the point-to-point variance 
about the regression line. The total variance is then carried in the augmented model.  
 
We now return to considerations of model validation. Clearly, the regression line (deterministic 
model) in Figure 1 falls within the uncertainty of the experimental data. A model-centric 
approach to model validation, which combines Items 1 and 2 above, would therefore tend to 
judge the linear property model as having been validated, or at least as having being validated 
within the resolution allowed by the quality (uncertainty) in the experiments. However, such a 
pronouncement is not sufficient for the model to be appropriately extended to other settings, e.g., 
in the analysis of components containing the material, or in material-property extrapolation 
outside the range of the experiments. For the model to be used in other modeling settings, it must 
also embody the uncertainty that represents the experimental resolution to within which the 
model can be claimed to agree with the data. Thus, we arrive at the reasonable criterion stated 
above that, in order to claim use of a ‘validated model’ in a prediction, the extraneous 
experimental uncertainty in the validation experiment(s) must be carried along with the original 
model, in a combined or augmented representation to be used for predictions.   
 
If the physics being modeled is effectively deterministic5, then as the experimental measurements 
become noisier or more uncertain, the resolution uncertainty within which the model can be said 
to agree with the data increases. Since the resolution uncertainty is mapped into the model before 
extrapolating with it, less resolution (greater uncertainty) in the validation experiments is 
reflected in greater uncertainty in the augmented model, that is carried forward into predictions. 
Hence, there is no “free lunch” where lower resolution or quality in the validation experiments 
(i.e., larger error bars on the data) make it easier to claim a “validated” model by the criterion that 
it produces results that lie within the error bars of the data.   
 
To reiterate, application-centric model validation requires that Items 3 be performed as a 
minimum requirement in order for models to be validated for use. Note that this is just the 
minimum differentiator between illegitimate and potentially legitimate claims that “validated 
models are being used in these calculations”. Others requirements may apply in various 
circumstances. By this working criterion for model validation, to date I have seen perhaps 
hundreds of illegitimate claims that validated models were being used in predictions. Note also 
that this criterion for model validation paradoxically requires at least some degree of adjustment 
or augmentation of the model in order to prepare it for extrapolation or interpolation. That is, the 
deterministic model has to pick up an uncertainty contribution from the validation experiment(s), 
as well as perhaps a bias-correction component if thought to improve the predictive capability of 
the model.   
 

                                                 
5 The stochastic case is slightly more complex. Here there are stochastic interactions between the assembled 
elements of the system or subsystem being modeled. Even if all the models of the separate system elements 
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the uncertainty at system level from stochastic interactions between the elements. Whether the uncertainty 
propagated from Bottom-Up has a mean and variance that resemble the actual system statistics can only be 
ascertained through a Top-Down validation. Top-Down validation presents an opportunity to confirm, or if 
necessary calibrate, the calculation of system statistics from a Bottom Up approach that would then be used 
in extrapolative predictions ([2]).  



Note that this working criterion for model validation includes statistical and highly calibrated 
models. This may be a point of contention for some. However, reference [5] argues that even 
purely calibrated models, like statistical regression models of material property behavior or 
component failure, do indeed sensibly fit into the class of validatable models, especially if they 
are being used in interpolation (the intended use). Certainly, it seems contrary to common sense 
that a partial-differential-equation (PDE) based model could be said to be validated (by the 
model-centric criterion, Item 2), while a regression model is not validatable even though it better 
agrees with the data over the interpolation parameter space of intended use. Such is the case in 
[5]. It makes sense to recast the definition of model validation to recognize the application-centric 
criterion for validation, which admits calibrated models to the class of models that can be 
validated. This is important because then we can talk about validating models for use from an 
exceedingly relevant and useful class of models that includes material property models, 
constitutive models, failure models, statistical regression models, etc. 
 
Besides, one cannot escape the fact that effective models tend to have some amount of calibration 
in them. Show me a model that performs well on a real problem, and I am confident I can point 
out where it has been calibrated. Even “first principles based” PDE models are calibrated. 
Material-property parameters in PDE models are free parameters. Some of these parameters are 
obtained by iterating the properties values until 1-D predictions best match 1-D experimental 
results. Hence, a self-consistent matched set of PDEs and parameter values arises that best 
replicate the experimental data. The presence of non-constant material properties, such as 
temperature-dependent thermal conductivity, signifies that the extent of the equations’ predictive 
capability is limited. The applicability of the equations is extended in state-variable space through 
re-calibration via the mechanism of state-dependent material properties.  
 
The issue of predictiveness in extrapolation appears to come down to the rate in the parameter 
space at which the model must be recalibrated, versus how far in parameter space the 
extrapolation lies ([2]). Models that need recalibration at slower rates in the parameter space are 
thought of as “more predictive” or better in extrapolation. Those that need more frequent re-
calibration are thought of as “less predictive” or worse in extrapolation.  However, there does not 
appear to be a quantitative methodology for measuring the rate at which the applied equations 
must be recalibrated in the parameter space, nor for gauging predictiveness by assessing this rate 
against various extrapolation directions and/or distances. 
 
Some comments are now made regarding Item 2 listed above. My personal observation is that it 
is not an applicable type of model validation in most real cases. A statistical comparison to 
determine if an accuracy requirement is met with some acceptable degree of statistical 
significance, even if some uncertainty exists in the requirement, is easy enough to do if a scalar 
requirement exists.  One problem, however, is that both the accuracy requirement for the model, 
and the level of significance set in a hypothesis test of whether the accuracy requirement is met, 
can only be based on subjective criteria instead of quantitatively-derived unique criteria. 
Theoretical and pragmatic reasons for this are cited in [4], but the empirical evidence is also 
convincing. In my personal experience, the numerous well-funded high-fidelity validation 
activities I am aware of have never involved a rigorously traceable requirement for the acceptable 
level of model accuracy.  
 
Even in cases where a unique mapping could exist in principle, a practical impediment exists in 
mapping accuracy requirements from the application space to the validation space where the 
hypothesis test would be applied. I have considered such a mapping in several projects. It does 
not appear to be possible unless there is a continuous, parameterized mapping between the 
validation and application domains. That is, any changes in the conditions from one domain to the 



other have to be recoverable by smoothly morphing the model from the application domain to the 
validation domain. This means that you must have the degrees of freedom and associated 
parameters in the model to span both domains. In other words, you must have the “same” model 
for both domains, with only the values of the parameters being different. Needless to say, current 
modeling technology and practice do not support models that can morph between the different 
geometries and boundary conditions that normally exist between validation and application 
domains.  
 
Another problem with Item 2 is the issue of multiple accuracy requirements. Even when 
considering a scalar accuracy requirement, many problems exist even in principle.  Worse yet are 
cases where multiple accuracy requirements are put on the model.  “It must be y% accurate in this 
region of the fluid domain and w% accurate in that region.” Or, “It must calculate total body drag 
to within u% and total heat transfer gain to within v%,” etc. How does one deal with competing 
accuracy requirements, some of which are met and some of which are not? Is the model of no use 
or value if it does not meet all the prescribed accuracy requirements to the required degree of 
significance? How would one formulate and interpret a weighted hypothesis test for multiple 
accuracy objectives?  
 
Thus, it is argued that hypothesis tests for model accuracy (Item 2) are very subjective and 
volatile measures of model quality/value/usefulness. In the end, the answer to whether a model is 
good enough is impossible to rigorously determine in most realistic cases. In some cases the 
circumstances are so loaded that the answer is obvious, but when the question becomes close the 
arbitrariness issue surfaces. Even if the judgment is made, this says nothing about whether the 
model is good enough for the extrapolative predictions it will be used for. Hence, I do not accept 
that Item 2 is normally a viable aspect of model validation.  
 
What about the morphing problem between validation and application spaces? If accuracy 
requirements cannot be rigorously mapped from the application domain to the validation domain, 
how can augmented models, {deterministic model + uncertainty representation}, be accurately 
extrapolated from the validation to the application domain? The answer unfortunately appears to 
be that they cannot be guaranteed to be accurately extrapolated. This conclusion changes the hope 
of being able to perform extrapolative predictions with rigorous statistical confidence assignable 
to the predictions.  
 
Although we cannot guarantee accuracy of predictions or accompanying uncertainty bands, we 
can still set about the objective of contextualize and improving our estimates as much as possible 
through appropriate model validation procedures. We can also attempt to maximize accuracy 
potential through optimized design of validation experiments and optimized model development, 
calibration, and extrapolation procedures for a given prediction task. This is an engineering 
science still in the very early stages of development. 
 
In summary, it does not appear to be determinable with any particular certainty whether a model 
meets accuracy intentions in the validation space, much less whether it will meet them in the 
application space. However, this does not preclude the objective of making the best possible 
predictions and associated uncertainty estimates. Items 1 and 3 are essential in this regard, and 
comprise an “application-centric” aspect of model validation. The model-centric form (Items 1 
and 2) appears to currently define model validation for most of the model validation community. 
However, I argue that claiming use of a “validated model” in predictions requires the application 
of Items 1 and 3. This makes them fundamental aspects of model validation, which together 
comprise a recognizably different facet of model validation than the model-centric facet. This is 
as Code and Calculation verification are recognized as different facets of verification.  
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