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With polysilicon MEMS we can reliably accomplish 
electromechanical and optical functions

Integrated inertial sensor

High performance comb drive 
with mechanical amplifier

Polychromator : 

programmable 
diffraction grating

-thousands of devices simultaneously
-no assembly required  
-hundreds of device concepts explored



slide 4

Allowing contact between MEMS surfaces significantly 
broadens the design space

but …
static friction can dominate the forces required
dynamic friction can dominate energy loss
adhesion, friction and wear become the most important 

failure mechanisms of contacting MEMS

Gears 

hinges

guides

linear racks

Pin-in-maze

Complex Mechanical Logic Pop-up Mirrors
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MEMS – surface micromachining implementation

A series of structural and 
sacrificial layers are 
deposited

Ground plane layer (Poly 0)
4 structural levels 

(Poly 1 - Poly 4)

Chemical Mechanical 
Planarization (CMP)

1 m design rule

Create freestanding thin film 
structures by “release” 

process

A A’

A A’

Design

FIB
cross-
section

Cross-
section
drawing

Poly 3

Poly 0

Poly 2
Poly 1

Poly 4

Sniegowski & de Boer, 
Annu. Rev. Mater. Sci. 

(2000) 5 m
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k

~40 nm

A

Friction clamps

Actuation 
Electrode

mN12~
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pL

A
F

Plate Length, Lp

“standoff” to 
prevent shorting

large tangential 
force range

• 40 nanometer step size
• moves ± 100 m
• high force actuator
• requires traction (friction) to move

Friction can be good:       We developed a 
high-performance friction-based actuator
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Nanotractor - SEM

M. P.  de Boer, D. L. Luck, W. R. Ashurst et al.
“High Performance Surface-Micromachined Inchworm Actuator”

J. MicroElectroMechanical Systems, Feb. 2004
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Nanotractor – clamp cross section

actuation plate
frictional

stop

25 m wf=2 m50 m

1.5 m

0.5 m

plate 
electrode

clamp 
electrode

P1
P2

P3

P4

friction 
clamp

frictional counter stop

P0

6.6 m

wc wp

Y Y'

Normal force is applied electrostatically and borne mechanically

We can apply normal force from 1 N to 10 mN with this arrangement. 

SEM cross-section
(before release)

large normal force range
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MEMS monolayer coupling agent

FOTAS 8-carbon 
fluorinated chain

(disordered, tangled)

FOTAS (tridecafluoro-1,1,2,2-tetrahydrodecyltris(dimethylamino)silane )
vapor deposition

8 carbon chain

van der Waals forces not strong enough to self assemble (tangled)

contact angle ~ 110°
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Static friction measurement

Walk out nanotractor against load spring

Apply large normal force (voltage)

Step down normal force (voltage)  and record 
position

Contacting Asperities
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Convert clamp 
voltage to 
clamp force 
and position to 
tangential force 

NsTan FF 

Identify 
equilibrium 
points right 
before jumps 
where



time time

slip

slip
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Use periodic grating and measure relative phase to 1 part in 2500

25 microns Reference grating

Moving grating

Highly resolved slip measurements:
we measure position to 1 nm



Jumps that occur above this critical voltage Vc (lower apparent friction) end up 
with PSTD, while those released with voltage below it (higher apparent static 
friction) end up jumping

As hold time increases, static friction increases.   
For short hold times we get small-scale sliding.
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H:/friction_tests/waits/newfotas/r5277/L495/c3/d3/r14

16:45:15 - Monday November 07, 2005
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H:/friction_tests/waits/newfotas/r5277/L495/c3/d3/r14

16:45:15 - Monday November 07, 2005

From the plot on the left, we should only consider times of 32 seconds or longer as 
having well defined jumps
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H:/friction_tests/waits/newfotas/r5277/L495/c3/d3/r14

16:57:33 - Monday November 07, 2005

s as a function of Ln(t) for Vstart = 105

At longer hold times, we obtain a typical us time-dependence
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When we hold the clamp with a larger normal force, we 
experience a correspondingly lower friction force
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us decreases with hold force
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We observe a bifurcation in the jumps versus 
sliding events
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Summary of friction data

The nanotractor can be used to study friction of surface-micromachined 
interfaces

With FOTAS coating:

us(t)=+ ln(t) 

us decreases with increasing hold voltage (counter-intuitive)

If motion begins above (below) a certain critical voltage, sliding (a jump) is 
observed.

Phase space can be mapped out – this behavior occurs independent of 
tangential load
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Adhesion (e.g., “stiction”) is a 
big problem in micromachining

Drying leads to “stiction”

Initially free beam, but still in water

s
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We can use cantilevers to 

quantify the adhesion, 
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by applying monolayer 
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Deposit Landing Pad Polysilicon on Insulating Substrate

a

Deposit Sacrificial Oxide and Structural Polysilicon

L
t

Release in HF Acid and Coat with FDTS 

h

Apply Voltage Vpad

s d

Microcantilever process and test flow
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Oxidize the Poly 0 Surface to change surface 
roughness

1 m

100 Å oxidation, 4.4 nm rms

1 m

300 Å oxidation, 5.6 nm rms

1 m

600 Å oxidation, 10.3 nm rms

1 m

No oxidation, 2.6 nm rms

Nanotexturing of 
the lower layer or 
polysilicon (P0) was 
accomplished via 
thermal oxidation in 
dry O2 at 900° C for 
increasing times.

t (min) tox (Å) rms 
(nm)

0 -- 2.6

20 100 4.4

136 300 5.6

400 600 10.3
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Interferograms show qualitative relationship 
between surface roughness and crack length

Vpad = 50 V

s

100 m

rms roughness = 4.4 nm

100 m

rms roughness = 5.6 nm

100 m

rms roughness = 10.3 nm

100 m

rms roughness = 2.6 nm

d
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Adhesion measurement with applied voltage

A least squares fit between the model 
and experiment was used to determine 
the value at each voltage.

The only free parameter in the models 
is the adhesion 

Finite element analysis (ABAQUS) 
and user subroutines were used to 
find beam profiles with surface 
adhesion, electrostatic loading and 
initial stress gradient.
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Experimental values of adhesion for each surface 
roughness

The measured values for 
adhesion loosely follow the 
approximation presented 
by Houston et al. (1996)

These results raise the 
following questions:
1. What is the best way 
to characterize the 
separation between the 
two surfaces?
2. Do we have another 
method to determine if 
these results are 
quantitatively correct?

Atomic Force Microscopy Imaging with 
Force Displacement Numerical Analysis
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AFM topography data is analyzed using a 
numerical force-displacement routine

512 x 512 
matrix with 
surface 
heights 
entered into 
force 
displacement 
routine

AFM Images Numerical Force-Displacement Routine

4. Calculate force for 
each pixel

5. Find total force (sum)
6. Move surfaces 

towards each other
7. Repeat steps 3-6 to 

create attractive load-
displacement curve

1 m

1 m

1. Import AFM  
height data

2. Separate surfaces 
by initial 
displacement

3. Calculate 
separation for 
each pixel

Anandarajah 
and Chen 1995  
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Calculate the total force-displacement curve using the 
AFM analysis and Hertzian mechanics

Attractive force-
displacement curve 
based on AFM 
analysis

Repulsive force-
displacement curve 
based on Hertzian 
mechanics
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Calculate adhesion energy by evaluating the area under the total force-
displacement curve from the equilibrium displacement to infinity.

DMT Adhesion Model
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Predicted values of adhesion with AFM data

The average surface 
separation Dave is 
calculated for each 
AFM pair according to









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pixelsall
loc

pixels

ave d
N

D
1

We placed the surfaces 
together in the following
combinations for each
roughness:

• Poly 0 and Poly 0

• Poly 0 and Poly 2

Delrio, de Boer et al., Nat. Mat. (2005)
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Histogram of adhesion contributions vs. pixel separation

Adhesion contribution 
from both contacting 
asperities and non-
contacting areas 
(combination of two 
extreme adhesion 
models).

Smoothest Surface

Adhesion contribution 
mainly from contacting 
asperity (converging 
to Fuller-Tabor/Maugis 
model for single 
asperity).
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Summary - dry adhesion in MEMS

Microcantilevers are used to measure adhesion in MEMS

Adhesion is in the J/m2 range

For low surface roughness, adhesion dominated by retarded 
van der Waals forces

For higher surface roughnesses, adhesion dominated by non-retarded
van der Waals forces
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Two extreme models for adhesion

Smooth Surface

Dave

Dave

Rough Surface

Dave

R1

R2

0.2 nm

Parallel Plate
Model
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Single Asperity 
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Anandarajah 
and Chen 1995

Israelachvili 
1992

The forces across non-contacting 
portions of the surfaces, whose area 
is far greater than the contacting 
area at the one asperity, will 
dominate the adhesion.

A significant part of the area is too 
far apart to contribute to the 
adhesion; only the van der Waals 
forces near the single point of 
contact contribute. 


