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Historic Arrhenius Approach for Lifetime Prediction

• Measure “failure” times & create Arrhenius plot [t~exp(-Ea/RT)]
• Extrapolate to make predictions
• Typical data over a factor of 20- anything looks “Arrhenius”
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Reference- Gillen, Celina, Clough and Wise, Review paper in
Trends in Polymer Science, 5, 250 (1997).



Accelerated aging

100oC,
5 minutes

Shelf-life aging

25oC, 30 days

Henhouse aging

30 days

Concern- relative mix of reactions may change as temperature increased

Rotten eggs at 25oC
(ambient temperature)

Hard boiled 
eggs at 100oC

Baby chicks at 40oC



Selected Phenomena That May Result
in Non-Arrhenius Behavior

• Dominant reactions can change with T
-tends to give lower Ea as T lowered)

• Polymer transition region (Tg or Tmp).
• Reactions can depend on sample

geometry
-diffusion-limited oxidation (DLO)
-tends to give lower Ea as T raised)

Other standard Arrhenius approach problems

1.  Most data eliminated.  Solution- time-temperature superposition.
2.  No confirmation of Ea extrapolation.  Solution- ultrasensitive O2 consumption

measurements extending into extrapolation region.
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Principle of accelerated aging- raise T to increase overall reaction rate
- implies curves at 2 T’s related by constant multiplier (constant acceleration)
- implies same curve shape when plotted versus log time
- choose reference T (multiplicative shift factor aT = 1)
- at each T, find empirical aT that gives optimum superposition

Improved approach- time-temperature superposition

Commercial nitrile rubber
- e vs. T and time
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- this also minimizes extrapolation

Ref.- J. Wise, K. T. Gillen and R. L. Clough, Polym. Degrad. & Stabil., 49, 403 (1995).



Nitrile- empirical t-T superposition at 64.5°C

aT defined as shift factor for temperature T

Normal Arrhenius- 1 point per T (e.g., time to e/e0 = 0.25)
Superposition- every datum point is used in the analysis
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Gas handling line
Typical sample containers

Ultrasensitive Oxygen Consumption (UOC)



O2 consumption results for nitrile rubber

• elongation taken down to 
65oC (2 years of aging)

• UOC results obtained
down to room T (23oC)

• constant rate at each T
• consistent with constant

acceleration assumption 
• arrows denote time to

10% of initial elongation
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t-T superposition of
integrated consumptionIntegrated O2 consumption
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Compare shift factors of elongation and UOC 

• Same Ea in overlap region confirming connection of UOC & elongation
• UOC finds same Ea below 65oC confirming Arrhenius extrapolation assumption

Arrhenius behavior confirmed
for nitrile rubber material

Note: CO2 and CO production
rates have same Ea as O2

consumption
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Elongation- semi-crystalline material through Tmp
(Reference- Gillen, Assink & Bernstein- SAND Report 2005-7331)

ITT Exane II XLPE
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Find constant Arrhenius slope through transition
region 
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Have 19-23 year data at 24 °C for Okonite neoprene

t-T superposition with 24°C reference T Non-Arrhenius elongation results
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Non-Arrhenius evidence for chloroprene materials

Ref.- Gillen, Bernstein and Derzon Polymer Degradation and Stability, 87, 57 (2005).
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Rockbestos neoprene cable jacket-
evidence from UOC results

Non-Arrhenius for O2 consumption of 2nd neoprene
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Ref.- Celina, Graham, Gillen, Assink and Minier, Rubber Chem. Technol., 73, 678 (2000).



Burke butyl o-ring seal material 
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• Similar Ea values at high Ts
• Evidence for curvature to lower
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Elongation for 8 different CSPEs

2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3

1000/T, K
-1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

E
m

p
ir
ic

a
la

T
SMhy-aT4

elongation

O
2

consumption

CO
2

production

88 kJ/mol

109 kJ/mol

102 kJ/mol

O2 & CO2 for Samuel Moore CSPE

• Curvature of UOC consistent with
curvature of elongation results

• CO2 production has higher Ea



-0.1

0

0.1

0.2

0.3

0.4

0.5

40 60 80 100 120 140 160

H
ea

t 
F

lo
w

 (
W

/g
)

Temperature (
o
C)

152 C
125 C100 CBrandrex CLPO insulation

Effect of taking data thru Tmp point region- examples of non-superposition

Ref.- Gillen, Assink & Bernstein- SAND Report 2005-7331
10 100 1000

a
T
*t, weeks at 99

o
C

0

50

100

150

200

250

300

350

400

E
lo

n
g
a
ti
o
n
,

%

BRin-she

Unaged = 347%

T,
o
C a

T

99 1

109 1.9

125 7

151.5 461 10 100
Aging time, weeks

0

50

100

150

200

250

300

350

400

E
lo

n
g
a
tio

n
,
%

BRin-e

151.5
o
C 125

o
C

109
o
C

99
o
C

Unaged



2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

1000/T, K
-1

10
-2

10
-1

10
0

10
1

10
2

E
m

p
ir
ic

a
la

T Data region

Brex-aT4

elongation

oxygen consumption

72 kJ/mol (17.3 kcal/mol)

Ea for elongation at 99°C & 109°C is
consistent with O2 consumption results
but overlap region small

Ea for CO2 is slightly higher indicating
some changes in the oxidation chemistry are
also occurring below main melting peak

2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2

1000/T, K
-1

10
-2

10
-1

10
0

10
1

10
2

E
m

p
ir
ic

a
la

T

Brex-aT5

72 kJ/mol (17.3 kcal/mol)

elongation

O
2

consumption

CO
2

production

Non-superposition implies chemistry changes above Tmp



UOC for Rockbestos CLPO

Complex melting region- peaks at 
100C, 110C and 120C

Elongation results at 125C and higher
(totally melted) give Ea = 135 kJ/mol
(32 kcal/mol)

Oxygen consumption & CO2 production
give Ea ~ 135 kJ/mol above 125C and
~98 kJ/mol below this temperature
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Ref.- Gillen, Assink & Bernstein- SAND Report 2005-7331



CONCLUSIONS

• Evidence for chemical changes with temperature change for many materials

• As expected, extrapolating through crystalline melting point region entails
major risks

• Wherever possible, data should be taken over an extended temperature range in
order to maximize data range and minimize extrapolation distance

• Oxygen consumption approach is one way to achieve this goal for air-aged
materials

• Ea usually drops as aging temperature is lowered implying high-temperature
extrapolations will often overestimate material lifetimes


