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1. Introduction

The development of high-power fiber lasers requires a detailed understanding of limita-
tions imposed by high optical irradiances present in the active core. In a well-designed
high-power system, the onset of optical damage or nonlinear optical processes ultimately
limits the attainable power. As a result, current designs employ large mode area active
fibers, with the aim of achieving a dominant lowest-order spatial mode with the largest
possible area. Since these fibers will generally support multiple modes, a common prac-
tice is to coil the fiber using a diameter small enough to induce mode-dependent bend
losses.! The desired LPy; mode experiences lower bend losses than the higher-order
modes, and, below a certain bend radius in the presence of gain, can completely dominate
over the other modes. Optimizing the design of a fiber for use in bend-loss mode-filtered
lasers or amplifiers requires consideration of the mode losses, mode-field spatial distri-
butions and propagation constants of bent fibers and of beam propagation in fibers with
varying bend radii or having orthogonal bend planes.

To properly study these effects, we have developed analytical and numerical models for
simulating beam propagation in coiled fibers in the presence of gain and loss. The models
range in complexity from a semi-analytical eigenmode solver for bent step-index
waveguides to fully vectorial finite-difference eigenmode solvers and beam propagation
models. The latter models can handle arbitrary refractive-index and rare-earth-ion doping
distributions as well as arbitrarily-varying bend radii. Both types of tools were found
necessary for treating problems encountered in fiber amplifier simulation. In this paper,
we concentrate on the more comprehensive finite difference (eigenmode and beam
propagation) models and describe some significant results obtained from their use. To
this end, Section II includes a brief discussion of the modeling approach and Section III
describes results that are expected to impact the design of future fiber laser systems.

II. Discussion of Modeling Approach

In order to adequately model a general class of fiber laser systems, numerical models
were required that were capable of treating an arbitrary fiber shape, arbitrary index and
gain profiles, and the effects of bending on both mode shape and radiation loss. To meet
these requirements, an eigenmode solver was developed for simulations in which all
parameters are invariant in the propagation direction (z ), and a beam propagation code
for the more realistic simulations involving z-dependent parameters. In both cases, a
finite difference approach was adopted similar to that previously used to model
waveguides of arbitrary shape’. This approach involves the description of regions of
piecewise constant index of refraction for the fiber cross section using an irregular
triangular grid in which all dielectric interfaces coincide with a triangle boundary. The



triangular grid is produced by a grid generator that “stretches” an initially regular grid as
required to properly describe the fiber structure. Finite difference equations are derived
by integration of the relevant Helmholtz Equation for each field component over a
polygonal region surrounding each grid point. These equations are solved by direct
matrix inversion using either horizontal or vertical ordering for maximum efficiency.

For the present application, the above approach required modification in order to treat
effects due to fiber bending. Although these effects are commonly incorporated by
simply adding an extra component to the index of refraction that increases linearly with
radius, a more rigorous approach was employed by deriving the equations describing the
propagation of light in a cylindrical coordinate system as shown in Fig.l1. Here,
propagation is assumed to take place along the 6 direction, with the fiber geometry
described in cross section as a function of »and z . The problem was then formulated in
terms of the fields H,and H_, with all fields assumed to

z

Fig. 1 Geometry used for finite difference equation derivation
be proportional to the factor ¢**°, where k is the unknown (complex) eigenvalue, or in
the case of beam propagation, the reference wavevector. A careful accounting of the
interface conditions for both field components at all triangle boundaries separating
regions of different dielectric constant then yields a fully vectorial formulation. A
semivectorial formulation is easily obtained from these equations by neglecting one field
component, and has been found to be very useful since the index contrasts typically
found in fibers are small, making the semivectorial approximation well justified.
Furthermore, the semivectorial code runs much faster and requires a factor of ~8 less
memory.

During the above derivation, the radial coordinate is shifted so that the origin is centered
on the fiber, and expansions in the small quantity »/R naturally occur, where R is the



bend radius. The first term in this expansion for the effective refractive index can be
shown to be identical to the commonly-employed linear index ramp. Other higher-order
terms, however, have also been included, leading to increased accuracy of the present
more rigorous approach. From a numerics standpoint, however, the resulting finite
difference equations may be solved using direct matrix inversion as before, with the only
additional requirement in practice being the use of an absorbing region or perfectly
matched layer (PML) along the right boundary to absorb the radiation emitted as a result
of the bend.

II1. Results
A. Mode distortion

When a step-index fiber is coiled tightly enough to filter out high-order modes, the
resulting LPy; mode is substantially distorted relative to LPy; of the unbent fiber and has
a smaller effective mode area (4.r). In addition, the intensity-weighted center of the bent-
fiber mode is significantly shifted toward the outer core boundary in comparison with the
unbent mode. Both of these effects are shown in the calculations illustrated in Fig. 2 for
the case of An=0.00344, core diameter = 25 pm and A,=1.064 um. Notice that these

effects are of major importance even for very modest bend radii, and in general will have
a strong impact on amplifier performance and efficiency; the smaller A.¢ will lead to a
more rapid onset of damage or nonlinear process and the shift in mode position will
reduce the overlap between the mode field and the rare-earth-doped gain region,
especially in fibers that confine the rare-earth dopant to the central region of the core.
Consequently, calculations for bent-fiber systems that neglect mode distortion could not
be expected to be sufficiently accurate for system design.

B. Adiabatic Bend Transitions

Although the fiber in a fiber laser or amplifier will likely be bent over most of its length
with a constant bend radius to affect mode discrimination, the ends will most probably be
straight in order to address packaging requirements or accommodate hardware for
launching a seed beam and/or directing the output beam; in other implementations, one or
both fiber ends may be more tightly coiled than the central region in order to provide
increased discrimination against high-order modes'. These transitions are expected to
lead to sizeable insertion losses if the change in radius is sudden. We therefore have used
the beam propagation code to investigate the dependence of insertion loss on the rate of
change of bend radius. Using the same fiber parameters as described in the previous
calculation, we injected the LPy; mode into the (straight) fiber and then made either a
sudden or gradual change of bend radius to 0.84 cm as the mode was propagated. The
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Fig. 2 Radial profile of the LP¢; mode of a step index fiber for several bend radii.
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Fig. 3 Beam power as a function of propagation distance for the LP¢; mode of a fiber
as the bend radius is changed from infinity to 0.84 cm, either suddenly or gradually.



results, shown in Fig. 3, depict a dramatic decrease in insertion loss from 80% to 20%
for a transition occurring over a distance of approximately 10 cm as compared with a
sudden transition. Affecting such gradual transitions in the laboratory is not expected to
be especially difficult, due to the natural bending resistance of fibers.

C. Self-focusing in Bent Fibers

For fiber lasers or amplifiers operating at peak powers of several MW, self-focusing of
beams due to the presence of the Kerr nonlinearity can lead to fiber damage, and thus
represents a potential output power limiting mechanism. Although this phenomenon has
been well-studied for decades in straight waveguides and glass amplifier rods, little is
known about the behavior of self-focusing in bent fibers. In particular, it has been
thought that the presence of bending might lead to an increase in self-focusing
threshold and thus help to defeat this deleterious effect in high-power fiber systems.

To investigate this effect, a nonlinear index capability was added to the beam
propagation code by modifying the refractive index at each grid point at every
propagation step according to the local beam power at that grid point. Simulations were
then performed by injecting the fundamental linear (low-power) eigenmode to start the
calculation and propagating this mode with nonlinear index effects included to observe
its behavior. Beams of various powers were launched as indicated in Fig. 4. The results
for the case of the straight fiber with parameters described above and n, = 2.7 x 10°
cm’/W are shown in Fig. 4a. The critical power for self-focusing is seen to be between
4.0 and 4.5 MW, in good agreement with the value of 4.35 MW predicted for a
Gaussian beam in silica’. Below this value, oscillations occur that reflect the fact that
the injected linear eigenmode is not an eigenmode of the nonlinear waveguide. These
oscillations in peak irradiance are important due to their potential for fiber damage or
stimulation of other nonlinear processes.

The same calculation for a similar fiber with a 1 cm bend radius is shown in Fig. 4b.
Although the behavior is somewhat more complicated, the overall results are similar to
the straight fiber case. As before, the mode self-focuses at powers just below 4.5 MW
and oscillates at lower powers. But now, self-focusing is seen to occur at a shorter
distance, and the peak irradiances of the oscillations are somewhat higher. These
changes are thought to reflect the fact that the injected eigenmode of the bent fiber is
more tightly confined and the peak power density higher than for the straight fiber.
These calculations indicate that bending the fiber does not mitigate self-focusing, and
that other approaches such as index tailoring or the use of longer pulse lengths should
be pursued in the design of systems that are self-focusing-limited.
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IV. Conclusion

We have developed a suite of numerical tools for analysis of beam propagation through
fiber lasers and amplifiers that include effects due to fiber bending. These tools include
a semi-analytic eigenmode solver and several triangular mesh finite-difference codes
for both eigenmode determination as well as beam propagation. These latter tools all
include bend loss inherently and allow arbitrary index and gain profiles in order to
maximize our flexibility for future fiber and pumping designs. These tools have already
proven extremely useful in allowing us to investigate several important effects such as
distortion of mode shape due to bending, insertion loss due to changes in bend radius,
and the effects of bending on self-focusing behavior. Future model development has
already begun with the intention of addressing transient effects related to pulse length
and shape, and associated parasitic processes such as stimulated Raman and Brillouin
scattering.
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