
Tasks 2.1 and 2.2

New Hydrogen Storage Materials Development

Metal Hydride Center of Excellence Meeting
November 29, 2005 Boston

Ewa Rönnebro
Department of Analytical Material Sciences
Sandia National Laboratories, CA

Strategy for discovering new practical metal hydrides

Phase 1: Discover new metal hydrides by screening at the high-pressure station

Phase 2: Optimize synthesis route and structural characterization

Phase 3: Investigate hydrogen storage properties; H-content, sorption temperature

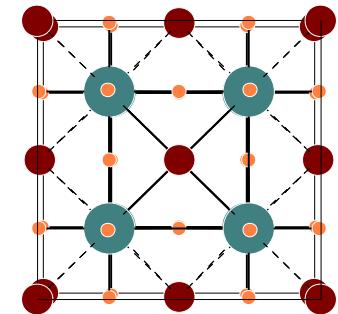
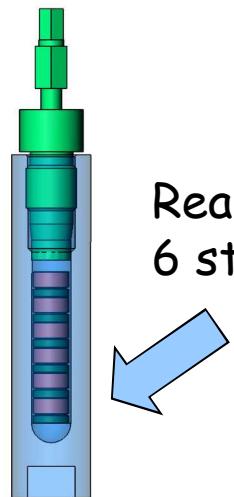
Phase 4: PCT-measurements; thermodynamics and kinetics

Phase 5: If needed the material may have to be further modified to improve H-sorption properties

Synthesis@High-pressure station

Solid state synthesis at
High-pressure station:
<20,000psig, <500°C

This method is the most efficient way
to discover new complex type metal hydrides



Sample preparation

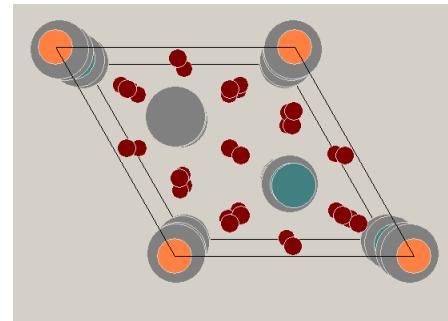
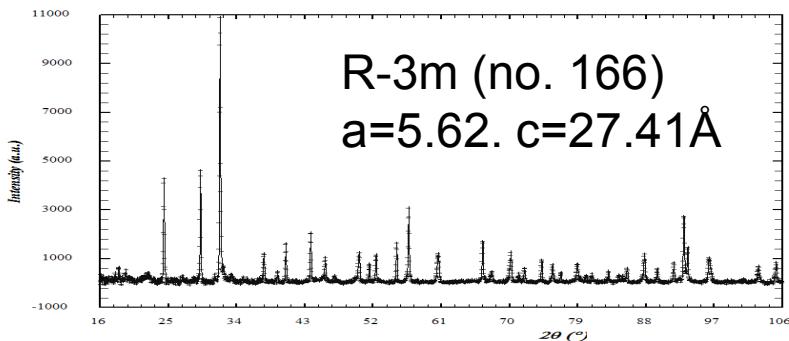
- High-energy ball milling
- Press pellets to place in the steel crucibles
- Heat treatment under High H₂-pressures

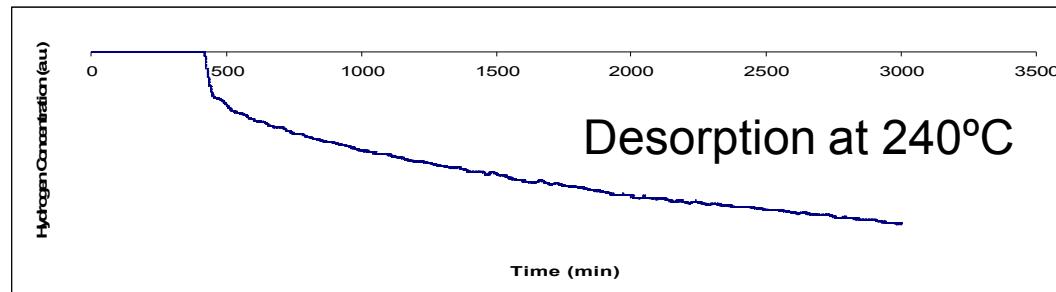
Characterization

XRD reveals
New material's
structure

Reactor vessel with
6 steel crucibles

Discovered New Materials during the 1st year

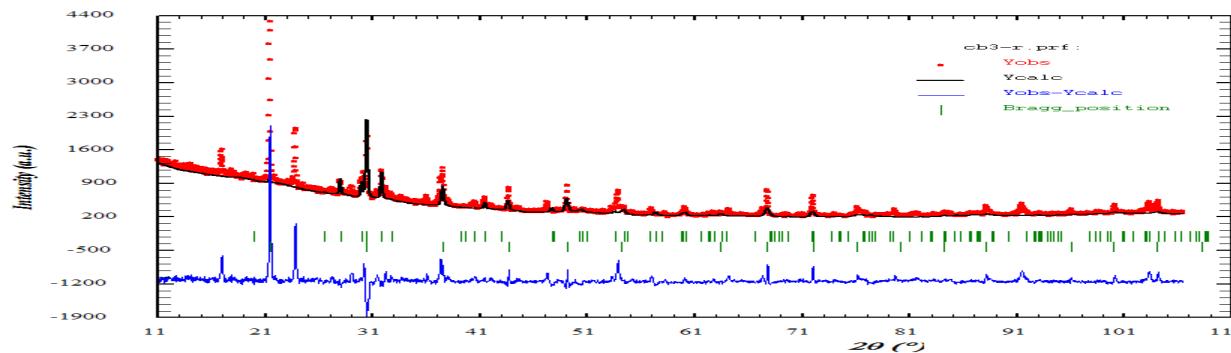


1. Bialkali Alanate K_2LiAlH_6 5wt%
2. Calcium Borohydride $Ca(BH_4)_2$ 11wt%
3. Ternary Si-system 6-9wt%


A New Bialkali Alanate K_2LiAlH_6

A new bialkali alanate was synthesized by heating under H_2 -pressures

With Rietveld refinement the structure was shown to be
isostructural with HT- K_2LiAlF_6

K: grey
Li: orange
Al: green
H: red



Maximum H_2 -capacity is 5.1wt%, but
 $K_2LiAlH_6 \rightarrow 2KH + LiH + Al + 2H_2$ results in reversible 2.6wt%

Calcium Borohydride

- $\text{Ca}(\text{BH}_4)_2$ contains 11.5wt% hydrogen!
- *Potential stable structure was predicted by theoretical modeling!*
- Made in the solid state at high H_2 -pressures:
$$\text{CaB}_6 + 2\text{CaH}_2 + 10\text{H}_2 \leftrightarrow 3\text{Ca}(\text{BH}_4)_2$$
- Reproduction and structural characterization is on-going.
- Hydrogen sorption experiments show partial reversibility: Desorption at 240C, absorption at 390C.
- Next step: Modify the compound to facilitate reversibility.

Ternary Silicon Hydrides

- No complex type ternary Si-hydrides are known!
- Potential for 6-12wt% hydrogen
- Potential anionic complex: $[\text{SiH}_6]^{2-}$ may be stabilized to form Li_2SiH_6 , Na_2SiH_6 or CaSiH_6 . Or perhaps LiNaSiH_6 , LiKSiH_6 etc.
- Other potential symmetries of Si?
 - Ex: $[\text{Si}(4)\text{H}_5]^-$, $[\text{Si}(3)\text{H}_4]^-$, $[\text{Si}(2)\text{H}_4]^{2-}$, $[\text{Si}(2)\text{H}_3]^-$.
- New phase appeared in the Na-Si-H system!
- Finding a better synthesis route to increase the yield is on-going.
- Next step: characterization to understand if the new material is useful as a hydrogen storage material.

K_2LiAlH_6 as a role model for predicting stable metal hydrides

- *We need new methods to predict which metal hydride systems that are likely to show new materials.*
- *K_2LiAlH_6 was chosen as a role model since it was recently synthesized and structurally characterized at Sandia.*
- *The structure of K_2LiAlH_6 was determined from experimental data and it was shown to have the lowest minimized energy by a Monte Carlo method.*
- *We will now continue screening for new metal hydrides at the high-pressure station and test hydrogen sorption properties and use theoretical modeling as a guidance to select stable, light-weight, high-capacity metal hydrides. Further details will be presented by Eric Majzoub.*

