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Sandia’s Z machine produces world-record soft x-ray powers
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J x B pinches wire array into a dense, radiating plasma
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3D MHD
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Instabilities appear during the wire ablation phase

• Ablation rate is understood through an 
analytic rocket model and 2D r-θ MHD

• m=0 coronal instability and j x Bglobal
results in ablating flares—what 
determines the characteristic λ?
– MHD favored mode with ka~1
– Electrothermal instability (Haines)

M. G. Haines, IEEE Trans. 
Plasma Sci. 30, 588 (2002).E. P. Yu et al., DPP05 C03.6

S. V. Lebedev et al., Phys. 
Plasmas 8, 3734 (2001).
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• Instabilities in wire plasma lead to 3D structure at implosion
– Non-uniform wire ablation early in time

leads to radial flare formation
– Magnetic Rayleigh-Taylor type

implosion instability seeded by flares
– Trailing mass may impact current path
– 3D structure in stagnated pinch likely

impacts x-ray generation and transport

• Ad hoc perturbations are seeded
in 3D MHD simulations to reproduce
phenomenological structure
– C. J. Garasi et al., Phys. Plasmas 11,

2729 (2004).

– J. P. Chittenden et al., Plasma Phys.
Control. Fusion 46, B457 (2004).

3D structure impacts x-ray production in wire array z-pinches

Wire ablation; 
Lebedev et al., 
Phys. Plasmas 
8, 3734 (2001).

Stainless steel wire 
array on Z at 13.9 MA; 
D. B. Sinars et al., 
Phys. Plasmas 12, 
056303 (2005).

Al/Ni/Ti wire array 
on Z near peak

x-ray power

array 
edge
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Mass perturbations are seeded by modulating wire radius

100 μm

• Extruded Ø15 μm Al 5056 wires are chemically etched at 
MPCL/Sandia to have 20% modulation in radius with 
controlled axial wavelength
– B. Jones et al., Rev. Sci. Instrum. 75, 5030 (2004).

• Aligned in wire arrays to ±100 μm with laser diffraction
• Allows seeded perturbations in z-pinch mass/length

– Investigate radial flare formation
– Implosion RT-type instability growth studies
– X-ray pulse shaping by tailoring the profile of the imploding mass

• Seeded perturbations have been employed in laser plasmas
– e.g. H. F. Robey et al., Phys. Plasmas 8, 2446 (2001).
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Coronal modulation enhances |j x B| at wire discontinuities

• Enhanced magnetic field in thinner core regions constricts 
coronal plasma, leaving imprint of modulated structure

• Non-uniform current path near discontinuities in coronal 
plasma radius causes local magnetic field enhancement

– B. Jones et al., accepted in Phys. Rev. Lett. (2005).
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Magnetic bubbles form at the discontinuities in wire radius

• Local |j x B| enhancement at wire radius discontinuities 
enhances ablation, breaks wire cores, and initiates bubble 
implosion at discontinuities

• Bubble formation seen in both MHD model and experiment

265 ns 16-wire array, initial setup

M.A.G.P.I.E.
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Magnetic bubbles form at the discontinuities in wire radius

• Local |j x B| enhancement at wire radius discontinuities 
enhances ablation, breaks wire cores, and initiates bubble 
implosion at discontinuities

• Bubble formation seen in both MHD model and experiment

265 ns 192 ns

M.A.G.P.I.E.
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Magnetic bubbles form at the discontinuities in wire radius

• Local |j x B| enhancement at wire radius discontinuities 
enhances ablation, breaks wire cores, and initiates bubble 
implosion at discontinuities

• Bubble formation seen in both MHD model and experiment

265 ns 197 ns

M.A.G.P.I.E.
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Magnetic bubbles form at the discontinuities in wire radius

• Local |j x B| enhancement at wire radius discontinuities 
enhances ablation, breaks wire cores, and initiates bubble 
implosion at discontinuities

• Bubble formation seen in both MHD model and experiment

265 ns 202 ns

M.A.G.P.I.E.
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Magnetic bubbles form at the discontinuities in wire radius

• Local |j x B| enhancement at wire radius discontinuities 
enhances ablation, breaks wire cores, and initiates bubble 
implosion at discontinuities

• Bubble formation seen in both MHD model and experiment

265 ns 207 ns

M.A.G.P.I.E.
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Correlated gaps form as magnetic bubbles implode

• Gorgon MHD model includes short-wavelength perturbations

• Same physics may explain trailing spikes in standard array 

• Measurement of magnetic field in the gaps is needed to
determine the actual current path
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Correlated gaps form as magnetic bubbles implode

• Same physics likely explains trailing spikes in standard array
– Standard wire array shows similar ~2 mm bubble size on MAGPIE

• Measurement of magnetic field in the gaps is needed to
determine the actual current path

Current density streamlines

231 ns

290 ns

M.A.G.P.I.E.
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Bubbles are observed to implode rapidly—driven by j x B?

M.A.G.P.I.E.

R0=8.5 mm v = 25.5 ± 3.6 cm/μs

R = R0 at
t = 182.8 ± 1.9 ns

R = 1 mm at
t = 212.2 ± 3.4 ns

v = 13.9 ± 3.4 cm/μs

H = 0 at
t = 185.0 ± 2.7 ns

• 20-25 cm/μs bubble implosion velocity
• Bubble blown from a point, rather than 

expanding spherically like a blast wave
• j x B would accelerate bubble, but 

snowplow of prefill decelerates it
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Bubble collision on axis determines start of x-ray rise

• Comparison of modulated with standard array of same mass
• Similar initial rise of precursor radiation
• Start of main x-ray rise corresponds to collision of imploding 

bubbles with the precursor (see also V. V. Ivanov, BP1.121)
• X-ray pulse shaping by tailoring the arrival of mass on axis

M.A.G.P.I.E.

Standard array
16 x Ø13.3 μm Al5056

Modulated array
16 x λ = 9 mm Al5056
6 mm @ Ø15 μm
3 mm @ Ø12 μm

Time of
R = 1 mm 
from linear fit 
to bubble 
trajectory
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16-wire array, initial setup

X-ray pulse shape determined by assembly of mass on axis

• Peak power is similar to standard wire array
• Stagnated pinch may be hotter with lower mass
• Bubbles from discontinuities zipper on axis into a dense 

pinch—likely similar mechanism in standard array

M.A.G.P.I.E.

Standard array
16 x 13.3 μm

Modulated array
16 x λ = 9 mm
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X-ray pulse shape determined by assembly of mass on axis

• Peak power is similar to standard wire array
• Stagnated pinch may be hotter with lower mass
• Bubbles from discontinuities zipper on axis into a dense 

pinch—likely similar mechanism in standard array

M.A.G.P.I.E.

224 ns
Standard array
16 x 13.3 μm

Modulated array
16 x λ = 9 mm
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X-ray pulse shape determined by assembly of mass on axis

• Peak power is similar to standard wire array
• Stagnated pinch may be hotter with lower mass
• Bubbles from discontinuities zipper on axis into a dense 

pinch—likely similar mechanism in standard array

M.A.G.P.I.E.

234 ns
Standard array
16 x 13.3 μm

Modulated array
16 x λ = 9 mm
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X-ray pulse shape determined by assembly of mass on axis

• Peak power is similar to standard wire array
• Stagnated pinch may be hotter with lower mass
• Bubbles from discontinuities zipper on axis into a dense 

pinch—likely similar mechanism in standard array

M.A.G.P.I.E.

244 ns
Standard array
16 x 13.3 μm

Modulated array
16 x λ = 9 mm
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X-ray pulse shape determined by assembly of mass on axis

• Peak power is similar to standard wire array
• Stagnated pinch may be hotter with lower mass
• Bubbles from discontinuities zipper on axis into a dense 

pinch—likely similar mechanism in standard array

M.A.G.P.I.E.

254 ns
Standard array
16 x 13.3 μm

Modulated array
16 x λ = 9 mm
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Natural short-λ mode is superimposed on long-λ perturbation

• Radial flares of ~0.5 mm wavelength (in 
Al) are seen early in time on all machines 
due to axially non-uniform wire ablation

• In experiments with longer wavelength 
seeded perturbations, the ~0.5 mm 
natural mode is seen superimposed

• What will happen if we seed λ < 0.5 mm?  
Will seeded and natural modes compete?
– M. R. Douglas, C. Deeney, and N. F. Roderick, 

Phys. Plasmas 5, 4183 (1998).
– D. Ryutov and A. Toor, Phys. Plasmas 5, 22 (1998).

M.A.G.P.I.E.
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Wire core evolution is dominated by seeded perturbation

• Mass ablated from thick segments < initial mass of thin 
segments—faster ablation rate near thinner wire core?

M.A.G.P.I.E.

155 ns 175 ns
X-pinch 
backlighting 
of wire core
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Short wavelength perturbations compete with natural mode

• Corona is impacted by seeded features, but signature of 
natural mode also appears superimposed

• Natural ~0.5 mm flare mode determined by coronal physics?

M.A.G.P.I.E.

Laser shadowgram, 138 ns Zoomed-in view

λ ~ 0.5 mm

λ ~ 125 μm
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Possible mechanism for observed behavior with short-λ seed

• Per the longer wavelength seeded features, discontinuities in 
the wire lead to enhanced j x B and local necking regions

• Material flows axially out of the pinched necks, is pushed in 
radially by global B, forms radial flares with 125 μm period

• Thermal conduction in the ablated plasma shorts out the 
small-λ seeded mode and produces λ~0.5 mm jets
– M. G. Haines, Phys. Rev. Lett. 47, 917 (1981).

M.A.G.P.I.E.
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3D MHD Gorgon model simulates wire core break-up

• Modulation of corona in 
response to seeded 
perturbation is seen again

• Thinner core section 
ablates/implodes earlier, 
leaving thicker wire core 
sections at late time

• Current stream lines press 
against thinner core—faster 
ablation rate?

• 125 μm wavelength flares 
are not reproduced—higher 
resolution needed?

M.A.G.P.I.E.
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Short-λ perturbations dramatically compromise x-ray pulse

• In short-wavelength seeded instability case, current may be 
shunted out of wire cores, leading to a late implosion
– Remaining wire core sections were not expanded at normal levels
– m=1 instability seen at early time in precursor column on axis

• Smaller perturbation amplitude needed to test the concept of 
competing modes to reduce RT radial extent

M.A.G.P.I.E.

Standard array
16 x Ø13.3 μm Al5056

Modulated array
16 x λ = 9 mm Al5056
6 mm @ Ø15 μm
3 mm @ Ø12 μm

Modulated array
16 x λ = 0.25 mm Al
0.125 mm @ Ø15 μm
0.125 mm @ Ø12 μm
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Single wire experiments show opposite modulation trend

• Thin wire sections have large corona, opposite of wire arrays
• Different breakdown mechanism?  Role of global B field?

Courtesy of David Chalenski,
Harold Barnard, Bruce Kusse

Laser shadowgraph   
217 ns after start of    
the current rise

Shot specifications
Vpeak = 26.0 kV
Ipeak = ~8 kA
tpeak = 72.0 ns
dI/dt = 49.3 A/ns

960 cm/μs

50 cm/μs

Initial 
configuration 
Al 5056 wire

Ø50 μm

Ø37.5 μm

λ~100 μm
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Localized dopant bands for particle transport studies

• Particle transport may be a quantitative signature of 
turbulence affecting z-pinch energy balance

• Localized dopants coated on wires at MPCL/Sandia
• Wire array experiments at UNR/NTF-Zebra 1 MA generator
• Localized NaF dopants previously used with laser plasmas

– Y. Al-Hadithi et al., Phys. Plasmas 1, 1279 (1994).
– K. B. Fournier et al., JQSRT 71, 339 (2001).
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Localized Na K-shell emission observed on 1 MA Zebra driver

• Dopant coatings previously increased K-shell yield by 
mitigating opacity effects in wire array z-pinches
– C. Deeney et al., Phys. Rev. E 51, 4823 (1995).
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Atomic physics modeling provides plasma ne, Te diagnosis

• K-shell CRE models 
for Mg, Na have been 
developed at UNR

• ne ~ 2 x 1020 cm-3

Te ~ 280 eV
inferred from 
comparison with both 
Mg and Na lines

• Low-Z doping of 
tungsten wires may 
allow spectroscopic 
measurement of 
plasma parameters

Measured spectrum
Mg K-shell model
Na K-shell model
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In collaboration with Alla Safronova and Victor Kantsyrev (UNR)
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Na dopant is transported axially in the z-pinch plasma

• DEF film data converted to exposure using Henke tables
• Axial lineout taken over full width of the Na Ly-α line
• Emission is peaked near initial NaF band location
• Material has spread in axial direction (TIXTL can resolve this)
• An additional tail of material is transported in the direction of 

the cathode?
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Summary

• Seeded perturbations offer a technique for exploring the role 
of 3D structure in wire array z-pinches

• MHD simulations with well defined initial perturbations allow 
study of instability growth without ad hoc assumptions

• Modulations in wire radius have linked current path 
discontinuities with seeding of RT bubbles

• Main x-ray pulse rise is due to collision of bubbles on axis 
assembling to form the stagnated z-pinch

• Many interesting research possibilities
– Short-wavelength modulations and interaction with radial flares
– Physics of magnetic bubbles
– X-ray pulse shaping for ICF applications
– Initiation studies with modulated single wires


