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Introduction
—!

O Various types of data can provide different
views of the same situation.

Multiple camera angles
Different experimental protocols

Human influence on data collection

O Seemingly dissimilar data can provide
complimentary information.

O Data 1s collected in a wide variety of formats.
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Problem Overview

. | O Developing detection and
i assessment systems includes:

1. Design and deployment of
SENSsors

sensor
readings

intelligence
data

2. Methods for simultaneous

\ / consideration of sensor data
and related info

3. Techniques for interpreting
large data sets generated by
W Sensors

. . O Goal: Develop an algorithm
Interpretation . . :
result for real-time, interpretive data
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Ensemble Classification

—!

O

Technique for combining the predictions of multiple
classifiers into a single classification.

Typically more accurate than any of the individual
classifiers.

Extracts information from individual data sets and
combines the results.

Inherent parallelism.

Typically apply different classifiers to the same data
set. (Example: bagging, Breiman ‘96)

Want to extend the 1dea to disparate data sources.
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Ensemble Classification of Disparate Data

O Advantages:
m Data can exist 1n separate data bases.
m Does not require translation of data formats.
m Saves time and computational resources.
» Allows for automated fusion and may not require
human interaction.
O Areas of Research:
» Need appropriate algorithms to oversee process
» Development of a provable method of solution

» Investigation into the applicability of optimization
techniques
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Algorithmic Framework
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Framework Components

—!

L
L

Data bases need not be independent.

Provide a variety of base classifiers; allow
users to select from these or provide their
OWn.

Include more that one fusion algorithm.

Fusion may occur at more than one level.
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One Data Set

Traditional Unweighted Voting
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te Data Sets

i1spara
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Unweighted Voting

0O Given n data classifications

dual data sets, a
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te Data Sets

1spara
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Weighted Votin
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Determining the Weights
—!

O Incorporate other known information

Classification error
Relative importance of data

Data characteristics- size, number of features,
expected error, etc.

O One approach: weights are the solution of an
optimization problem
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Optimization: Determine the Weights
—!

m n 2
min Z Z EZJCCJ
7):% 1=1

st. ) x;=1, ; >0V
j=1

n = number of classifiers
m = number of observations
E = m X n matrix where E;; descibes

classifier 5 in terms of observation@ﬁ:ﬁﬂ‘;’a.
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Test 1: Optimized Weights

—!

O
O

Test: SVM light example 1 (Joachims)
Are Reuters news articles about corporate
acquisitions?
9947 attributes
2 data sets: training (2000 observations) and testing
(600 observations)
Break training data into three subsets
Set 1: Eliminate first half of the attributes

Set 2: Eliminate “middle” half of the attributes
Set 3: Eliminate last half of the attributes
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Test 1 Results

—!

Classifier Weights Training Errors
1 1 x2 | x3 Errors (2K) (600)
Based on set 1 1 0 0 11 16 *
Based on set 2 0 1 0 205 182
Based on set 3 0 0 1 510 282
Fusion (E=0,1) 0.95(10.03/0.02|  --—--- 16 *
Fusion (E=svmdist.) {0.76 [ 0.02|0.22|  ----—-- 4

* Each of these classifiers made one error that the other did not
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Test 2: Weighted vs. Unweighted
—!

0O Data: from the UC Irvine repository

BC: breast cancer (Wisconsin)
O 699 observations, 10 attributes
o split into 3 overlapping attribute group

ION: 10onosphere

o 351 observations, 34 attributes

O Split into 6 partially overlapping groups
SNR: sonar

o 208 observations, 60 attributes
O Split into 5 overlapping attribute sets

0O Fusion Schemes
UW: Unweighted voting
W1: Weighting with E=+ 1
W2: Weighting with E computed using svm distances
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Test 2 Results

—!

Fusion Training Data Errors Test Data Errors
Method
BC ION SNR ION
(699) (200) (208) (151)
UW 26 35 44 18
Wi 26 34 44 17
W2 22 32 41 14

[h)
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Test 3: Attribute Splitting
————

O Pima-indian-diabetes data from UC Irvine repository
m 768 observations, 8 attributes

» Split into 3 classifiers based on groups of attributes:

o CASE I: o CASE 2:
= G1:1,2,34,5 = Gl1:1,3,5,7
m G2:34,5,6,7 m G2:24,6,8
m  (G3:5,6,7,8 m G3:1,2,7,8

O Two data splits

= All 768 for training and testing
= 500 for training, 268 for testing
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Test 3 Results

—!

Fusion | Case 1 | Case 2 Case 1 Case 2
Method| Train | Train Train | Test Train Test
(768) | (768) | (500) | (268) | (500) | (268)
UW 266 188 182 86 133 54
W 210 183 137 65 133 58

Sandia
National
Laboratories



Conclusions

—!

[l

Data fusion techniques can improve disparate
data classification.

Fusion techniques must be designed smartly
to 1improve upon best base classification
result.

Weighting can improve classification if the
weights are chosen smartly.

Training 1s an important consideration.

Fusion methods should also consider which
data types would benefit most from fusion.
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Current Test Problem

AT
—
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RODS: Real-time Outbreak & Disease Surveillance

—!

O

Open source set of Java software modules for building

public hea!

Developed

th surveillance systems
|at Pitt & CMU

Includes c]

assifiers for clinical encounters at hospitals

and OTC drug sales
Additional classifiers will be needed to incorporate

additional

data types

Adding new classifiers includes translation of results
into input for the fusion algorithm

Does not include automated fusion
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Current Test Problem: Data
——

O Real Data

OTC drug sales

Hospital emergency room visits
School absentee rates
Environmental sensor

O Simulated Data: Bio-DAC

Bio-agent attack decision analysis center

Funded at Sandia via the BioNet program (DHS &
DTRA)

Running with simple models
Linked to RODS package
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Current and Future Work
—!

O Investigate a variety of base classifiers

Recursive Least Squares - RODS

Cumulative Sum (Moore et al.) - RODS
Wavelet-based Anomaly Detection (Rizzo et al.) - RODS

Support Vector Machines (Boser, Gunyon, Vapnik)
Others

O Study and test fusion methods
O Research weighting techniques
O Find appropriate test problems
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