

Ensemble Classification of Disparate Data Sets

Genetha Gray

Computational Sciences & Mathematics Research

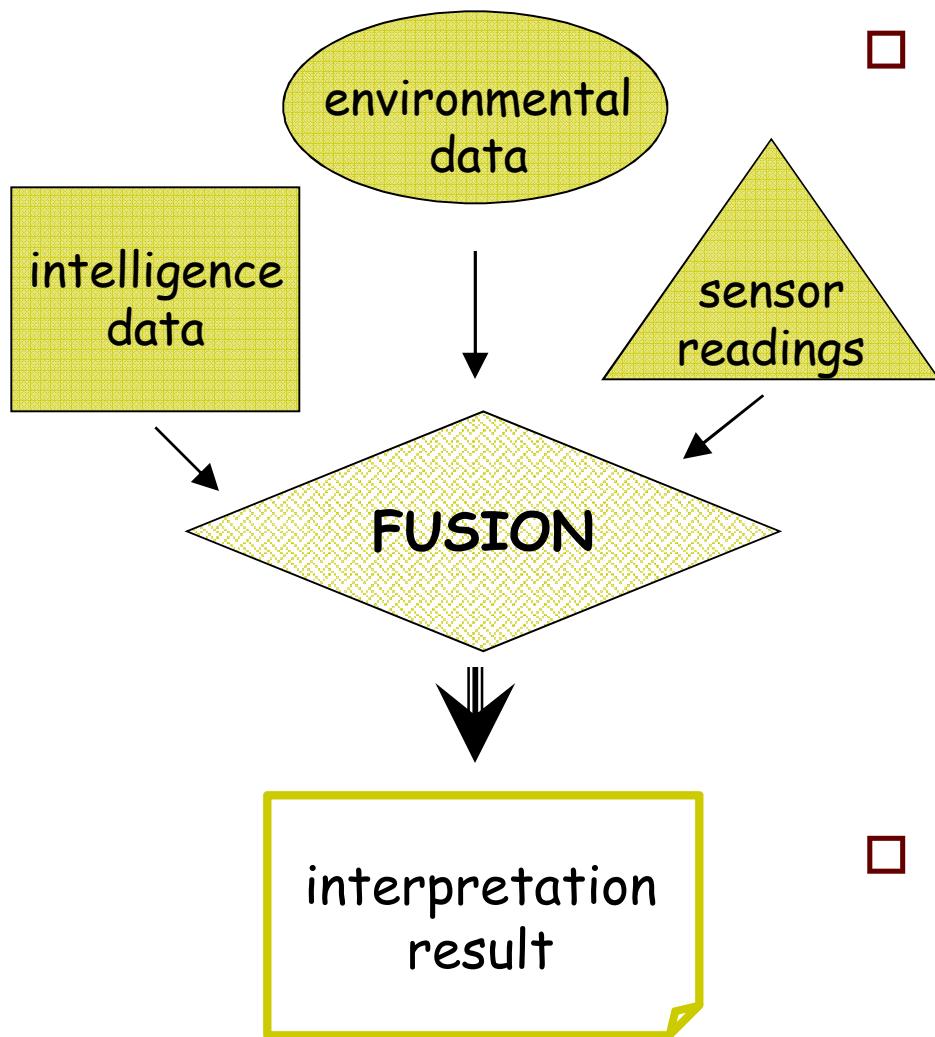
Sandia National Labs, Livermore, CA

gagray@sandia.gov

Introduction

- Various types of data can provide different views of the same situation.
 - Multiple camera angles
 - Different experimental protocols
 - Human influence on data collection
- Seemingly dissimilar data can provide complimentary information.
- Data is collected in a wide variety of formats.

Problem Overview



- Developing detection and assessment systems includes:
 1. Design and deployment of sensors
 2. Methods for simultaneous consideration of sensor data and related info
 3. Techniques for interpreting large data sets generated by sensors
- **Goal:** Develop an algorithm for real-time, interpretive data fusion

Ensemble Classification

- Technique for combining the predictions of multiple classifiers into a single classification.
- Typically more accurate than any of the individual classifiers.
- Extracts information from individual data sets and combines the results.
- Inherent parallelism.
- Typically apply different classifiers to the same data set. (Example: bagging, Breiman '96)
- Want to extend the idea to disparate data sources.

Ensemble Classification of Disparate Data

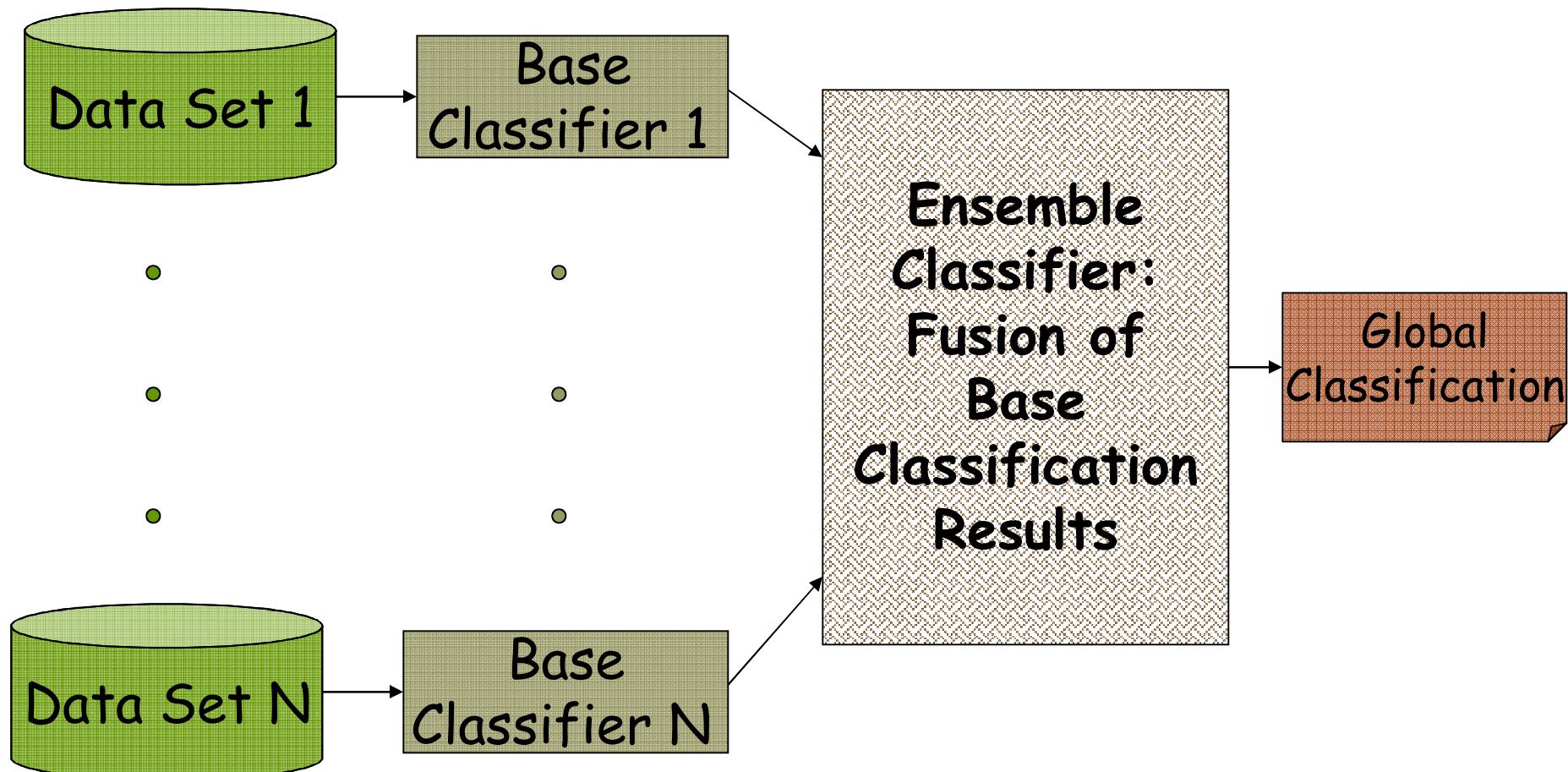
□ Advantages:

- Data can exist in separate data bases.
- Does not require translation of data formats.
- Saves time and computational resources.
- Allows for automated fusion and may not require human interaction.

□ Areas of Research:

- Need appropriate algorithms to oversee process
- Development of a provable method of solution
- Investigation into the applicability of optimization techniques

Algorithmic Framework

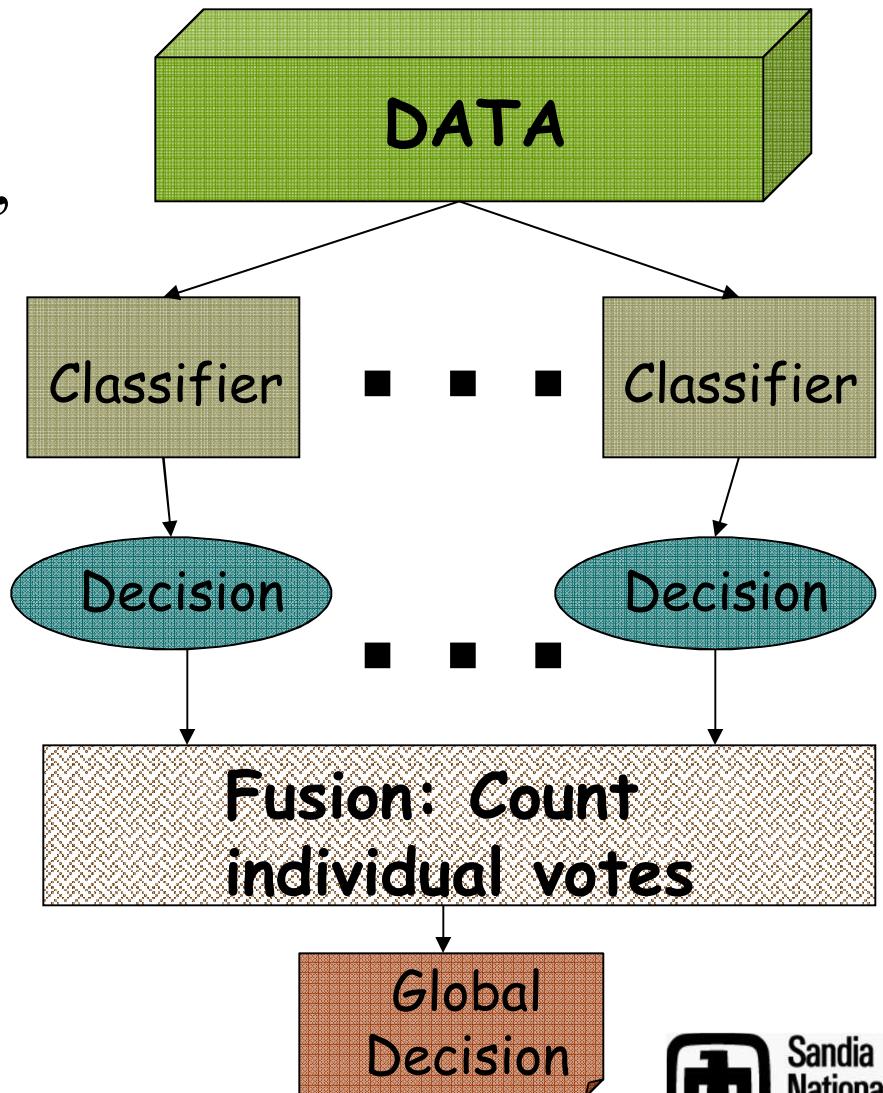


Framework Components

- Data bases need not be independent.
- Provide a variety of base classifiers; allow users to select from these or provide their own.
- Include more than one fusion algorithm.
- Fusion may occur at more than one level.

Traditional Unweighted Voting: One Data Set

- Given n data classifications, a decision is accepted if at least k of the classifications agree where:
 $k = n/2 + 1$, if n is even
 $k = (n+1)/2$, if n is odd
- Commonly used for comparison

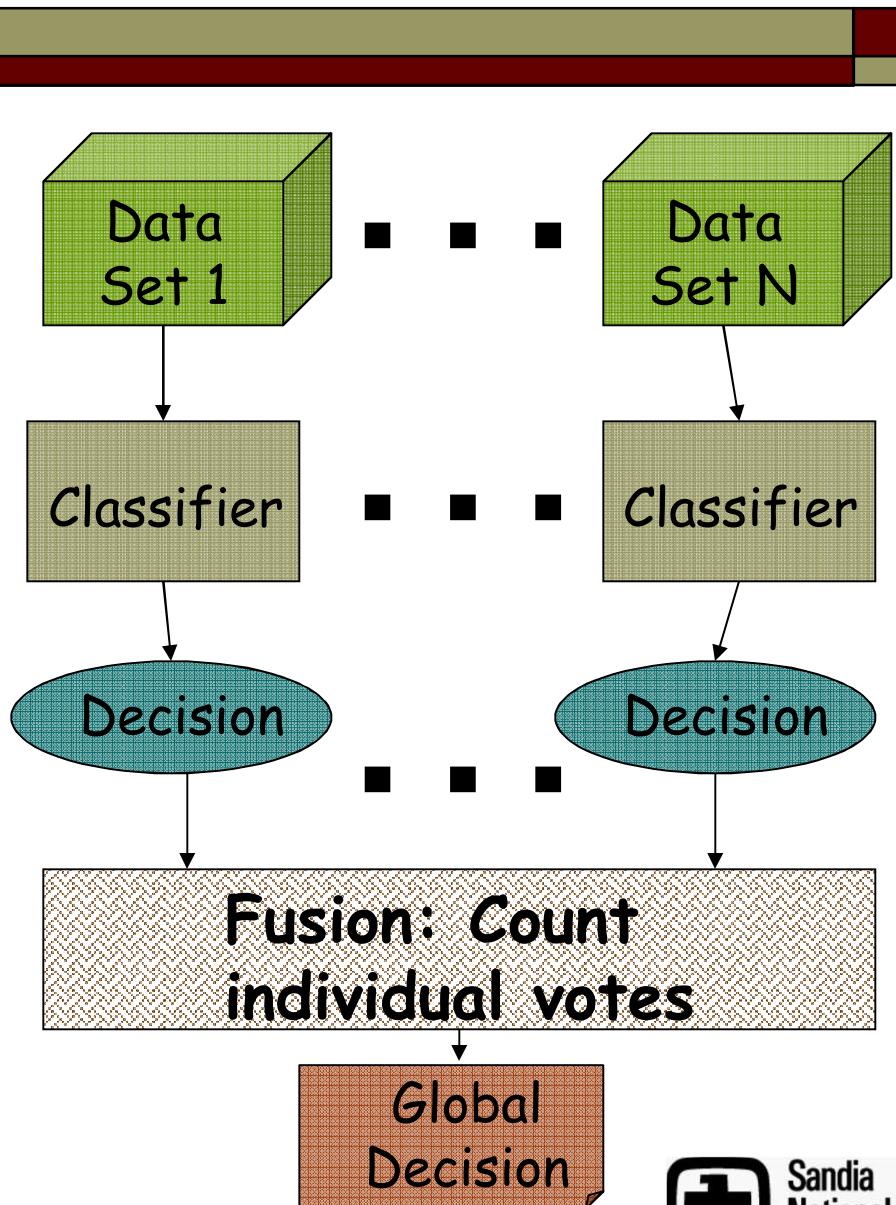


Unweighted Voting: Disparate Data Sets

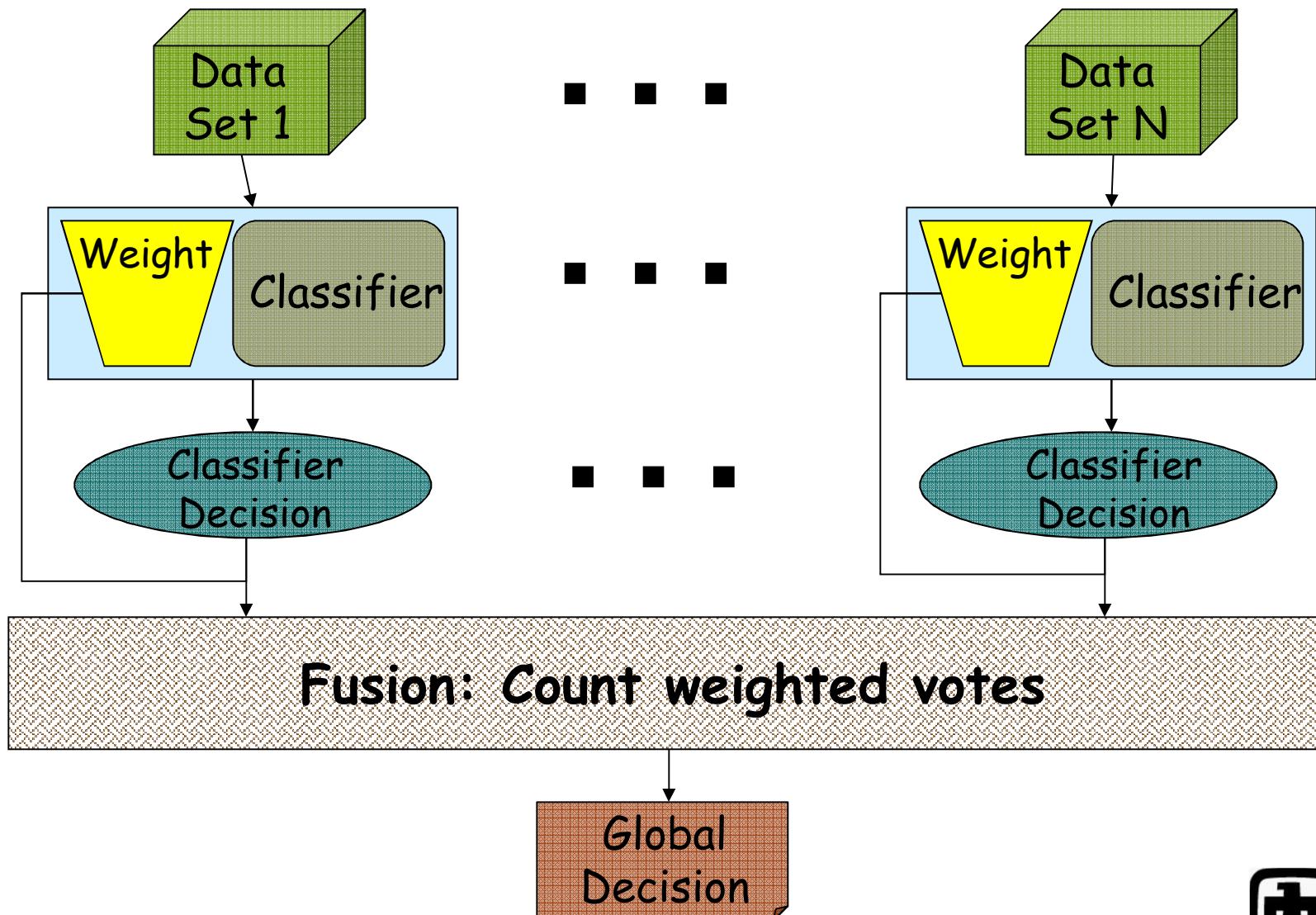
- Given n data classifications of n individual data sets, a decision is accepted if at least k of the classifications agree where:

$k = n/2 + 1$, if n is even

$k = (n+1)/2$, if n is odd



Weighted Voting: Disparate Data Sets



Determining the Weights

- Incorporate other known information
 - Classification error
 - Relative importance of data
 - Data characteristics- size, number of features, expected error, etc.
- One approach: weights are the solution of an optimization problem

Optimization: Determine the Weights

$$\begin{aligned} \min \quad & \sum_{i=1}^m \left(\sum_{j=1}^n E_{ij} x_j \right)^2 \\ \text{s.t.} \quad & \sum_{j=1}^n x_j = 1, \quad x_j \geq 0 \quad \forall j \end{aligned}$$

n = number of classifiers

m = number of observations

E = $m \times n$ matrix where E_{ij} describes classifier j in terms of observation i

Test 1: Optimized Weights

- Test: SVM light example 1 (Joachims)
- Are Reuters news articles about corporate acquisitions?
- 9947 attributes
- 2 data sets: training (2000 observations) and testing (600 observations)
- Break training data into three subsets
 - Set 1: Eliminate first half of the attributes
 - Set 2: Eliminate “middle” half of the attributes
 - Set 3: Eliminate last half of the attributes

Test 1 Results

Classifier	Weights			Training Errors (2K)	Errors (600)
	x1	x2	x3		
Based on set 1	1	0	0	11	16 *
Based on set 2	0	1	0	205	182
Based on set 3	0	0	1	510	282
Fusion (E = 0,1)	0.95	0.03	0.02	-----	16 *
Fusion (E = svm dist.)	0.76	0.02	0.22	-----	4

* Each of these classifiers made one error that the other did not

Test 2: Weighted vs. Unweighted

- Data: from the UC Irvine repository
 - BC: breast cancer (Wisconsin)
 - 699 observations, 10 attributes
 - split into 3 overlapping attribute group
 - ION: ionosphere
 - 351 observations, 34 attributes
 - Split into 6 partially overlapping groups
 - SNR: sonar
 - 208 observations, 60 attributes
 - Split into 5 overlapping attribute sets
- Fusion Schemes
 - UW: Unweighted voting
 - W1: Weighting with $E = \pm 1$
 - W2: Weighting with E computed using svm distances

Test 2 Results

Fusion Method	Training Data Errors			Test Data Errors
	BC (699)	ION (200)	SNR (208)	ION (151)
UW	26	35	44	18
W1	26	34	44	17
W2	22	32	41	14

Test 3: Attribute Splitting

- Pima-indian-diabetes data from UC Irvine repository
 - 768 observations, 8 attributes
 - Split into 3 classifiers based on groups of attributes:
 - CASE 1:
 - G1: 1,2,3,4,5
 - G2: 3,4,5,6,7
 - G3: 5,6,7,8
 - CASE 2:
 - G1: 1,3,5,7
 - G2: 2,4,6,8
 - G3: 1,2,7,8
- Two data splits
 - All 768 for training and testing
 - 500 for training, 268 for testing

Test 3 Results

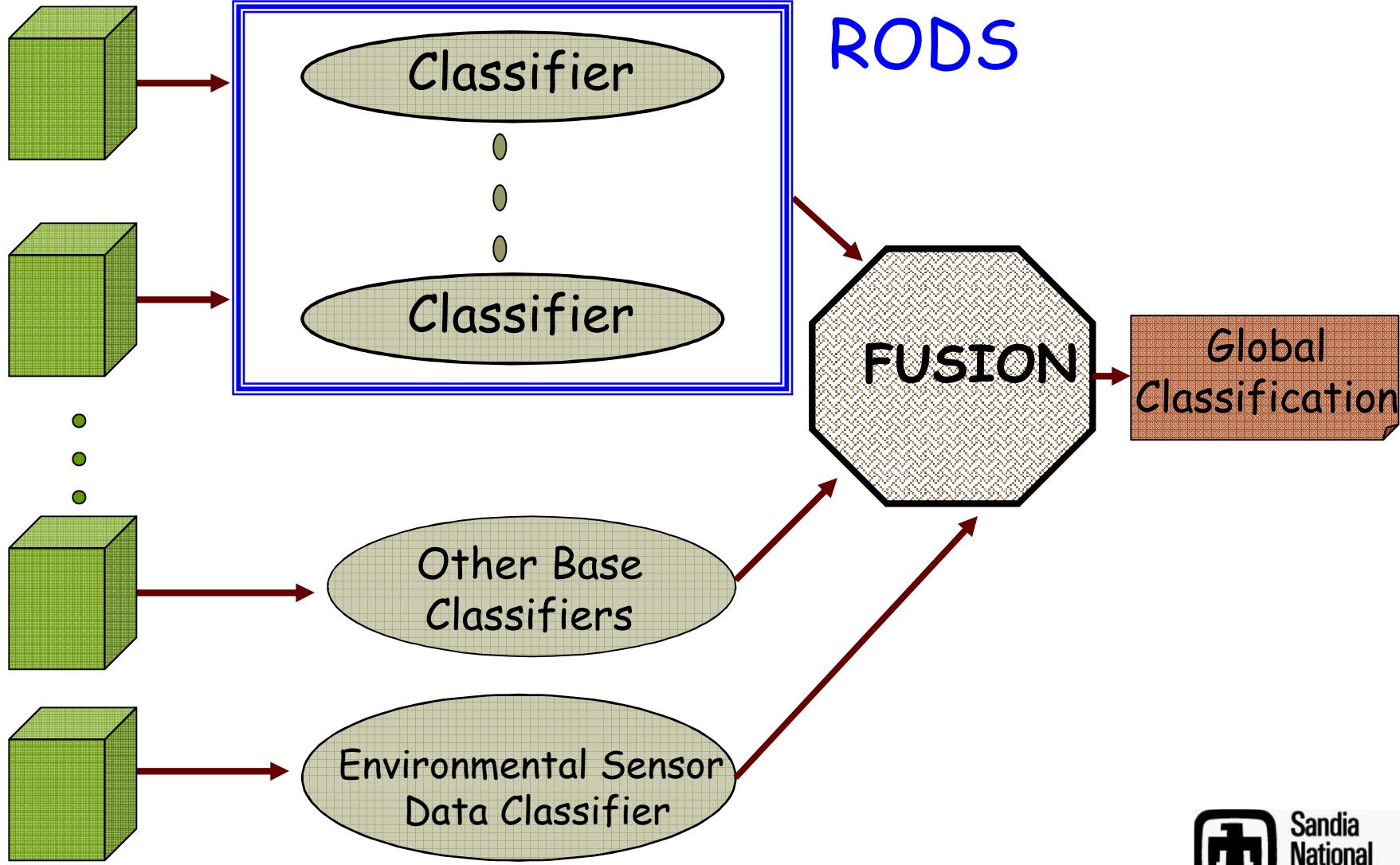
Fusion Method	Case 1	Case 2	Case 1		Case 2	
	Train (768)	Train (768)	Train (500)	Test (268)	Train (500)	Test (268)
UW	266	188	182	86	133	54
W	210	183	137	65	133	58

Conclusions

- Data fusion techniques can improve disparate data classification.
- Fusion techniques must be designed smartly to improve upon best base classification result.
- Weighting can improve classification if the weights are chosen smartly.
- Training is an important consideration.
- Fusion methods should also consider which data types would benefit most from fusion.

Current Test Problem

Data: Real or Simulated



RODS: Real-time Outbreak & Disease Surveillance

- Open source set of Java software modules for building public health surveillance systems
- Developed at Pitt & CMU
- Includes classifiers for clinical encounters at hospitals and OTC drug sales
- Additional classifiers will be needed to incorporate additional data types
- Adding new classifiers includes translation of results into input for the fusion algorithm
- Does not include automated fusion

Current Test Problem: Data

- Real Data

- OTC drug sales
- Hospital emergency room visits
- School absentee rates
- Environmental sensor

- Simulated Data: Bio-DAC

- Bio-agent attack decision analysis center
- Funded at Sandia via the BioNet program (DHS & DTRA)
- Running with simple models
- Linked to RODS package

Current and Future Work

- Investigate a variety of base classifiers
 - Recursive Least Squares - RODS
 - Cumulative Sum (Moore et al.) - RODS
 - Wavelet-based Anomaly Detection (Rizzo et al.) - RODS
 - Support Vector Machines (Boser, Gunyon, Vapnik)
 - Others
- Study and test fusion methods
- Research weighting techniques
- Find appropriate test problems

Acknowledgements

- Ken Sale
- Pam Williams
- Dave Gay
- Keith Vanderveen
- George Davidson
- Nina Berry
- Funding: Sandia computational & information sciences lab directed research program

Genetha Gray
gagray@sandia.gov