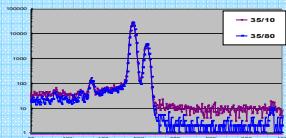
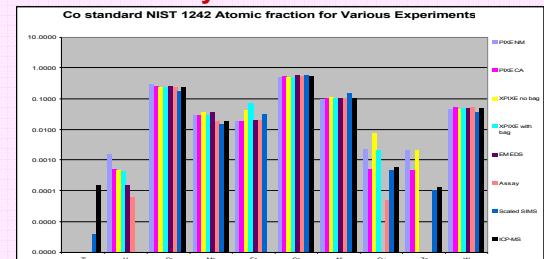



Rapid, Non-Invasive Analysis of Radioactive Field Samples (using $X_{\mu}\text{PIXE}$: eXternal Microbeam Proton-Induced X-ray Emission)

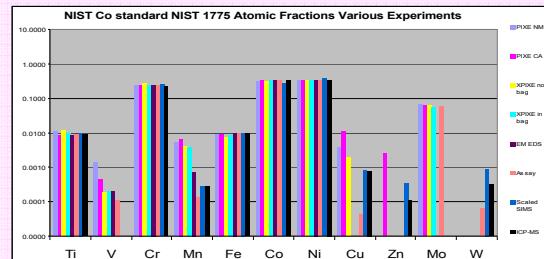
SAND2005-7443C


Paula Provencio, Barney Doyle, Arlyn Antolak, and Daniel Morse
Sandia National Laboratories, Albuquerque, NM and Livermore, CA

...but this advantage is partially lost if the sample is radioactive.

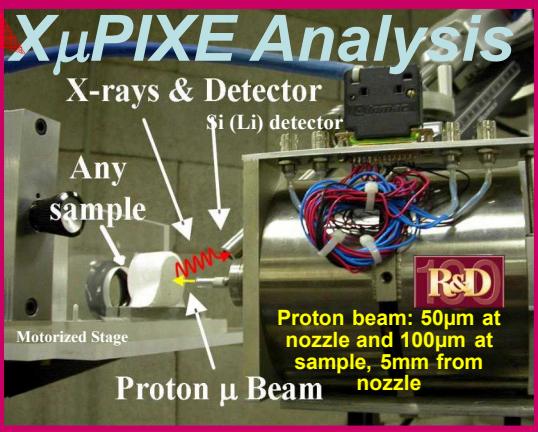

Si(Li) Detector Test using ^{55}Fe and ^{133}Ba sources

1.721 μCi ^{133}Ba gamma source placed 10mm from detector



The data show that x-ray backgrounds will increase for the analysis of radioactive particulates, and this will lead to a loss of sensitivity. Even if $X_{\mu}\text{PIXE}$ can only be used for major elements, it will still be quite valuable to locate "particles of interest" on the collection media for examination by other techniques such as Mass Spectrometry.

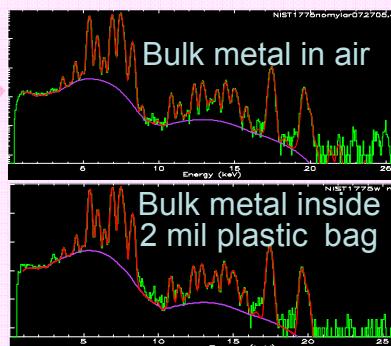
Elemental Analyses of Bulk ^{59}Co Standards



The elemental concentrations obtained from each technique (sans assay) were averaged; the standard deviation (stdev) was calculated to be 0.005. Both the average and $X_{\mu}\text{PIXE}$ elemental concentrations are within 1 stdev of the assay values. The $X_{\mu}\text{PIXE}$ errors for Cr, Co, and Ni in this sample are 0.4, 10, and 4%, respectively, and are higher for Mn, Fe, and Cu.

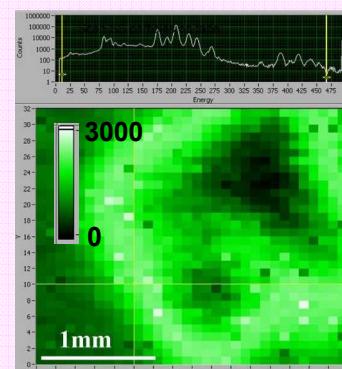
For each element, the concentrations obtained from each technique (sans assay) were averaged; the standard deviation (stdev) was calculated to be 0.005. Both the average and $X_{\mu}\text{PIXE}$ elemental concentrations are within 1 stdev of the assay values. The $X_{\mu}\text{PIXE}$ errors for Cr, Co, Ni, and Mo in this sample are 10, 5, 4, and 3% respectively, and are higher for Mn and Cu.

$X_{\mu}\text{PIXE}$ results match the assay fairly well for the major elements, but poorly for the minor elements.



SUMMARY

$X_{\mu}\text{PIXE}$ uses a focused 3-MeV proton beam and x-y position sensitive spatial acquisition to rapidly detect and non-invasively characterize the composition of bulk samples or micron-scale particles on field samples. A ~100 micron, *ex vacuo* particle beam is quickly scanned over a collection sample, regions-of-interest are identified, and quantitative analysis performed. $X_{\mu}\text{PIXE}$ is well-suited for rapid, *in situ* analysis of samples for forensics investigations. This method could be used to characterize samples containing highly radioactive particulates, such as those collected by first-responders in interdicted RDDs or INDs.


$X_{\mu}\text{PIXE}$ Analyses of ^{59}Co Standard

$X_{\mu}\text{PIXE}$ spectra were collected on a bulk Co standard and on the same Co standard inside a 2 mil plastic bag. The green is the raw data and red is the fit by GeoPIXE*

$X_{\mu}\text{PIXE}$ Scan of Steel Particles

Very fine particles of stainless steel were dispersed on a piece of sticky tape. An area of about 3mm^2 was mechanically scanned and a region of interest (ROI) chosen.

*Fits to spectra and background were obtained with GeoPIXE, a code by C.G. Ryan and D.R. Cousens, CSIRO Exploration and Mining, Australia.

The 1-5 μm particles are much smaller than the 100 μm beam (approximate pixel size), yet this fast scan was effective in choosing an ROI to analyze a cluster of particles.