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Abstract
Modeling multiphase combustion processes using the Large Eddy Simulation (LES) technique poses a vari-
ety of challenges due to the complex nonlinear nature of the phenomena involved. Multiple strongly coupled
processes exist in close proximity to one another and interact over wide ranges of time and length scales.
The situation is compounded by the presence of dynamically evolving interface boundaries and the intricate
exchange processes that occur as a consequence. As part of an effort to treat these phenomena system-
atically, a series of LES calculations have been performed and compared directly with experimental data.
These experiments characterize a swirling particle-laden flow in a model coaxial combustion chamber and
effectively isolate effects related to dilute particle dispersion and momentum coupling. The validated case
study and methodologies presented provide a clearer understanding of the effectiveness and feasibility of
current state-of-the-art models and a quantitative understanding of relevant modeling issues by analyzing
the characteristic parameters and scales of importance. The novel feature of the results presented is that they
establish a baseline level of confidence in our ability to simulate complex flows at conditions representative
of those typically observed in gas-turbine (and similar) combustors.



1. Introduction

Obtaining high-fidelity solutions of reacting sprays hinges on the application of methods and models that
accurately describe momentum coupling and subgrid-scale (sgs) modulation of turbulence, mass and energy
coupling and sgs scalar mixing, and the turbulent combustion processes induced as a consequence. As part
of an effort to treat these phenomena systematically, the current work focuses on a swirling particle-laden
flow in a model coaxial combustion chamber. A series of Large Eddy Simulation (LES) calculations have
been performed and compared to the experimental data acquired by Sommerfeld et al. [1–3]. The primary
objectives are to gain a clearer understanding of the effectiveness and feasibility of current state-of-the-art
sgs models and a quantitative understanding of potential model limitations and future needs when applied
in a complex flow configuration.

Sommerfeld et al. provide detailed measurements of swirling particle-laden flow in a model combus-
tion chamber that consists of a sudden pipe expansion with a centered (primary) and annular (secondary)
jet discharging into a cylindrical test section. The experimental measurements were acquired using a one-
component phase-Doppler-anemometer (PDA) to obtain mean and rms gas-phase and particle-phase statis-
tics of velocity and particle size. These data provide two excellent benchmark cases for validation of LES
in a turbulent swirling-flow environment very similar to the flow in a gas turbine combustor, under highly
controlled conditions, and with well-defined boundary conditions. They provide a way to systematically
validate LES models for unsteady dilute spray dynamics without having to simultaneously treat the more
complex issues related to atomization, secondary breakup, and coupling between the gas and particulate
phases under highly loaded conditions. Establishing this level of validation is a key progressive step toward
treating these more daunting issues.

Past numerical studies have focused on particle-turbulence interactions in simplified geometries [4–6],
with emphasis placed on the effects of gas-phase velocity fluctuations on particle dispersion characteristics,
the preferential concentration of particles, and the influence of particles on the turbulence energy spectra. We
have also performed a series of studies [7–10] focused on the development of high-performance massively
parallel numerical algorithms to support the implementation of high-fidelity LES calculations. Considerable
experimental work on turbulent particle-laden flows has also been performed [11].

More recently [12], we have systematically evaluated and improved our treatment of dilute spray dynam-
ics under highly loaded conditions through careful comparison to the data acquired in the fully-developed
channel flow experiments of Paris and Eaton [13] and Benson and Eaton [14]. Here, we extend these anal-
yses by applying the most recent modeling approach in a validated state-of-the-art theoretical-numerical
framework that has been optimized for the application of LES for general treatment of turbulent reacting
multiphase flows at practical conditions. Emphasis is placed on establishing the predictive nature of the cou-
pled set of sgs models in a manner that lends itself to treatment of more complex systems and phenomena.

2. Theoretical Framework

2.1. Governing Conservation Equations

The simulations were performed using the theoretical-numerical framework developed by Oefelein [15,
16]. This framework is optimized to meet the strict algorithmic requirements imposed by the LES formalism
and provide a unified treatment of turbulent reacting multiphase flows over a wide range of conditions. The
general form of the governing system is assumed to be compressible, chemically reacting, and composed of
N species. For the most general cases, we solve the fully-coupled conservation equations. These equations
are combined with an appropriate equation of state, thermodynamic and transport properties, and validated
mixing rules for the mixtures of interest.

The governing system is cast in dimensionless form using a reference length-scale δref , flow speed Uref ,
and fluid state characterized by a reference density ρref , sound speed cref , constant pressure specific heat



Cpref , and dynamic viscosity μref . For LES applications the instantaneous conservation equations are filtered
yielding the following system of equations for mass, momentum, total-energy and species, respectively:
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The terms θ, ρ̇s, Ḟs, Q̇s and ω̇si represent the filtered void fraction and spray source terms that account for

interphase exchange of mass, momentum, total energy and species, respectively. The terms P,��T , �Qe and �Si

are respective composite (i.e., molecular plus sgs) stresses and fluxes. The termsQ̇e and ω̇i are the filtered
energy and species source terms.

2.2. Subgrid-Scale Closure

The current sgs closure is obtained using the mixed dynamic Smagorinsky model by combining the
models proposed by Erlebacher et al. [17] and Speziale [18] with the dynamic modeling procedure [19–23].
The composite stresses and fluxes in Eqs. (1)–(4) are given as
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Here, the term μt is the sgs eddy viscosity given by the relation

μt = ρCRΔ2Π
1
2

S̃
, (8)



where
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1
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)
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The terms CR, Pr t, and Scti are the Smagorinsky, sgs-Prandtl and sgs-Schmidt numbers and are evaluated
dynamically as functions of space and time. There are no tuned constants employed anywhere in the closure.
The overall model includes the Leonard and cross-term stresses and provides a Favre averaged generalization
of the Smagorinsky model [24].

2.3. Lagrangian Particle Model

To handle the particulate phase, Lagrangian particle models for momentum are employed using the fun-

damental framework developed by Oefelein [10]. The source termḞs in Eq. (2) accounts for the interphase
exchange of momentum imposed by the particles on the resolved-scales. For particles on the order of, or
smaller than, the Kolmogorov scale, this term is given by an expression of the form
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The quantity G is the filter function. Term (i ) represents the instantaneous force induced by respective
particles at remote points yp and times τ . Term (ii) represents the spatially filtered effect of these remote
exchange processes on discrete points x within the volume of influence defined by the filter. Term (iii)
represents the filtered effect of sgs temporal disturbances over the integration time-step δτ .

Explicit filtering of the particulate phase is performed using a top-hat filter. This is analogous to the
particle-source-in-cell methodology developed by Crowe et al. [25]. The term

∑
p in Eq. (10) represents

a summation over all discrete particles within a given finite-volume cell. This approximation was found
to be acceptable for the cases considered since the particle loading is relatively low. Particle dynamics are
simulated assuming that 1) the density of the particles is much greater than the density of the carrier fluid, 2)
the particles are dispersed and collisions between particles are negligible, 3) the particles are on the order of,
or smaller than, the Kolmogorov scale in size, and 4) that particle motion due to shear is negligible. Under
these assumptions the Lagrangian equations which govern instantaneous particle motion can be written as

dxp

dτ
= up, (11)

dup
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=
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These equations are non-dimensionalized using the same reference quantities used in Eqs. (1)–(4). The
subscript p denotes values associated with individual particles. The ratio τr/τf (where τf = δref/Uref) is
the dimensionless particle relaxation time

τr
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The term St is the Stokes number based on the mean flow time scale τf , i.e.,
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τp
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=
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2
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The quantities ρp and dp are the dimensionless particle density and diameter, respectively. The term Rep is
the particle Reynolds number, where

Rep = dpRe |u − up| . (15)

The instantaneous drag acting on respective particles is modeled using the nonlinear correlation given by
Schiller and Nauman [26]. Using this correlation Eq. (13) is evaluated using ap = 0.15 and bp = 0.687.
This correlation matches the standard drag curve to within ±4% on the interval Rep < 800.

Equations (11) and (12) are integrated using a fourth-order Runge-Kutta time-stepping technique applied
in a manner consistent with the evaluation of the explicit terms in the gas-phase solver. The instantaneous
velocity field is approximated by reconstructing Favre decompositions of the form u = ũ + u′′ using
tri-linear interpolation to obtain the resolved-scale component ũ and a Langevin model to obtain the sgs
velocity fluctuations u′′ [10, 12]. The velocity fluctuations are generated stochastically by assuming that
the sgs contribution is isotropic and using a Gaussian distribution function at intervals coincident with the
eddy-particle interaction time τi.

Instantaneous particle motions are tracked in the Lagrangian frame as they traverse a succession of sgs
eddies. Particles are assumed to interact with these eddies for a time taken as the smaller of either the
eddy lifetime or the characteristic transit time. The eddy lifetime τe is obtained using the scaling arguments

embedded in the Smagorinsky model [24] to estimate the dissipation length scale (Le =
√

C3
I /C2
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and the model proposed by Yoshizawa [27, 28] to estimate the sgs kinetic energy (ksgs = CIΔ2ΠS̃). The
term CI (which appears in Yoshizawa’s model) is calculated dynamically as a function of the trace of the
Leonard stresses in a manner consistent with the evaluation of CR. Applying this scaling yields the following
expression for the eddy lifetime
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The characteristic transit time is obtained by equating the linearized form of Eq. (12) to the characteristic
fluid speed in the eddy, Le/τr, where the particle relaxation time τr is given by Eq. (13). This yields the
expression

τt = −τr ln
(

1 − Le

τr|u− ud|

)
. (17)

The particle interaction time is obtained as a function of Eqs. (16) and (17) using the criteria

τi =

⎧⎨
⎩

τe Le ≥ τr|u− ud|

min(τe, τt) Le < τr|u− ud|
. (18)

When Le ≥ τr|u − ud|, Eq. (17) has no solution and it is assumed that the particle is entrained within
the eddy. For the opposite situation it is assumed that the particle interacts with the eddy for a time taken
as the smaller of the eddy lifetime or the characteristic transit time. Two-way coupling is achieved by
simultaneously evaluating the source term given by Eq. (10) and the individual contributions imposed by
each particle in term (i ).

3. Results and Discussion

A schematic of the experimental apparatus and matching computational domain is shown in Fig. 1.
The rig is cylindrical and consists of an injector section, main chamber, and plenum chamber. The coaxial
injector houses a centered particle-laden primary jet surrounded by a swirling annular secondary jet. Flow
is injected into the main chamber from the top. Upon entering the chamber the flow undergoes a sudden
expansion followed by a series of complex fluid dynamic interactions. The flow then undergoes a second
expansion at the exit of the main chamber into a plenum chamber.



The region of interest showing the eight axial stations where cross-sectional PDA measurements were
made are shown in Fig. 2. Gas-phase and particle-phase mean and rms velocity components are given with
simultaneous measurements of the particle size and mass flux distributions. Data were obtained with two
different particle mass loadings in the primary jet, for three different particle size classes. The relevant flow
conditions and particle properties are summarized in Table 1. Particles are injected into the primary jet
in equilibrium with the gas phase velocity according to the distribution given by Fig. 3. This distribution
produces a mean number diameter of 45 μm and particle sizes over the range 20 ≤ dp ≤ 80 μm, which is
representative of typical fuel drop size distributions in gas turbine combustors. All of the walls inside the
injector ducts are assumed to be adiabatic. The walls in the main chamber are assumed to be 300 K.

The geometry is characterized in dimensionless units using the radius R of the outer wall of the sec-
ondary jet as the reference length scale (i.e., δref = R = 32 mm). The main chamber is approximately 30
dimensionless units long and extends a radial distance of approximately 3 dimensionless units. The injector
section (not shown in Figs. 1 and 2) extends 8 units upstream from the main chamber face plate. The plenum
chamber begins approximately 30 units downstream of the main chamber, ends at 50 units, and extends a
radial distance of 9 units.

The primary jet has a radius of r/R = 0.5. Flow from the primary jet evolves to a fully-developed
turbulent state prior to injection and enters the main chamber axially. The secondary jet extends over a
radial interval of 0.59 ≤ r/R ≤ 1, is fully-developed axially, and is injected into the main chamber with a
swirling azimuthal velocity component. A reference velocity of Uref = 12.9 m/s (based on the bulk flow
rate in the primary jet) was used in all cases. The flow rate in the secondary annular jet was adjusted to
give a maximum velocity of approximately 18 m/s. The maximum tangential velocity for both cases was
approximately 13 m/s.

The grid used to perform the calculations includes the injector section, main chamber, plenum chamber
and the upstream portion of the injector section not shown in the figures. This places the inlet plane of
the primary and secondary jets at a location of 8 dimensionless units upstream of the entrance to the main
chamber to provide the appropriate development lengths required to drive fully-developed turbulent flow in
both ducts. The grid spacing in the primary and secondary jets were set by adhering to the requirements
established to resolve the near-wall turbulence characteristics (i.e., “wall-resolved” LES). The azimuthal
grid spacing was set using a uniform distribution of 64 cells. The grid density in the primary jet was set at
128 × 64 × 64 in the axial, radial, and azimuthal directions, respectively. Similarly, the grid density in the
swirling secondary jet was set at 128 × 128 × 64. This distribution provides the level of fidelity required to
resolve the turbulent Reynolds-stress tensor accurately. In each duct, the first cell from the wall was within
a y+ value of 1, the first 16 cells were within the interval 0 < y+ < 30, and the transverse grid spacing was
set such that Δx+ and Δz+ where both less than 50.

The grid for the main chamber was constructed using the resolution requirements in the injector ducts
as a baseline. The axial grid distribution was set by matching the spacing of adjacent cells in the injector
section and stretching from the entrance of the main chamber the exit (where the flow is further expanded
into the plenum). Stretching was accomplished by maintaining a relative factor of 1.02 between adjacent
cells. The grid spacing in the radial direction was set by matching the radial distributions of the cells in the
injector ducts at the inlet and filling in the remaining area by reflecting the stretching functions on adjacent
sides of the ducts. The spacing on the plenum side of the main chamber was set to be uniform, with the
inner distribution smoothly transitioned between these two end points. The resultant grid density in the main
chamber is 128 × 288 × 64.

The expansion induced by the plenum chamber has a significant influence on the upstream recirculation
zones that form in main chamber. Thus, it is imperative that this section be included as part of the LES
calculation to provide the correct unsteady pressure distribution across the exit plain of the main chamber.
Significant errors can occur otherwise since a change in the overall structure of the recirculation zones
induces a global shift in the location of the mean flow characteristics. Such a shift makes comparisons



between measured and modeled results meaningless. Here, we match the grid at the exit of the main chamber
and stretch such that the entire plenum region is filled with a 32× 296× 64 grid. The final grid of the entire
domain is constructed with 4.4-million cells in total.

The Sommerfeld apparatus provides a particularly simple way to impose the upstream boundary condi-
tions. The injector section is long enough to assume that fully-developed turbulent profiles exist at the inlets
to the computational domain. With the added assumption that all wall surfaces are hydraulically smooth, we
use the LES solver itself to drive fully-developed turbulence in the injector ducts. Fully-developed turbulent
velocity profiles are generated inside the these ducts by recycling the unsteady velocity field from radial
planes at an axial distance of 2 dimensionless units upstream of the main chamber face-plate. The stripped
fields are corrected to maintain the mass flow rates specified in Table 1, then imposed at the injector inlet 8
units upstream with a non-reflecting pressure condition.

The secondary jet is corrected by modulating the azimuthal velocity in a manner that produces the
correct experimentally measured swirl-number at the injector exit. This operation is performed using a
simple control loop that converges on the azimuthal component of velocity required at the inlet to produce
the preselected swirl numbers at the injector exit.

A representative LES solution corresponding to Case 2 in Table 1 is shown in Figure 4. This figure shows
the instantaneous particle distribution in the region of interest superimposed on the corresponding turbulent
velocity field in the y-x, z-x, and z-y planes corresponding to the axial locations of x/R = 0.78, 1.6, 2.7 and
3.5, respectively. The four radial cross-sections correspond to the axial stations where PDA measurements
were made. This figure clearly highlights the asymmetric precessing nature of the flow. At any instant
in time there are approximately 2.5-million particles being tracked in the region of interest. Tracking this
number of particles is significant since it verifies the feasibility of employing large numbers of physical
particles and eliminates the need to implement classical parcel approximations for cases such as this.

The mean flow characteristics are shown in Fig. 5. This figure shows the time-averaged gas-phase
velocity field for both Case 1 (top) and Case 2 (bottom). Focusing first on Case 1, key features of the flow
include the primary and secondary recirculation zones with cores centered at the (x/R, r/R) coordinates
of (3.7, 2.0) and (1.4, 2.4), respectively, the stagnation point in the core region centered at approximately
(3.3, 0.0) and the reattachment point centered at approximately (2.5, 3.0). These numbers coincide with the
measured results reported by Sommerfeld to within 5 %. The highest negative velocities within the primary
recirculation bubble are found at the coordinates (3.7, 1.1).

Comparing the characteristics between Case 1 and 2 highlights the effect of particle loading on the mean
flow characteristics. Particles, which initially have the same velocity as the air, are not able to follow the
rapid expansion and deceleration of the gas jets upon injection into the main chamber. The larger particles
have the highest velocities and tend to penetrate the central reverse flow region. The smaller particles tend
to respond quickly to the recirculation of the gas flow and are more prone to entrainment in the secondary
recirculation zone.

Direct comparisons between measured and modeled results for Case 2 are given in Figs. 6 through
10. Results in each of the figures coincide with the experimental measurement locations listed in Fig. 2.
Figures 6 and 7 show comparisons of the mean and rms components of the axial, radial and azimuthal
components of velocity. Symbols represent the measured data acquired by Sommerfeld et al., the lines
represent time-averaged LES results. Identical comparisons for the particle-phase are given in Figs. 8 and
9. Fig. 10 shows comparisons between the particle diameter and the momentum flux profiles. These data
represent a small subset of the available results and provide a reasonable representation of the level of
accuracy achieved in the simulations.

In all cases, the agreement between the measured and modeled results is excellent. We achieve the best
agreement on the gas-phase mean values, which clearly falls within the experimental error bounds. Similar
agreement is achieved with respect to the gas-phase rms values, with only slight degradation compared to the
mean-values. Comparisons between the particle phase quantities are not quite as good, but exhibit similar



trends and are still well within the experimental uncertainties.
The agreement between the measured and modeled results shown in Figs. 6 through 10 is especially

significant because there are no tuned constants used in any of the models. The only controlling parameters
in the simulation are the grid spacing and implementation of boundary conditions. Thus, discrepancies can
only be attributed to four possibilities: 1) bad numerics, 2) lack of appropriate grid resolution, 3) ill-posed
implementation of boundary conditions, or 4) poor model performance. By implementing the approach
described above, we are able to fairly confidently eliminate the all but the last prior to performing the
calculation. We can further conclude, based on the agreement between the measured and model results, that
the current modeling approach performs relatively well for multiphase flow under lightly loaded conditions
and approaches a predictive capability for the conditions cited.

With this confidence in place, we are able to extract additional information from the calculations that
cannot be measured experimentally to gain further insights relevant to modeling sprays. As one example,
there are two relevant sets of information of leading significance. The first is the local instantaneous particle
Reynolds number exhibited by particles in the region of high-shear between the primary and secondary
recirculation zones. The second is the corresponding Kolmogorov length and time scale distributions in the
same region. Figures 11 and 12 provide this information.

Figure 11 shows profiles of the mean and rms particle Reynolds number extracted from the LES. The
solid curves represent the bulk average over all particle diameters, dp, the dashed curves represent dp =
30 ± 5 μm, dash-dot represent dp = 45 ± 5 μm, and dash-dot-dot represent dp = 60 ± 5 μm. Examining
these profiles in the high-shear region at x/R = 0.78 indicates that the larger particles exhibit a higher mean
Reynolds number with peak values of approximately Rep = 70 ± 20, while the smaller particles exhibit
peak values of Rep = 20 ± 10.

Estimations of the corresponding Kolmogorov length and time scales in the region of interest are shown
in Fig. 12. These data have been non-dimensionalized by the reference length scale δref = R = 32 mm
and characteristic time scale τf = δref/Uref = 2.48 ms, where Uref = 12.9 m/s (as defined above). In
the high-shear region at x/R = 0.78, the Kolmogorov length and time scales approach values as small as
0.01 mm and 0.1 ms. These quantities represent the smallest limiting extreme for this particular case.

4. Conclusions

In the sections above we have established a groundwork for simulating complex wall bounded turbulent
flows, non-reacting particle-laden flow, and recirculating swirling flow with characteristics relevant to gas
turbine (and similar) combustors. We have highlighted a systematic approach for validating the accuracy of
LES in a progressive manner with well-defined and carefully implemented boundary conditions.

The validated case study provides a mechanism to establish baseline numerical capabilities, to gain a
clearer understanding of the effectiveness and feasibility of current models, and to gain a more quantitative
understanding of relevant modeling issues by analyzing the characteristic parameters and scales of impor-
tance. Future work will focus on continued systematic assessments and validation of physical models in
both multiphase and reacting multicomponent systems.
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Table 1: Flow conditions and particle properties used in the Sommerfeld experiments.
Case 1 Case 2

Gas Phase (Air):
Flow rate in primary jet, g/s 9.9 6.0
Flow rate in secondary jet, g/s 38.3 44.6
Inlet Reynolds numbera 26200 27250
Swirl number 0.47 0.49
Temperature, K 300

Particle Phase:
Loading ratio in primary jet 0.034 0.17 b

Flow rate, g/s 0.34 1.0
Mean diameter, μm 45.5
Density ratio, ρp/ρf 2152
aBased on total volume flow rate.
b5 × Case 1.
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Fig. 1: Schematic of the experimental apparatus employed by Sommerfeld et al. [1–3].
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Diameter, μm

N
um

be
rD

en
si

ty
,%

0 25 50 75 100 125
0

2

4

6

8

10 Inlet Distribution

Measured
Analytical

Fig. 3: Particle size distribution in the axial (primary) jet.



Case 1

Case 2

x/R

r/
R

0 3 6 9 12 15
-3

0

3

Fig. 5: Time-averaged flow characteristics associated with Case 1 (top) and Case 2 (bottom).



Axial Component:

r/
R

-0.5 0 0.5 1 1.5
0

1

2

3
x/R = 0.0938

-0.5 0 0.5 1 1.5

0.781

-0.5 0 0.5 1 1.5

1.63

-0.5 0 0.5 1 1.5

2.66

Radial Component:

r/
R

-0.5 0 0.5 1 1.5
0

1

2

3
x/R = 0.0938

-0.5 0 0.5 1 1.5

0.781

-0.5 0 0.5 1 1.5

1.63

-0.5 0 0.5 1 1.5

2.66

Azimuthal Component:

r/
R

-0.5 0 0.5 1 1.5
0

1

2

3
x/R = 0.0938

-0.5 0 0.5 1 1.5

0.781

-0.5 0 0.5 1 1.5

1.63

-0.5 0 0.5 1 1.5

2.66

Fig. 6: Time-averaged profiles of the dimensionless gas-phase velocity field (Case 2). Symbols represent measured data from
Sommerfeld et al. [1–3], lines represent LES results.
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Fig. 7: RMS profiles of the dimensionless gas-phase velocity field (Case 2). Symbols represent measured data from Sommerfeld et
al. [1–3], lines represent LES results.
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Fig. 8: Time-averaged profiles of the dimensionless particle-phase velocity field (Case 2). Symbols represent measured data from
Sommerfeld et al. [1–3], lines represent LES results.



Axial Component:

r/
R

0 0.2 0.4
0

1

2

3
x/R = 0.0938

0 0.2 0.4

0.781

0 0.2 0.4

1.63

0 0.2 0.4

2.66

Radial Component:

r/
R

0 0.2 0.4
0

1

2

3
x/R = 0.0938

0 0.2 0.4

0.781

0 0.2 0.4

1.63

0 0.2 0.4

2.66

Azimuthal Component:

r/
R

0 0.2 0.4
0

1

2

3
x/R = 0.0938

0 0.2 0.4

0.781

0 0.2 0.4

1.63

0 0.2 0.4

2.66

Fig. 9: RMS profiles of the dimensionless particle-phase velocity field (Case 2). Symbols represent measured data from Sommerfeld
et al. [1–3], lines represent LES results.
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Fig. 10: Dimensionless particle diameter and momentum flux profiles (Case 2). Symbols represent measured data from Sommerfeld
et al. [1–3], lines represent LES results.
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Fig. 11: Mean and RMS profiles of particle Reynolds number extracted from the LES (Case 2). The solid curve represents the bulk
average over all particle diameters, dp, the dashed curve represents dp = 30 ± 5 µm, dash-dot represents dp = 45 ± 5 µm, and
dash-dot-dot represents dp = 60 ± 5 µm.
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Fig. 12: Dimensionless Kolmogorov length and time scales in vicinity of high-shear region.




