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Sandia’s Z machine produces world-record soft x-ray powers
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J X B pinches wire array into a dense, radiating plasma

Sandia
National
Laboratories

BJ3



Wire array z-pinches do not implode as a simple shell
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Instabilities appear during the wire ablation phase
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S. V. Lebedev et al., Phys.
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« Ablation rate is understood through an
analytic rocket model and 2D r-6 MHD

« m=0 coronal instability and ] X B j,p,
results in ablating flares—what
determines the characteristic A?

— MHD favored mode with ka~1
— Electrothermal instability (Haines)
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3D structure impacts x-ray production in wire array z-pinches

 Instabilities in wire plasma lead to 3D structure at implosion

— Non-uniform wire ablation early in time
leads to radial flare formation

— Magnetic Rayleigh-Taylor type
Implosion instability seeded by flares

— Trailing mass may impact current path
— 3D structure in stagnated pinch likely
impacts x-ray generation and transport

 Ad hoc perturbations are seeded
iIn 3D MHD simulations to reproduce
phenomenological structure

— C. J. Garasi et al., Phys. Plasmas 11,
2729 (2004).

— J. P. Chittenden et al., Plasma Phys.
Control. Fusion 46, B457 (2004).

Al 140ns

array Stainless steel wire
edge array on Z at 13.9 MA;
Wire ab|ation; D. B. Sinars et al.,
Lebedev etal., Phys. Plasmas 12,
Phys. Plasmas 056303 (2005).
8, 3734 (2001).
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Mass perturbations are seeded by modulating wire radius

Wire array holder

Tm

'I\12-1 5 wm modulated wire

Translation stage

e Extruded @15 um Al 5056 wires are chemically etched at
MPCL/Sandia to have 20% modulation in radius with
controlled axial wavelength

— B. Jones et al., Rev. Sci. Instrum. 75, 5030 (2004).
« Aligned in wire arrays to £100 um with laser diffraction

* Allows seeded perturbations in z-pinch mass/length
— Investigate radial flare formation
— Implosion RT-type instability growth studies
— X-ray pulse shaping by tailoring the profile of the imploding mass

Seeded perturbations have been employed in laser plasmas
e.g. H. F. Robey et al., Phys. Plasmas 8, 2446 (2001). _
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Coronal modulation enhances |} x B| at wire discontinuities
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Enhanced magnetic field in thinner core regions constricts
coronal plasma, leaving imprint of modulated structure

Non-uniform current path near discontinuities in coronal
plasma radius causes local magnetic field enhancement

M.A.G.P.IL.E.

’% — B. Jones et al., accepted in Phys. Rev. Lett. (2005).
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I\/Iagnetic bubbles form at the discontinuities in wire radius

265 ns 0 16- W|re array, |n|t|al setup

-10 10
R (mm)
* Local | x B] enhancement at wire radius discontinuities
enhances ablation, breaks wire cores, and initiates bubble
Implosion at discontinuities

* Bubble formation seen in both MHD model and experiment
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Magnetic bubbles form at the discontinuities in wire radius
265 ns ““19'2|nls
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* Local | x B] enhancement at wire radius discontinuities
enhances ablation, breaks wire cores, and initiates bubble
Implosion at discontinuities

* Bubble formation seen in both MHD model and experiment
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Magnetic bubbles form at the discontinuities in wire radius

| 265 ns 0 197 ns
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* Local | x B] enhancement at wire radius discontinuities
enhances ablation, breaks wire cores, and initiates bubble
Implosion at discontinuities

* Bubble formation seen in both MHD model and experiment
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Magnetic bubbles form at the discontinuities in wire radius
| 265 ns - - | 29,2,”,5
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* Local | x B] enhancement at wire radius discontinuities
enhances ablation, breaks wire cores, and initiates bubble
Implosion at discontinuities

* Bubble formation seen in both MHD model and experiment
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Magnetic bubbles form at the discontinuities in wire radius
265 ns ...29.7.n.s
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* Local | x B] enhancement at wire radius discontinuities
enhances ablation, breaks wire cores, and initiates bubble

Implosion at discontinuities

* Bubble formation seen in both MHD model and experiment
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Correlated gaps form as magnetic bubbles implode

280ns ___ 2l4ns _241ns

Current density streamlines

.| MAGPIE
“1 experimental
© | x-ray PHC

] images

] Gorgon
3D MHD

{1 simulated
x-ray PHC
1images

* Gorgon MHD model includes short-wavelength perturbations
« Same physics may explain trailing spikes in standard array

* Measurement of magnetic field in the gaps is needed to
determine the actual current path
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Correlated gaps form as magnetic bubbles implode
- 290 ns

Current density streamlines

S
R

T 31ns
« Same physics likely explains trailing spikes in standard array

— Standard wire array shows similar ~2 mm bubble size on MAGPIE

 Measurement of magnetic field in the gaps is needed to
determine the actual current path
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Bubbles are observed to implode rapidly—driven by | x B?
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Bubble collision on axis determines start of x-ray rise
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« Comparison of modulated with standard array of same mass
« Similar initial rise of precursor radiation

« Start of main x-ray rise corresponds to collision of imploding
bubbles with the precursor (see also V. V. Ivanov, BP1.121)

« X-ray pulse shaping by tailoring the arrival of mass on axis
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X-ray pulse shape determined by assembly of mass on axis

16-wire array, initial setup

gﬁ 301 | ISItaILn(IJIalrdla;ra{y 0 [ 1 1 1
3 é 20 L 16 x13.3 um | - _ c
2 [ =4 =
= £ 10+ - [ Nf E
o X ~ | al ol e
o 0L. € -10 - L, &
10 T T Y §, - I ©
E - Modulated array N [
3> 16 X A =9 mm 15 | >
© = - c
N Or i =
3E 20 o
2, | S _
R I brnsie o L - A Ll
100 200 300 400 500 -10 -5 0 3 10
Time (ns) R (mm)

« Peak power is similar to standard wire array
e Stagnated pinch may be hotter with lower mass
* Bubbles from discontinuities zipper on axis into a dense
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X-ray pulse shape determined by assembly of mass on axis
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« Peak power is similar to standard wire array
e Stagnated pinch may be hotter with lower mass

* Bubbles from discontinuities zipper on axis into a dense
pinch—Iikely similar mechanism in standard array
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X-ray pulse shape determined by assembly of mass on axis
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« Peak power is similar to standard wire array
e Stagnated pinch may be hotter with lower mass

* Bubbles from discontinuities zipper on axis into a dense
pinch—Iikely similar mechanism in standard array
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X-ray pulse shape determined by assembly of mass on axis
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« Peak power is similar to standard wire array
e Stagnated pinch may be hotter with lower mass

* Bubbles from discontinuities zipper on axis into a dense
pinch—Iikely similar mechanism in standard array
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X-ray pulse shape determined by assembly of mass on axis
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« Peak power is similar to standard wire array
e Stagnated pinch may be hotter with lower mass

* Bubbles from discontinuities zipper on axis into a dense
pinch—Iikely similar mechanism in standard array
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Natural short-A mode is superimposed on long-A perturbation

M.A.G.P.L.E.
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Stainless steel Aluminum

wire array Sl \vire array
on the 20 MA S On the 1 MA
Z machine— e \VIAGPIE
G. Sarkisov, Y driver

D. Bliss et al.

« Radial flares of ~0.5 mm wavelength (in
Al) are seen early in time on all machines
due to axially non-uniform wire ablation

* In experiments with longer wavelength
seeded perturbations, the ~0.5 mm
natural mode is seen superimposed

« What will happen if we seed A < 0.5 mm?
Will seeded and natural modes compete?

— M. R. Douglas, C. Deeney, and N. F. Roderick,
Phys. Plasmas 5, 4183 (1998).

— D. Ryutov and A. Toor, Phys. Plasmas 5, 22 (1998).
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Wire core evolution is dominated by seeded perturbation
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* Mass ablated from thick segments < initial mass of thin
segments—faster ablation rate near thinner wire core?
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Short wavelength perturbations compete with natural mode

Laser shadowgram 138 ns Zoomed-in view

‘

- a}’ i"k-_

R (mm) R (mm)

- Corona is impacted by seeded features, but signature of
natural mode also appears superimposed

. Natural ~0.5 mm flare mode determined by coronal physics?

Sandia
o), Sl National
P W Laboratories

BJ 25




Possible mechanism for observed behavior with short-A seed

0.5 mm flares 125 um flares Wire core
| L remnants -

m=0

1

Current
density
streamline

* Per the longer wavelength seeded features, discontinuities in
the wire lead to enhanced | x B and local necking regions

« Material flows axially out of the pinched necks, is pushed in
radially by global B, forms radial flares with 125 um period

 Thermal conduction in the ablated plasma shorts out the

small-A seeded mode and produces A~0.5 mm jets
— M. G. Haines, Phys. Rev. Lett. 47, 917 (1981).
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3D MHD Gorgon model simulates wire core break-up

Modulation of corona in
response to seeded
perturbation is seen again

Thinner core section
ablates/implodes eatrlier,
leaving thicker wire core
sections at late time

Current stream lines press
against thinner core—faster
ablation rate?

125 um wavelength flares
are not reproduced—higher
resolution needed?
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Short-A perturbations dramatically compromise x-ray pulse

1 0 I I I | I I I | I ] ] | ] ] ]
Modulated array Standard array
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* In short-wavelength seeded instability case, current may be

shunted out of wire cores, leading to a late implosion

— Remaining wire core sections were not expanded at normal levels

— m=1 instability seen at early time in precursor column on axis
« Smaller perturbation amplitude needed to test the concept of
competing modes to reduce RT radial extent

e Sandia
T, Bl . National
e 5 Laboratories

M.A.G.P.I.E.
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Single wire experiments show opposite modulation trend

Shot specifications
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Ipeak = ~8 kA
t =72.0ns
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Initial Laser shadowgraph

configuration 217 ns after start of

Al 5056 wire the current rise
4= 960 cm/us

D50 UM =—pp | €= 50 cm/us

B37.5 pM =——p

Thin wire sections have large corona, opposite of wire arrays
Different breakdown mechanism? Role of global B field?

i) Cornell University
”" Laboratory of Plasma Studies

Courtesy of David Chalenski,

Harold Barnard, Bruce Kusse Sandia
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Localized dopant bands for particle transport studies

UNIVERSITY
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Non-diffusive, Axial diffusion,
A0 f B radial transport only turbulent pinch?
i Z Wire yA
material
tal » [T ] OR
I T Dopant
Energy Energy

Particle transport may be a quantitative signature of
turbulence affecting z-pinch energy balance

Localized dopants coated on wires at MPCL/Sandia

Wire array experiments at UNR/NTF-Zebra 1 MA generator

Localized NaF dopants previously used with laser plasmas

— Y. Al-Hadithi et al., Phys. Plasmas 1, 1279 (1994). @ Sandia

— K. B. Fournier et al., JQSRT 71, 339 (2001). LNaatﬂ,orgﬁl,ﬂes
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Localized Na K-shell emission observed on 1 MA Zebra driver
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* Dopant coatings previously increased K-shell yield by
mitigating opacity effects in wire array z-pinches
— C. Deeney et al., Phys. Rev. E 51, 4823 (1995).
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National
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Atomic physics modeling provides plasman,, T, diagnosis
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 K-shell CRE models

——— Measured spectrum

—— Na K-shell model for Mg, Na have been
1 ' ' ﬂ " ' developed at UNR
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Na dopant is transported axially in the z-pinch plasma
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 DEF film data converted to exposure using Henke tables

« Axial lineout taken over full width of the Na Ly-a line

« Emission is peaked near initial NaF band location

« Material has spread in axial direction (TIXTL can resolve this)
* An additional tail of material is transported in the direction of

the cathode? @ Sandia
National

Laboratories
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Summary

Seeded perturbations offer a technique for exploring the role
of 3D structure in wire array z-pinches

MHD simulations with well defined initial perturbations allow
study of instability growth without ad hoc assumptions

Modulations in wire radius have linked current path
discontinuities with seeding of RT bubbles

Main x-ray pulse rise is due to collision of bubbles on axis
assembling to form the stagnated z-pinch

Many interesting research possibilities

— Short-wavelength modulations and interaction with radial flares
— Physics of magnetic bubbles

— X-ray pulse shaping for ICF applications

— Initiation studies with modulated single wires
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