SAND2005- 7369C

e

Discrete Element
Simulation of Granular Flow
in a Modified Couette Cell
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Dense Granular Flow

« Shear bands: narrow and distinct bands of high rates of
shear deformation (localization of energy dissipation)

— Phenomenon plays an important role in many applications
* ballistic impact
 explosive fragmentation T e—

Free surface granular flow:

* high speed machining
« metal forming
« interfacial friction
* powder compaction
* soil failure
« seismic events
« granular flow
DM, Musth, ot al, Natur 405, 385

 typically W ~ 3-5d -
« Non-universality exponential velocity profiles

« What gives rise to them?



Shape of Universal and Wide
Shear Zones

« Parameters involved in rescaling R_=f(R_,H) and
W=f(H,particle) appear to have separate length

scales.

« Theoretical description/predictions for shape of shear
zone, R (r,h). [H> 0.5R]

Fenistein et al. (Nature 425, 256; PRL 92, 094301)



Discrete Element Simulations

* Allows observation of

bulk behavior away from
influence of side walls
without the use special
techniques (e.g., MRI)

Allows detailed
measurements of
microscopic quantities
(e.qg., inter-particle forces)

Observe bulk behavior,
go beyond “shallow”
regime, test theory

Integrate Newton’s equations-translational
and rotational d.o.f.

Fyy=f(8/d)ky .~

jynvn)
— m
Ft—f(5/d)(—ktASt—7ytVt)

f(x)= Jx Hertzian springs

As, Elastic tangential displacement

F, < uF, Coulomb Failure Criterion
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System Parameters

Ry =30.0d

R, = 37.8d

Q2=0.014rad/r where 7=.,d/g

5.4d < H <34.2d
20,000—-180,000 particles

rough bottom composed of layer of
glued particles

-—— R

—_——

out

* Values picked to exactly match experimental system at
The University of Chicago



Simulation Surface Velocity Profiles

quasi solid- solid line: Qr/d
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Azimuthal velocity profiles
for varying pack heights Rescaled velocity profiles



Shallow vs. Deep Packs
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Solidline:Q o Ag observed from the

| surface: qualitative

o - change at H/R; > 0.5
| ~in agreement with

previous work
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What happens in the bulk?



Shape of Inner Core and Shear
Zone for Shallow Packs

surface data

(solid line):
1- R { H
R S R S

Fenistein et al.
PRL 92, 094301

1 -

[T
®s Unger et al. PRL 92, 214301



Proposed Theory

« Least dissipation (minimum
torque)
— Assumes:

* infinitely thin shear surface
between two bulk solid
regions

* hydrostatic pressure

« coulomb friction between

solid regions
* Describes shape of shear 0 0.5 1.0  HR,
zone for shallow packs
based on bulk stress state Unger et al. PRL 92, 214301

* Predicts for tall packs:

« transition in shape of shear
zone (open — closed)

« first order accompanied by
hysteresis

* beyond transition, height of
the shear zone, h,;, is
proportional to RS/OH.

H>0.7R,

First order transition




Bulk Shear Zones in Deep Packs

H/R, = 0.78



Shallow vs. Deep Packs
normalized angular velocities

“‘open” shape
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Bulk Azimuthal Velocity Profiles

H/R; = 0.54 solid lines: vy = Qr/d

H/R, = 0.78
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\ slip between layers related to

40 torsion failure of inner core

H/R, = 0.66 Also, loss of universal collapse of
data with in the bulk for deep packs.



« w/Q along h-axis of cell
— fit a+(1-a)*exp(-x°/(20)P)

— gaussian (b = 2) fits well

« simulation best fit: b= 1.4

o Offset, a

— exponential in H
— goes to 1 as H—-H’
— extrapolating, H'=0.6

 Width, o
— ~7d, for H>H’
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« Basic assumptions
violated

— Shear zone has finite

“Unger Transition™?

— . solid line:

width
— Smooth transition

between moving and

stationary regions

— Slip between layers

Direct test: How to
define top of shear
zone?

— Choose O _ 0.57?
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Normalized Angular Velocity

“‘open” shape
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Conclusions

Theory captures shape transition due to bulk stress
state, but misses other features of the flow.
— Ashape transition” is present

— For deep packs, shear is increasingly localized at the bottom
(hyop 0 Rg/H)

Slip between layers has an increasingly significant effect
on the flow for packs of H > ~0.6R,

— related to torsional failure mode of the inner core

— continuous transition in the shape of the shear zone due to slip

— axial and radial shear have different character
« significance of boundary conditions for shear localization

Can theory be extended to account for these?

— Finite width of radial shear zone, axial shear band, continuous
transition
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* Outline

* What is the interest in granular materials?
— Where are they found?

— What are the issues related to the
understanding of their behavior?

* In particular, how do we begin to understand
dense granular flows?

* Onset of 3-dimensional flow in a split-
bottom Couette cell.
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Experimental Surface Velocity
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azimuthal velocities rescaled velocities

* Linear azimuthal velocity profile near center for
shallow packs (regime of previous work)

« Slight asymmetry in the rescaled velocities



Normalized Angular Velocity
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Bulk Velocity Profiles

azimuthal velocities rescaled velocities
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Torsion Fallure
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Slip Between Layers

* For H/R, > 0.5 slip
between layers
increases with H

 MRI give good data
for deep packs and
longer times.

« Can we rule out slip
for shallower packs?
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Slip Transition”?

 From w(h) ~ exp(-H/c)

« ¢ gives characteristic */

length scale

« ¢ diverges with
decreasing H
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