

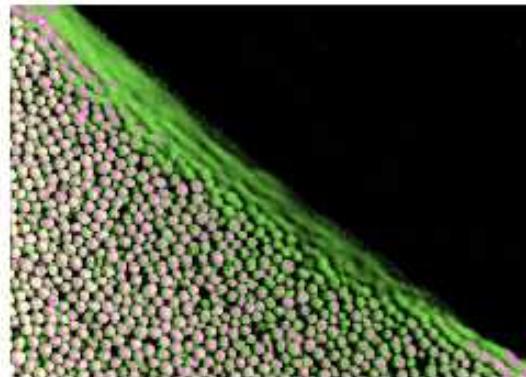
Discrete Element Simulation of Granular Flow in a Modified Couette Cell

Jeremy B. Lechman and Gary S. Grest
Sandia National Labs

Dense Granular Flow

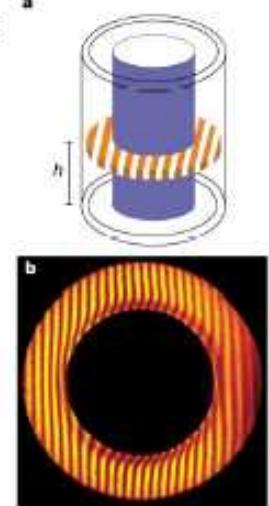
- Shear bands: narrow and distinct bands of high rates of shear deformation (localization of energy dissipation)
 - Phenomenon plays an important role in many applications
 - ballistic impact
 - explosive fragmentation
 - high speed machining
 - metal forming
 - interfacial friction
 - powder compaction
 - soil failure
 - seismic events
 - **granular flow**
- typically $W \sim 3-5d$
- Non-universality
- What gives rise to them?

Free surface granular flow:



H. M. Jaeger et al, Rev. Mod. Phys. 68, 1259 (1996).

Couette Cell:

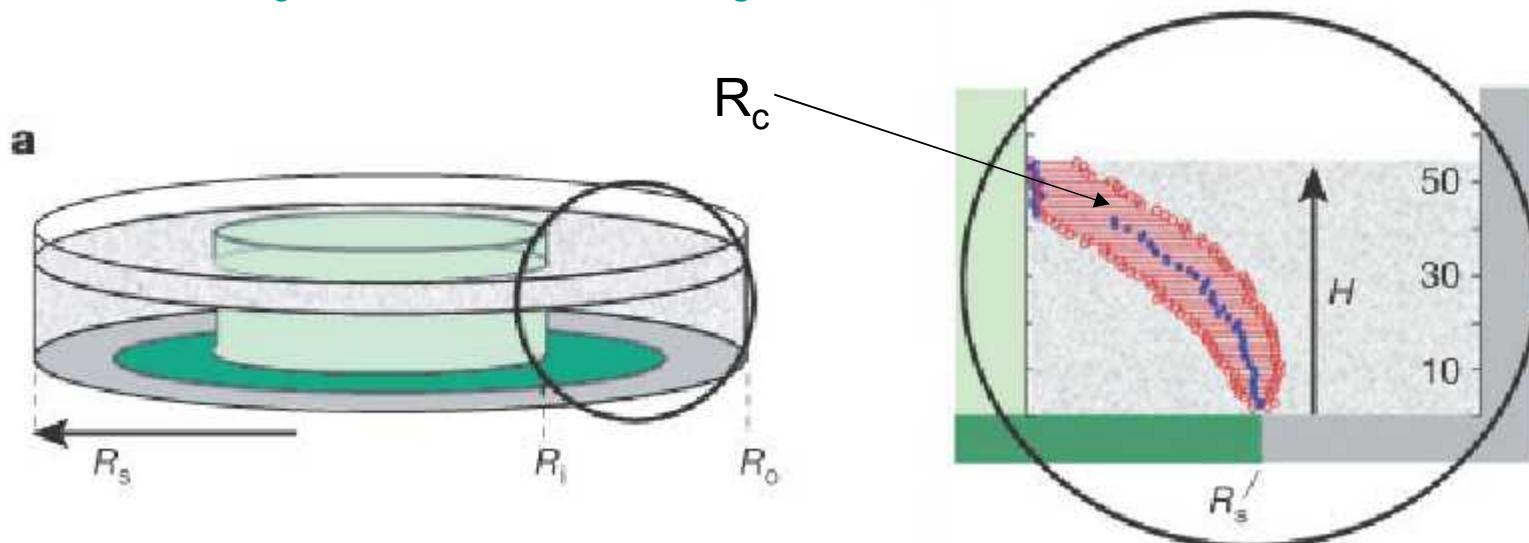


D. M. Mueth, et al, Nature 406, 385 (2000).

exponential velocity profiles

Shape of Universal and Wide Shear Zones

- Parameters involved in rescaling $R_c=f(R_s, H)$ and $W=f(H, \text{particle})$ appear to have separate length scales.
- Theoretical description/predictions for shape of shear zone, $R_c(r, h)$. $[H > 0.5R_s]$



Fenistein et al. (Nature 425, 256; PRL 92, 094301)

Discrete Element Simulations

- Allows observation of bulk behavior away from influence of side walls without the use special techniques (e.g., MRI)
- Allows detailed measurements of microscopic quantities (e.g., inter-particle forces)
- Observe bulk behavior, go beyond “shallow” regime, test theory

Integrate Newton's equations-translational and rotational d.o.f.

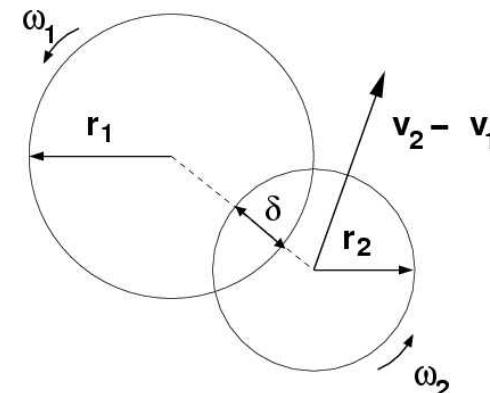
$$\mathbf{F}_n = f(\delta/d)(k_n \delta n_{ij} - \frac{m}{2} \gamma_n v_n)$$

$$\mathbf{F}_t = f(\delta/d)(-k_t \Delta s_t - \frac{m}{2} \gamma_t v_t)$$

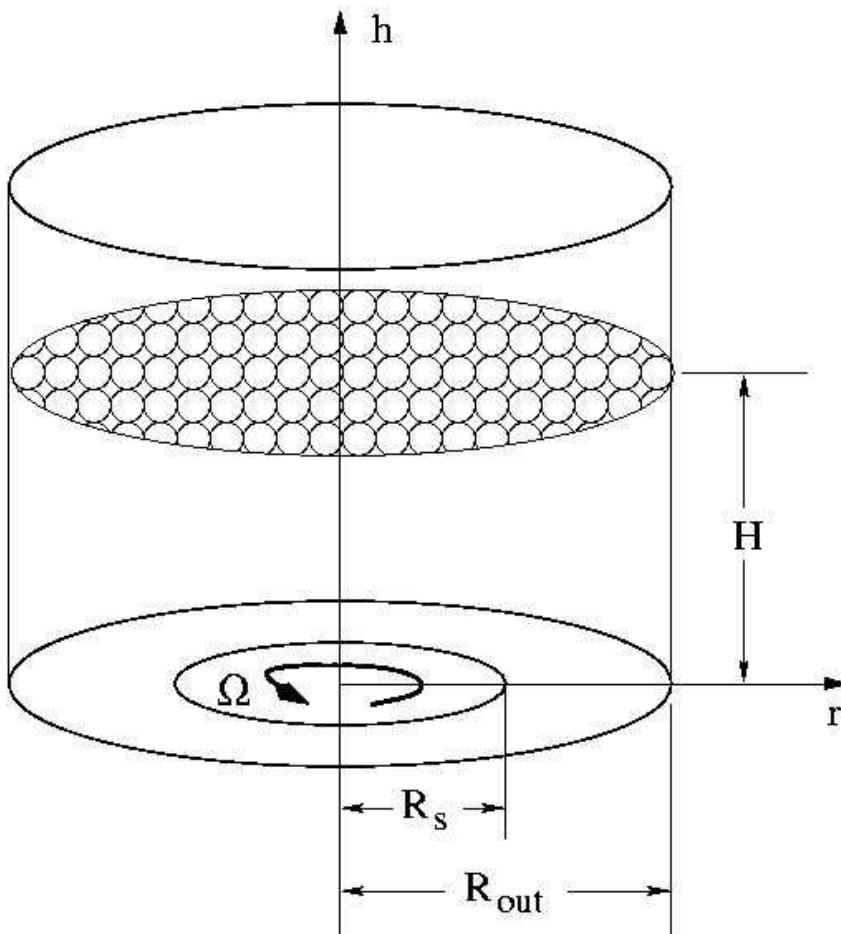
$$f(x) = \sqrt{x} \quad \text{Hertzian springs}$$

Δs_t Elastic tangential displacement

$F_t \leq \mu F_n$ Coulomb Failure Criterion



System Parameters



$$R_s = 30.0d$$

$$R_{out} = 37.8d$$

$$\Omega = 0.014 \text{ rad}/\tau \quad \text{where} \quad \tau = \sqrt{d/g}$$

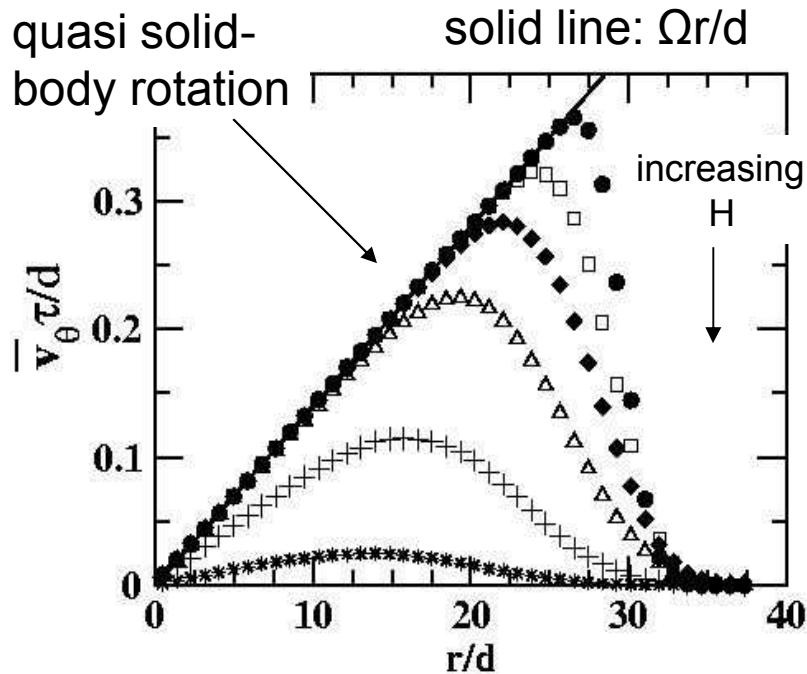
$$5.4d \leq H \leq 34.2d$$

20,000–180,000 particles

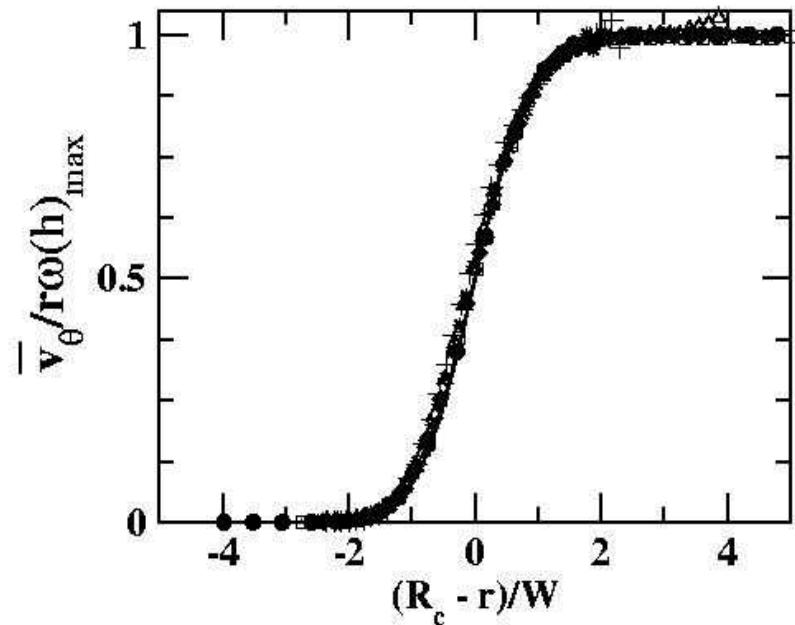
rough bottom composed of layer of glued particles

- Values picked to exactly match experimental system at The University of Chicago

Simulation Surface Velocity Profiles

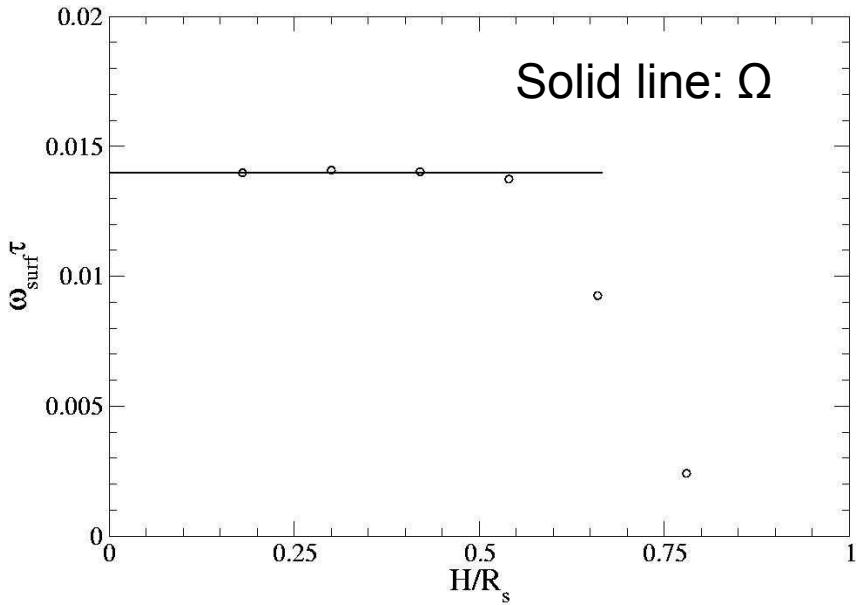


Azimuthal velocity profiles
for varying pack heights



Rescaled velocity profiles

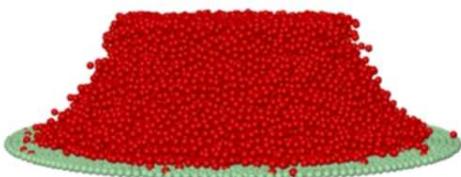
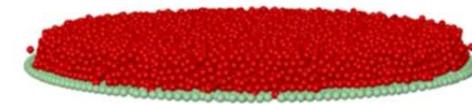
Shallow vs. Deep Packs



- As observed from the surface: qualitative change at $H/R_s > 0.5$ in agreement with previous work

What happens in the bulk?

Shape of Inner Core and Shear Zone for Shallow Packs

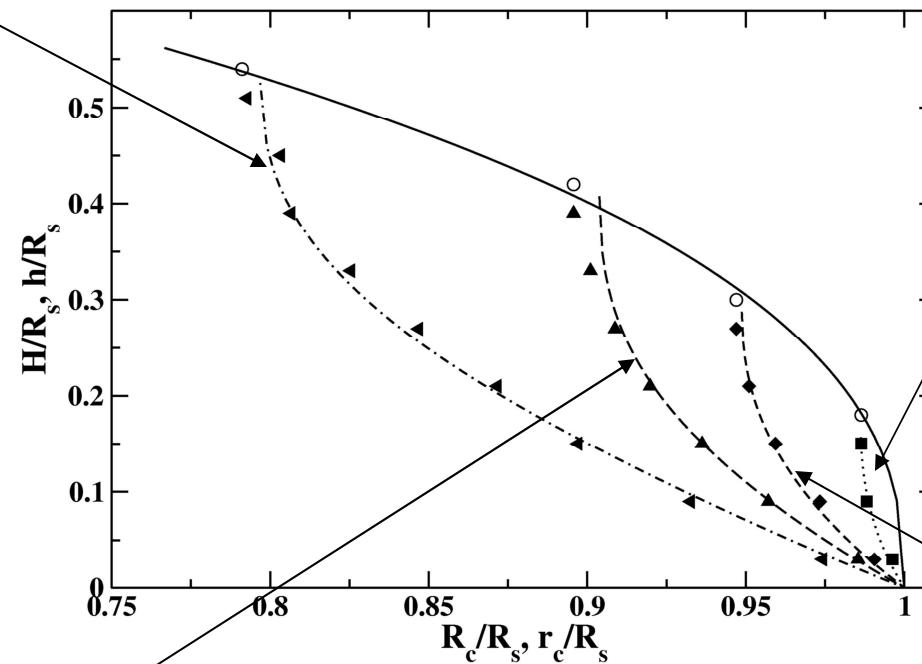
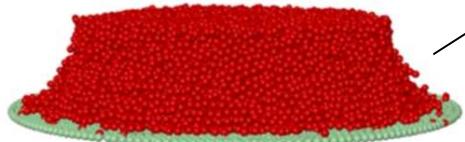


$H/R_s = 0.54$

surface data
(solid line):

$$1 - \frac{R_c}{R_s} = \left(\frac{H}{R_s} \right)^\alpha$$

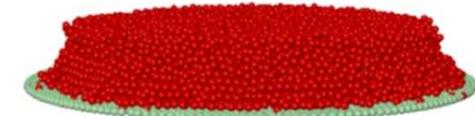
Fenistein et al.
PRL 92, 094301



bulk data (broken lines):

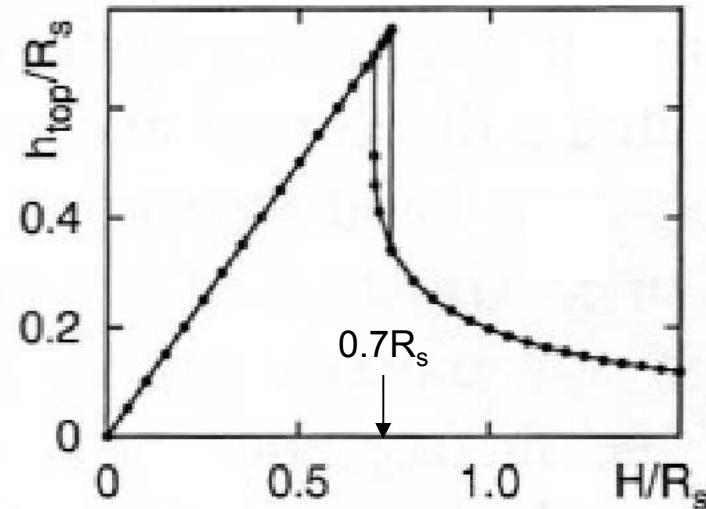
$$\frac{h}{R_s} = \frac{H}{R_s} - \frac{r}{R_s} \left[1 - \frac{R_s}{r} \left(1 - \left(\frac{H}{R_s} \right)^\alpha \right) \right]^{1/\alpha}$$

Unger et al. PRL 92, 214301

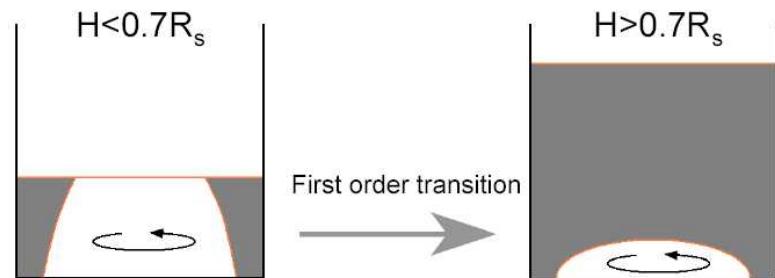


Proposed Theory

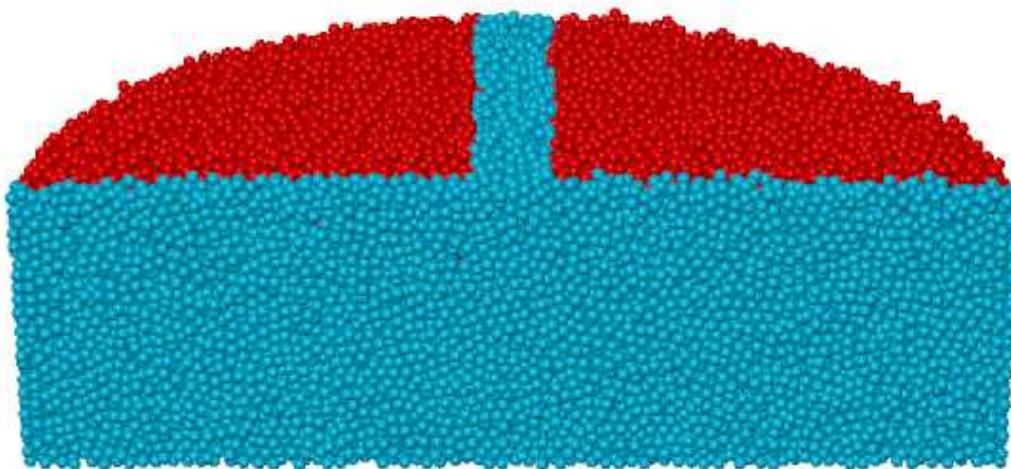
- Least dissipation (minimum torque)
 - Assumes:
 - infinitely thin shear surface between two bulk solid regions
 - hydrostatic pressure
 - coulomb friction between solid regions
- Describes shape of shear zone for shallow packs based on bulk stress state
- Predicts for tall packs:
 - transition in shape of shear zone (open \rightarrow closed)
 - first order accompanied by hysteresis
 - beyond transition, height of the shear zone, h_{top} , is proportional to R_s/H .



Unger et al. PRL 92, 214301



Bulk Shear Zones in Deep Packs



$$H/R_s = 0.78$$

Shallow vs. Deep Packs (normalized angular velocities)

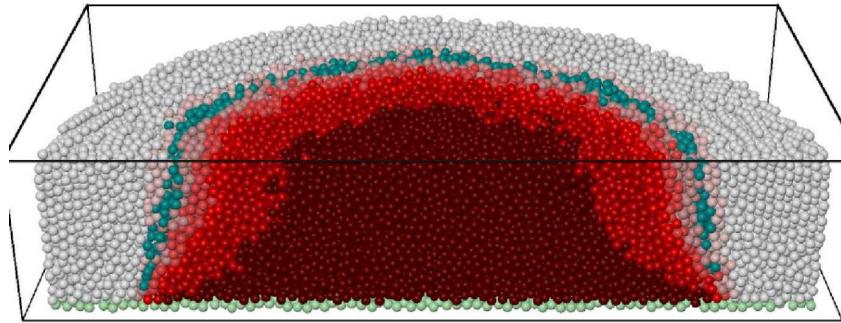
“open” shape

$\frac{\omega}{\Omega} \geq 0.95$ dark red

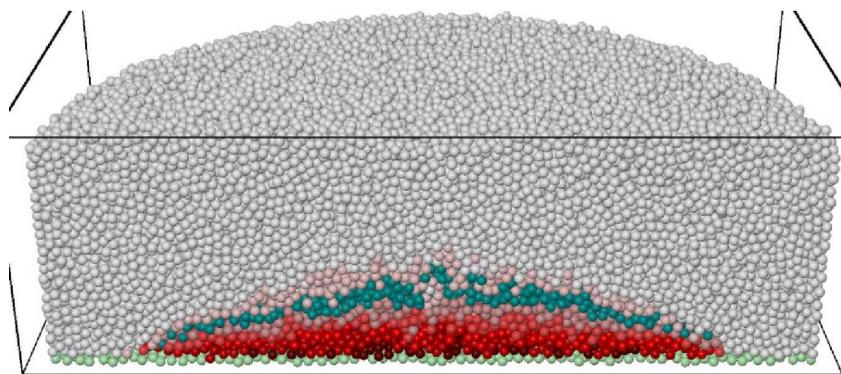
$0.45 \leq \frac{\omega}{\Omega} < 0.55$ teal

$\frac{\omega}{\Omega} < 0.35$ white

“closed” shape

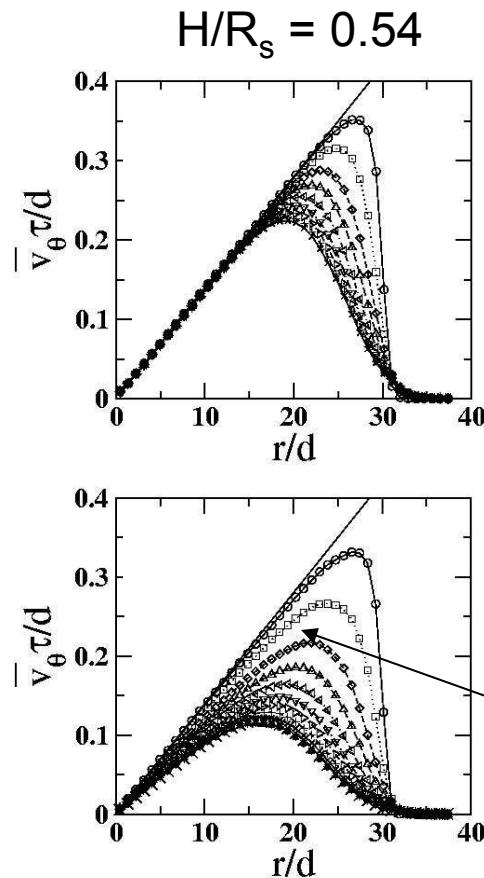


$H/R_s = 0.54$

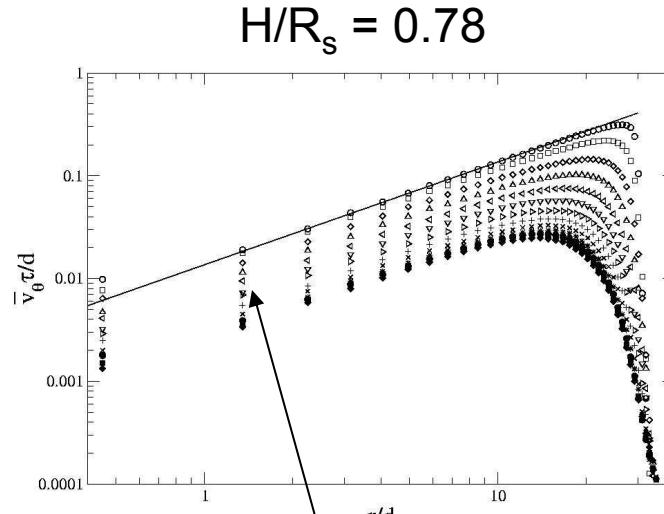


$H/R_s = 0.78$

Bulk Azimuthal Velocity Profiles



solid lines: $v_\theta = \Omega r/d$



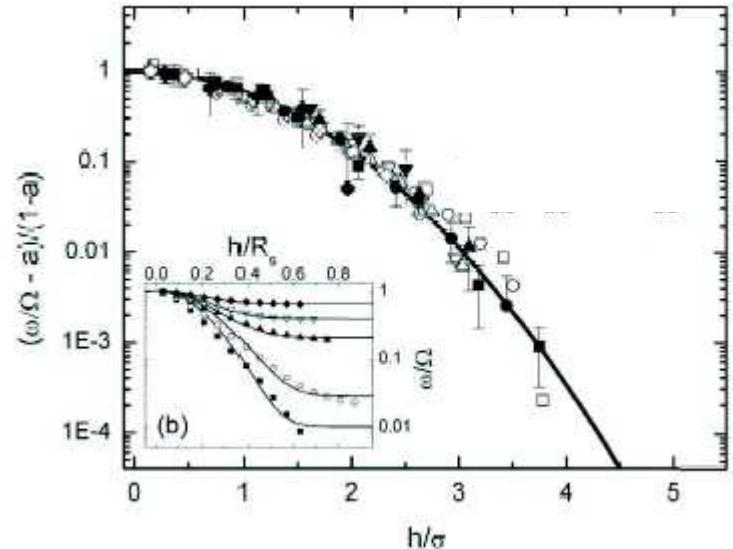
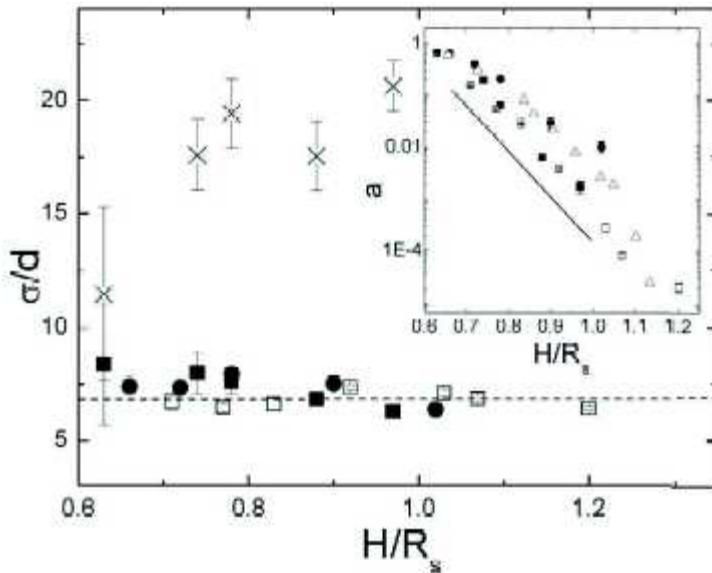
slip between layers related to torsion failure of inner core

$H/R_s = 0.66$

Also, loss of universal collapse of data with in the bulk for deep packs.

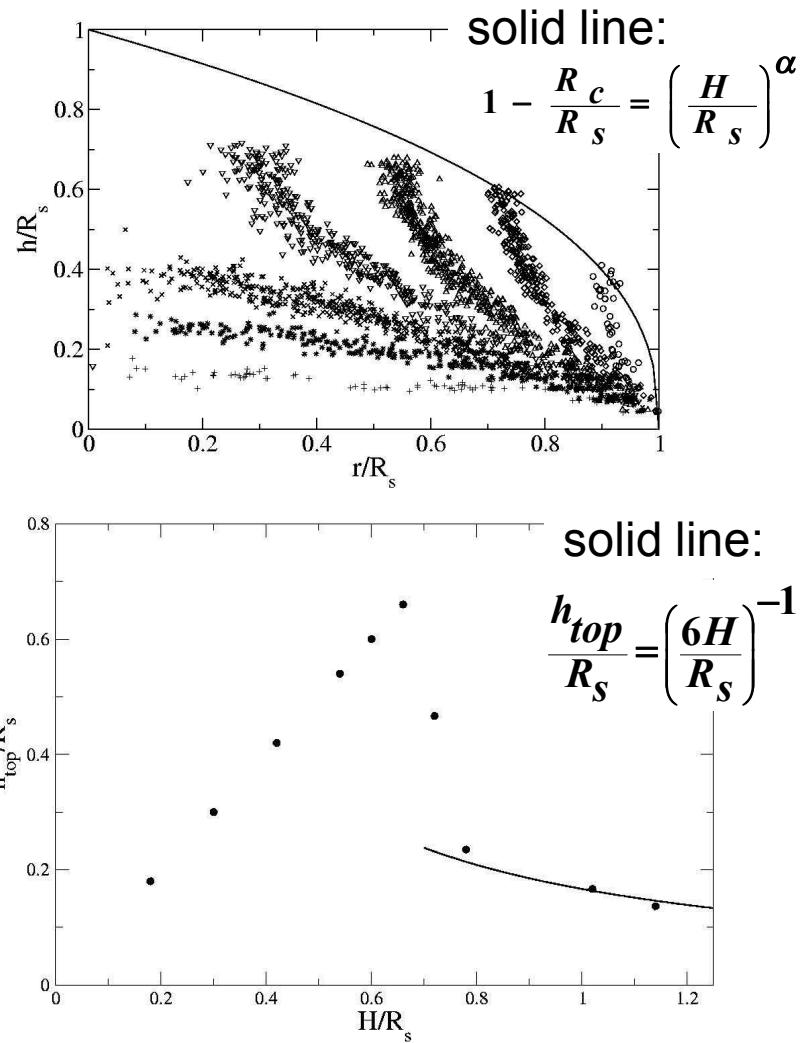
Onset of Axial Shear: slipping layers

- ω/Ω along h-axis of cell
 - fit $a + (1-a) \exp(-x^b/(2\sigma)^b)$
 - gaussian ($b = 2$) fits well
 - simulation best fit: $b \approx 1.4$
- Offset, a
 - exponential in H
 - goes to 1 as $H \rightarrow H^*$
 - extrapolating, $H^* \approx 0.6$
- Width, σ
 - $\sim 7d$, for $H > H^*$



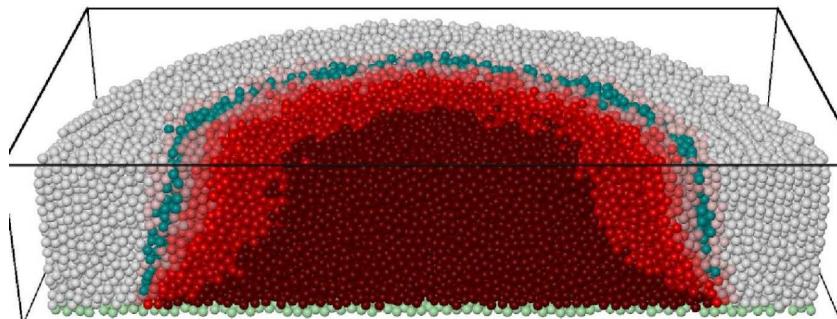
“Unger Transition”?

- Basic assumptions violated
 - Shear zone has finite width
 - Smooth transition between moving and stationary regions
 - Slip between layers
- Direct test: How to define top of shear zone?
 - Choose $\frac{\omega}{\Omega} = 0.5$?



Normalized Angular Velocity

“open” shape



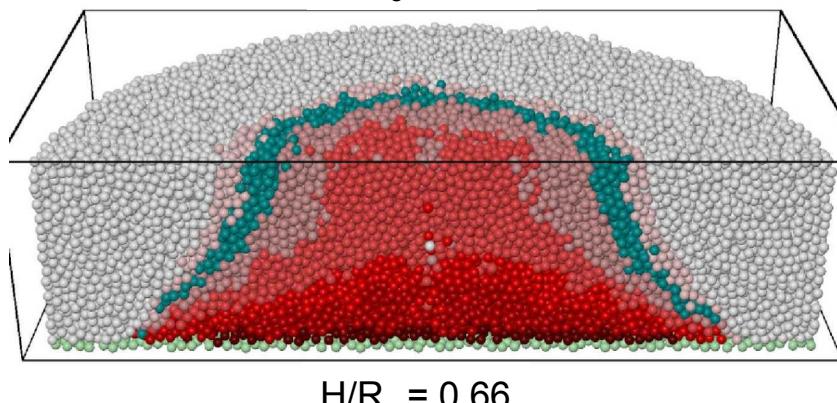
$$H/R_s \leq 0.5$$

$$\frac{\omega}{\Omega} \geq 0.95 \quad \text{dark red}$$

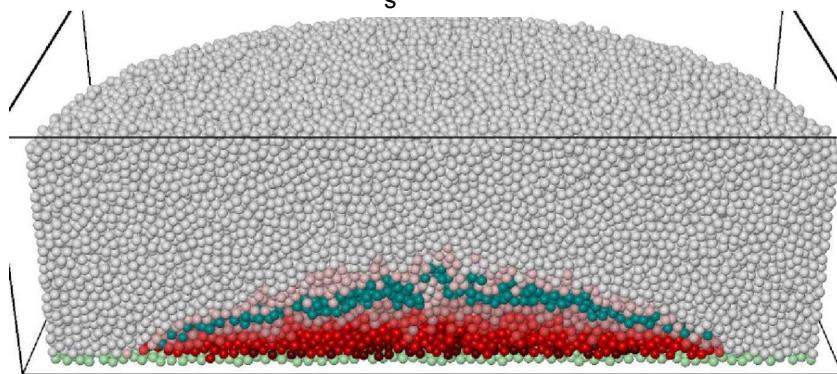
$$0.45 \leq \frac{\omega}{\Omega} < 0.55 \quad \text{teal}$$

$$\frac{\omega}{\Omega} < 0.35 \quad \text{white}$$

“closed” shape



$$\sim 0.6 < H/R_s < \sim 0.7$$



$$H/R_s > 0.7$$

Conclusions

- Theory captures shape transition due to bulk stress state, but misses other features of the flow.
 - A “shape transition” is present
 - For deep packs, shear is increasingly localized at the bottom ($h_{\text{top}} \propto R_s/H$)
- Slip between layers has an increasingly significant effect on the flow for packs of $H > \sim 0.6R_s$
 - related to torsional failure mode of the inner core
 - continuous transition in the shape of the shear zone due to slip
 - axial and radial shear have different character
 - significance of boundary conditions for shear localization
- Can theory be extended to account for these?
 - Finite width of radial shear zone, axial shear band, continuous transition



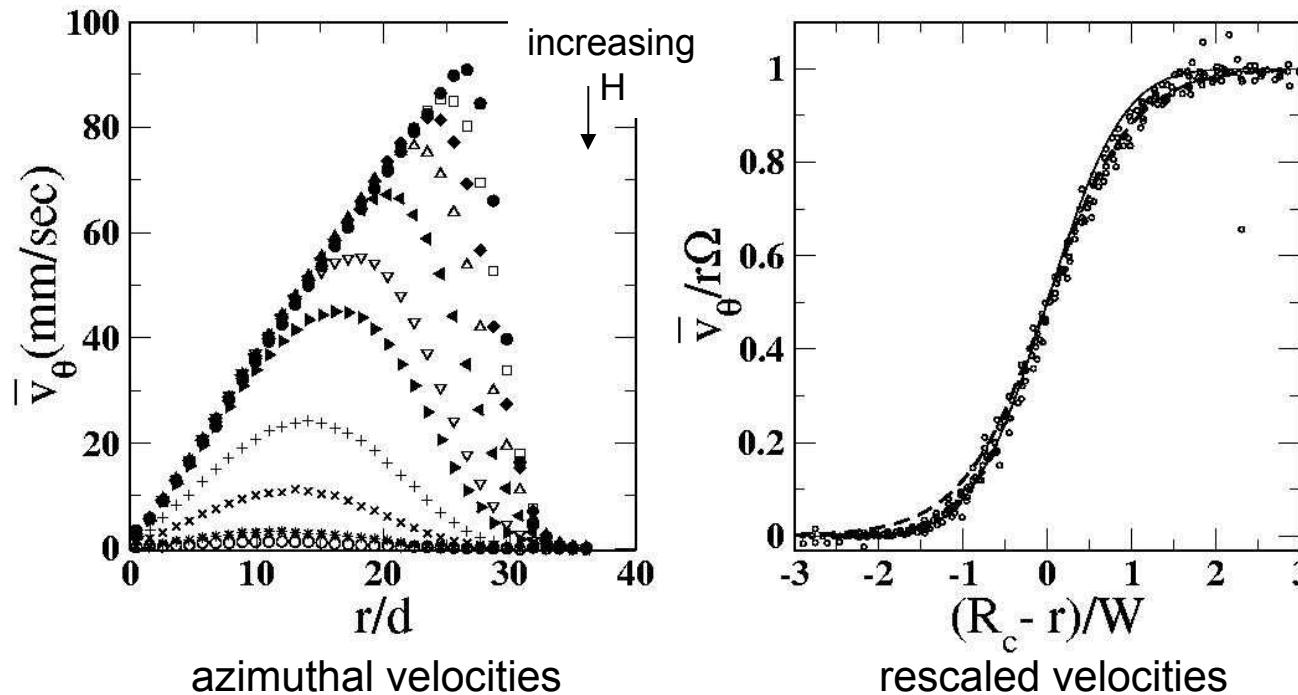
Acknowledgements

- D. Fenistein
- Collaborators at The University of Chicago: X. Cheng, A. F. Barbero, M. Möbius, H. M. Jaeger, S. R. Nagel
- This collaboration was performed under the auspices of the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials.
- Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- What is the interest in granular materials?
 - Where are they found?
 - What are the issues related to the understanding of their behavior?
 - In particular, how do we begin to understand dense granular flows?
- Onset of 3-dimensional flow in a split-bottom Couette cell.

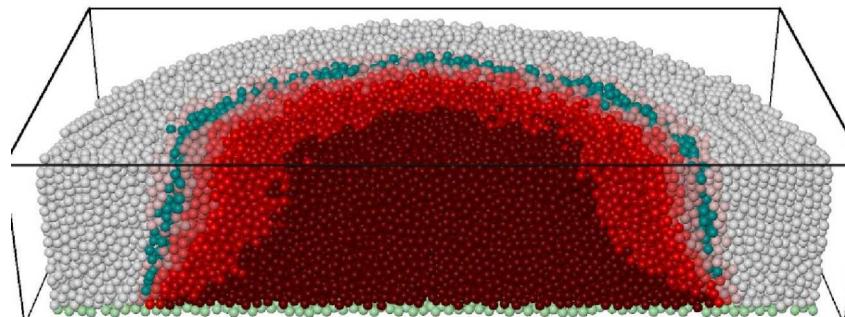
Experimental Surface Velocity Profiles



- Linear azimuthal velocity profile near center for shallow packs (regime of previous work)
- Slight asymmetry in the rescaled velocities

Normalized Angular Velocity

“open” shape



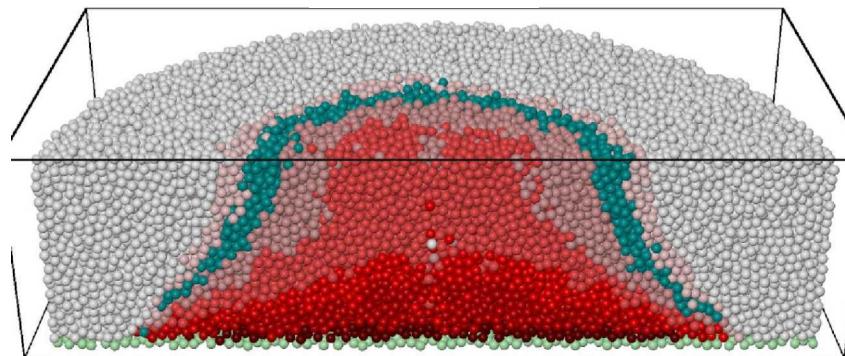
$H/R_s = 0.54$

$\frac{\omega}{\Omega} \geq 0.95$ dark red

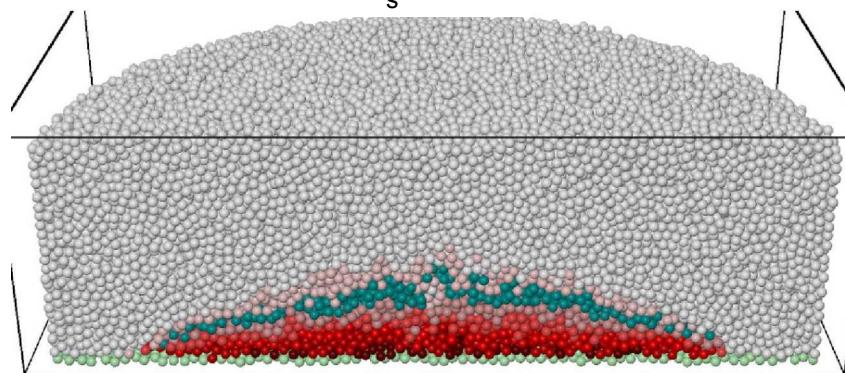
$0.45 \leq \frac{\omega}{\Omega} < 0.55$ teal

$\frac{\omega}{\Omega} < 0.35$ white

“closed” shape



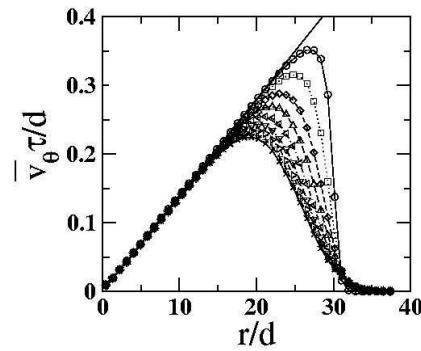
$H/R_s = 0.66$



$H/R_s = 0.78$

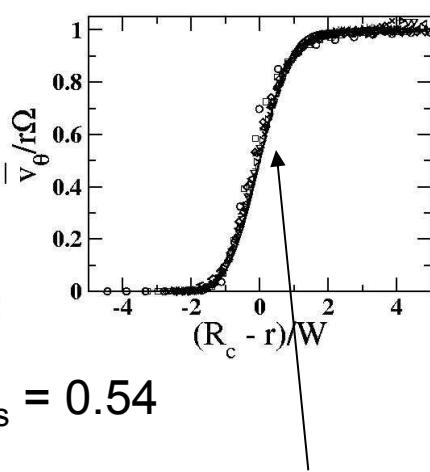
Bulk Velocity Profiles

azimuthal velocities

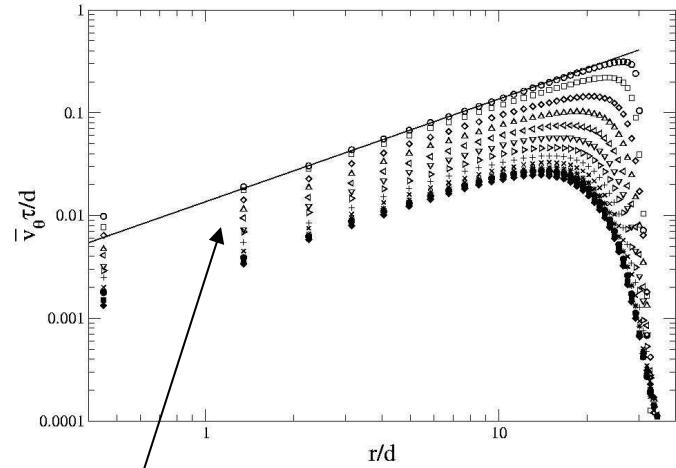


$$H/R_s = 0.54$$

rescaled velocities



azimuthal velocities

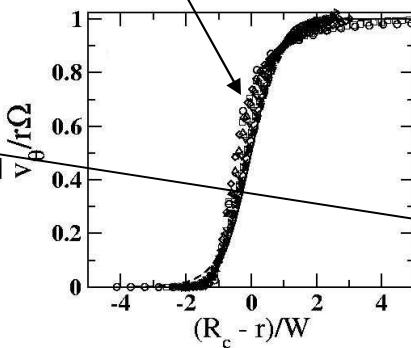


$$H/R_s = 0.78$$



$$H/R_s = 0.66$$

deviation from erf



slip between layers

Note: solid lines in azimuthal plots are $v_\theta = \Omega r / d$

Torsion Failure

$$T = \int_A r \tau dA = 2\pi \frac{\tau_{\max}}{R_s} \int_0^{R_s} r^3 dr$$

$$T_b = \frac{\pi}{2} \tau_{\max} R_s^3$$

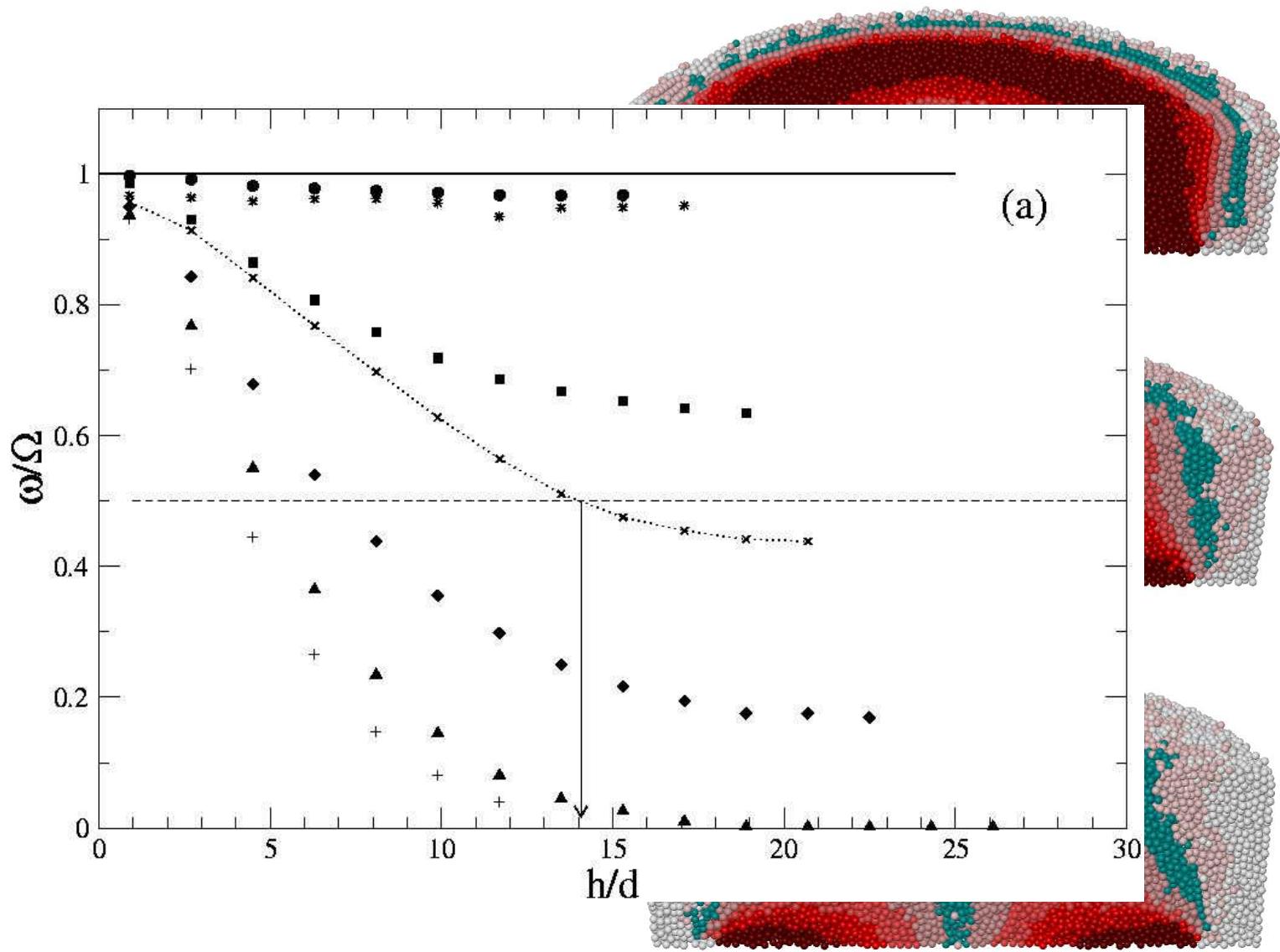
where $\frac{\tau_{\max}}{R_s} = \frac{\tau}{r}$ from proportionality of triangles

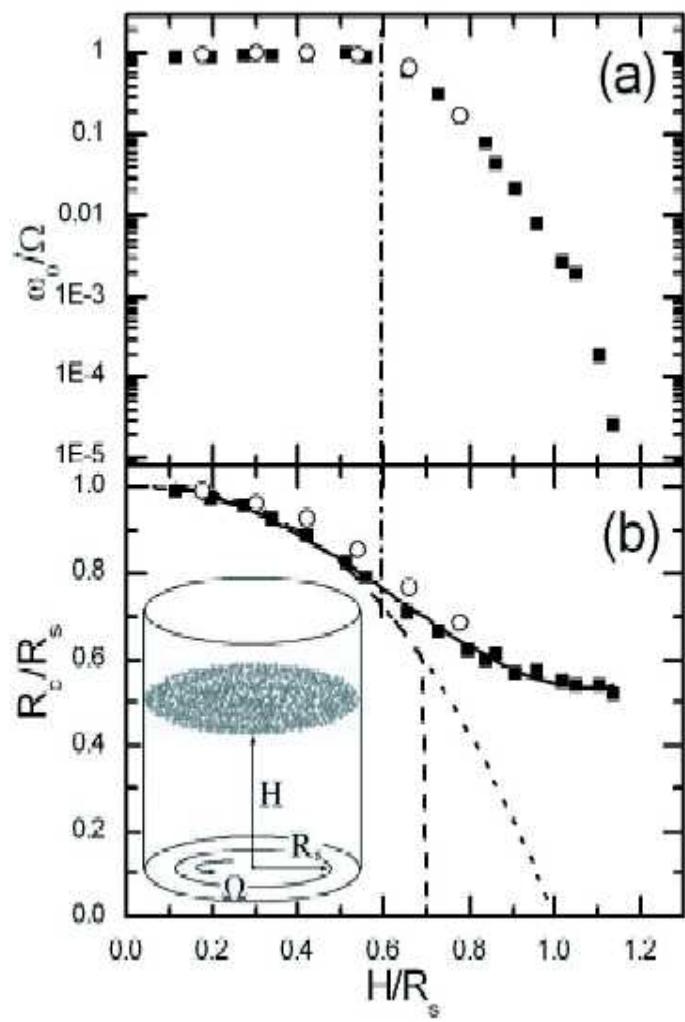
$\tau_{\max} \leq \mu \rho g H$ from Mohr - Coulomb

$$T_z = 2\pi \mu \rho g \int_0^H r^2 \sqrt{1 + (dr/dh)^2} (H - h) dh$$

$T_z \leq T_b$ for no slip at the base

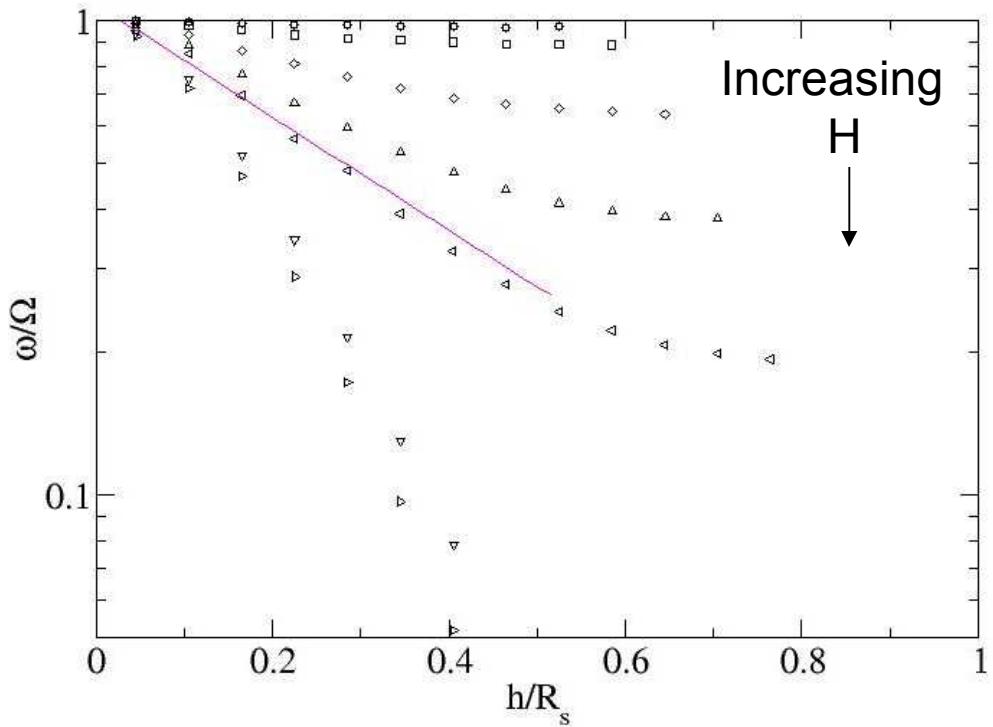
$$\frac{4\Theta}{HR_s^3} \leq 1$$





Slip Between Layers

- For $H/R_s > 0.5$ slip between layers increases with H
- MRI give good data for deep packs and longer times.
- Can we rule out slip for shallower packs?



Slip Transition?

- From $w(h) \sim \exp(-H/\xi)$

- ξ gives characteristic length scale

- ξ diverges with decreasing H

