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Device Performance and Reliability

Si Surface Micromachine Technology

• hydrophilic oxides, water adsorption
• adhesion, surface morphology
• friction/wear
• strength 

• electroplated Ni alloys
• corrosion
• friction/wear
• strength

LIGA technology

Coatings provide a method to enhance performance and reliability.



Diamond-like nanocomposite coatings

• Coatings are amorphous

• Conformal coatings could 
provide coverage of sidewalls

• Substrate temperatures do not 
typically exceed 150 to 200 ºC

Hardness: 9-17 GPa
Modulus: 90-140 GPa
COF in air: 0.04-0.06

For 1-2 μm thick films on silicon substrates
DLN coatings were produced by a 
plasma enhanced CVD process

D. J. Kester, C. L. Brodbeck, I. L. Singer and A. 
Kyriakopoulos, Surface and Coatings Tech. 113 
(1999) 268-273.

C. Venkatraman, C. Brodbeck and R. Lei, 
Surface and Coatings Tech. 115 (1999) 215-
221.



Commercial Nanoindentation Platform

• Instrumented Indentation 
Testing

– Record load and 
displacement

• Directly calibrate load and 
displacement

• Microtest

– High load ( up to 20 N)

– Large travel range

• Up to 30 microns

• Nanotest

– Peak load of 450 mN

– Low noise floor



Nanoindentation Technique

Stiffness is calculated from the elastic unloading curve:

from which the sample elastic modulus can be determined as follows.

Furthermore, hardness can be determined as
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Nanoindentation Results
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• Nanoindentation shows elastic deformation at low loads

• Permanent deformation occurs at loads around 500 mN

1/8” ball (Si3N4)

Ni Substrate 
(LIGA)

0.52 μm DLN



FEM Indentation

• FEM simulations imply that deformation will be 
elastic at 100 mN normal load

– Plasticity initiates around 280 mN

• Increasing loads generate significant plasticity 
beneath the tip

100 mN 500 mN 1000 mN



Linear Wear Testing
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• DLN coating reduces frictional coefficient by factor of 30
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EBSD analysis of wear scars
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Sliding Direction

Uncoated Ni Surface DLN Coated Ni surface

• 1000-cycle wear scar at 100 mN load in dry nitrogen atmosphere

DLN Coating

Protective Pt coating

µ ~ 0.9 µ ~ 0.03

Protective Pt coating

Linear wear results at 100 mN



DLN-coated Ni at 100 mN

DLN Coating

Sliding Direction

• Elastic deformation only in DLN and nickel at normal load of 100 mN



DLN-coated Ni at 500 mN

Pt
DLN

• Nickel underneath the DLN coating deforms at higher loads, 500 
mN, but the coating remains intact

2 μm2 μm

Sliding Direction



DLN-coated Ni at 1000 mN

Pt Coating

DLN

• At high loads (1000 mN) significant plastic deformation in the Ni 
substrate occurs, along with breakdown and fracture of the DLN 
layer

Sliding Direction



Results and Conclusions

• DLN coatings reduce the frictional coefficient from 0.8 to 0.03

• With increasing normal load above 100 mN, plastic strains are 
generated in the Ni substrate

– Quasi-static indentation FEM simulations predict plasticity above 
280 mN

– Observed in quasi-static indentation, FEM, and EBSD of wear scars
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Modeling of Nanoindentation
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Example: fused silica 
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 Experiment: triangular tip pressed into specimen – force required 
depends on the mechanical properties of both film and substrate. 
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 Simulation: finite element modeling – vary yield and elasticity for just
the film until a good fit to experiment is obtained. 

= E for  < Y0 / E

= Kn for  > Y0 / E



Finite-element simulations

• Simulations use ABAQUS/Standard 6.3 
on a 600 MHz Octane2 workstation

• 2D: 30-60 mins        

• Properties of the substrate and indenter 
are fixed at calibrated values

• Y and E for the layer are varied until a 
good fit to experiment is obtained 

• Tip yielding, residual stress,   and 
friction can be modeled

• Two primary simplifications:

• 2-dimensional axisymetric 
meshes

• isotropic elastic-plastic materials 
with Mises yield criteria

 Hardness of the layer material  
is determined by an additional 
simulation of a “bulk” sample of 
just the layer material:

Y, E 



Simulation Inputs

• Meshes are generated specific to 
each sample, including layer 
thickness and tip shape (blunting).

2D axisymetric mesh 
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• Indentation profiles include 
multiple unloading segments to 
determine contact stiffness as a 
function of tip displacement.



Ball

Normal load

Substrate

DLN coating



Motivation

50 m

200 m

• Note the contacting sliding surfaces

• Surface interactions dominate as 
machine scale is reduced

• Basic understanding of tribology is 
required for design of reliable 
micromachines


