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Introduction N 4 Numerical Dispersion Example: The Marmousi Model
N ical soluti ¢ vartial differential i b licit. time-domain. finite-diff ED) techni tai A The Marmousi model is a synthetic 2D earth model developed from geologic aspects of the Cuanza basin of
umerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) techniques entails offshore Angola. It contains several realistic features relevant to marine seismic exploration for petroleum: a
approximating temporal and spatial derivatives by discrete function differences. Hence, the solution of the difference ter | ith a hori tal bed £ diopi th faults that offset and t t di ¢
equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if the grid V water ayt?r .WI a norizonta Sea. €q, a sgquence .O IppIing grOYv aults ? oriset an rurllca e sedimentary
intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as Numerical Examples: Phase/Group Speed and Polarization P beds, anticlinal structures, two high-velocity salt sills, a near-horizontal erosional unconformity, and a deep
numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded petroleum reservoir. The model is commonly utilized to generate synthetic data for evaluating seismic
growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding reflection imaging algorithms. A 2D P-wave speed model, spatially sampled at Ax = Az = 24 m, is obtainable
instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled O(2,4) Phase Speed O(2.,4) Group Speed at the website http://www-rocg.inria.fr/~benamou/marmousi.html.
system of difference equations) under examination. In this study, a dispersion relation appropriate for 3D O(M,N) e oo s e e a0 w0 we s MMas asoag 3.5 ks
staggered-grid, FD solution of the velocity-stress elastodynamic system is derived, from which formulae for discrete X 1o N Phase and group speed depend We extrapolate the Marmousi model to three spatial dimensions, and calculate shot gathers and timeslices
) . . R ol . U1.0 _ﬁ \ . . . . . .
phase speed, group speed, and particle velocity polarization are developed. y/ o] S b Twe . . on plane wave propage_\t_lor} with a 3D O(2,4) FD algorithm based on the velocity-pressure equations of acoustic wave propagation. The
2 Sun| coomme s oo I ST [ B et o required mass density model is generated via the Gardner relation p = ¢ V4.
L] L] = = = = n=90 '
Velocity-Stress Elastodynamic System and Finite-Difference Grid f— S — : ratioss. Modeling Parameters:
. . o1 r Lo L At 5 grid intervals per A (red line) . . o . : : : :
Nine, coupled, first-order, non-homogeneous, Staggered Spatial Grid > V oo i | O(2,4) phase speeds vary by 1) Se!sm!c source: isotropic explosion, 24 m deep, activated by a Ricker wavelet with 10 Hz peak frequgncy.
partial differential equations: X Y 15| coordinate plane diagdal (s, 40" o | coondinate plane tiagdl (ot 00 -1.1%to +1.6%, and group 2) Seismic receivers: 341 hydrophones, 24 m beneath pressure-free surface of water layer, 12 m spacing.
6V — D pl g ( $=0°) 08 coordinate plane diaggnal (6=45°, $p=0°) speedsvary by-5’|°/ to +4.5% y
+X = \'/ 0.7 T T 0.7 T T]:ﬂ lative to i | el li o 1.5 km's . . g T . . . . . . .
—_p (V . (;) = b (f +V- ma) e A v vy ‘ v " ‘ —— relative to ideal (green ine) Different spatial grid intervals are utilized in four FD simulations, in order to visualize and assess numerical
ot Y ty > z N o' = o™ | Phaselgroup speeds fasfe_fbtlhan dispersion effects in the calculated seismic data.
® O.. O, | | ¥..l\ - 209 s 9 \\ physical speed c are possible,
86 am xx yy y ‘Z'¥ OQO.B body diagonal (6=55°, [(=45%) L,:”0.8 body diagonal (6=55°, $v=45%) "=t partICUIarly along bOdy dlagonal
- A] (V . V) I — H VV + VVT — s H GZZ . offset (m) offset (m) offset (m) offset (m) 1) Note differences in direct wave (D)
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0 0
{ { A Oy, o=n s=n/ seabed reflection (B), sea-surface reflection
Wavefield Variables: Elastic Earth Model Parameters: ADh ¢ Oy (S), fault diffractions (F), and interface
v(x,t) - velocity vector A(x), u(x) - Lamé coefficients x 0(2,4) Phase Speed 0(2,4) Group Speed reflection (R).
G(X,t) - stress tensor b(X) - mass buoyancy . L cXZ 0 100 50 AN 33 25 20 0 100 50 r/n 33 25 20
Staggered Temporal Grid ' ' Crossiine spatialgrid nterval Ay 2) Coarsely sampled model (M1, Ah=24 m)
I ot I . e
Seismic Body Sources: +— At—> o] s g= ' is four times larger than inplane and greatly enhanced crossline grid interval
f(x,t) - force density vector —e — —e o > +t S| coorsinato ani (oos0° NN oe | coordinate axs vms0nl 4207  spatial grid intervals Ax = Az. (M4, Ay=48 m) generate dispersion noise.
m(x,t) - moment density tensor <> = all velocity components @ = all stress components 07 07 =2 Both in
’ : ‘ ‘ : ‘ ‘ -plane and out-of-plane .
b | | — b | meT | erformance is adversely 3) Finely sampled model (M2, Ah=12 m)
10 1_0-_44 pf-f ted. ‘e . .
3D velocity-stress system is numerically solved with an explicit, time-domain, O(2,4) staggered-grid, FD algorithm s = | | areee created by bilinear 'nterpC’lat'O”.Of down-
Sos | coont iagdhal (6-45°, 00° , iogdal (0-45°, 00" load model (M1) appears superior, although
. coordinate plane diaganal (6=45°, 6=0°) 0.8 coordinate plane diaganal (6=45°, 6=0°) . . .
07 07 n-o M3 (with doubled Ay for rapid computation)
- - - " | | " ‘ is comparable.
O(2,N) Stability Factor, Phase & Group Speeds, and Polarization Measure —
o S ast b me - Extremely poor out-of-plane 4) Downgoing direct wave (DD) is ve
Derivational procedure is a modern variant of von Neumann analysis: assume a homogeneous %08 bodydiaguna.(e=sse.tﬁf¥w, %08 | body diagonal (6=5 propagation performance. S - = . S si)milar ingmogels M2. M3 a(m q l)\/l 4 Y
wholespace with no body sources, and perform a 4D discrete space/time Fourier transform of coupled el A e dx=24m dy=24m dz=24m dx=12m dy=12m dz=12m dx=12m dy=24m dz=12m » 19 :
system of FD updating formulae. Numerical dispersion relation is obtained by setting determinant of Boni Boni Strong numerical dispersion noise!
matrix of coefficients in transformed (i.e., algebraic) system equal to zero. Further manipulation yields: S
O(4,4) Phase Speed 0O(4,4) Group Speed -
1) FD Stability Factor: L . 11m IO.‘O 5.0 Ain 3.3 2‘.5 2.0 11m IO.‘O 5.0 AN 3.3 2‘.5 20
b,, are coefficients of an O(N) staggered, spatial FD operator. ' ' .
N/2 ,10 L10 ——— ourth-order temporal operator
CAt . . - a0 pet . | FD algorithm reduces spread of
n = \/g e Z ‘b At = FD tlmeStep, Ah = Spat|a| grld |nterva| L;E u% - phase/group speed curves with
A h 1 n 08 coordinate axis (6=90°) ¢=0°) n=0 3 08 coordinate axis (6=90°) ¢=0°) D | respect to stability parameter n.
n= 0.7 ‘ ‘ 0.7 ‘ - ‘
1 ‘ ‘ 1 ‘ ‘ For O(M,N) FD algorithms with
1 ili < i i i | L10 =1 L10 M = N, and executed at stability
For FD algorithm stability, must have n < 1, where c is maximum wavespeed in 3D earth model! < = | =1 | limitn = 1, perfect phase/group
§0'8 e ( o 050'8 e ( o speed performance is achieved
. coordinate plane di. I (6=45°, $p=0°, . coordinate plane di. I (6=45°, $p=0°, H
2) Plane Wave Phase Speed: - " | - " asiy  @long body diagonall
NG Nz i ] s = Ah/A = spatial sampling ratio. " ‘ o " . f'so,t:" p_zasT/group speeds are
c (S 0 ¢) 3 Z b” K(S 0 ¢) . . gm"o r|=0‘—': 23;-07 7 ess than ideal c.
phase 7> 72/ =l gin | TAS.9,0) (6,0) = polar and azimuthal propagation - 2° ho0 Equal spatial grid intervals Ax =
N/2 o . . . Q0.8 body diagonal (6=55°, }$=45%) 0.8 body diagonal (6=55°, |$=45% Av = Az
c ns J3 Z b direction angles of a plane harmonic wave y =4z
I e n | with Wavelength A Y 0.1 0z .03 04 05 Y 0.1 0z .03 04 05
where KZ (S,9,¢) — Ki +K§ +K22 — Polarization vs. Plane Wave Propagation Direction
N2 2 ran 2 ran : Numerical Validation of Phase Speed Dispersion
{an sin[(2n—1)7s sin 0 cosgb]} + {Z b, sin[(2n—1)7s sin 0 sin¢]} + {an sin[(2n —1)7s cose]} . 1) Polarplots of Bs. 8. 10r
n=l1 n=1 n=l1
O(2) Spatial FD 2) Each plot contains 6 curves, Impulse Response Seismograms 40 Hz Narrowband Seismograms
Operator f tial li ti =0.0 ] 0 Along Axis Propagation H
3) Plane Wave Group Speed: (ocramastcunve) 05 = | 0 A e e ryver Processing Procedure
(innermost curve) in steps of 0.1. il :— 1 = (S — | |1) Impulse response seismograms are
Caroup (5,0,0) 0 Cphase (5,0,0) . ' o ?zznolréngSC?gﬁgpr?;dci :?egslgn . wof % V|= m m/s Dty gy — ] generated by executing 3D FD algorithm with
= S - obtained by differentiating phase speed. 9 . P : = 00 'g((()))))-_ : Phase speed calculated from ||/ oLt cooen| . . . . . . . a unit impulse source waveform. Note
C Os C to 1.0. (angle 0°). sooF 3 : 1 ((')())gf(()})))) all picked zero crossings ) ) .
4) Polarization s independent of _ 3 . ,@gg)}%g{gg}%% i bisgonatPrepegaton severe numerical dispersion!
. . . - olarization is independent o | H : _ I CINCADS A 1.1 . . . . . . . . -
. t | discretization interval wor % e ehited) _ : .
4) Particle Velocity Polarization: | b g e . Pz ) . 3@%@%@%@@% oo} n=014150 |2) Impulse seismograms are convolved with
O(4) Spatial FD g o H 1 b e i I {1 |a suite of narrowband signals, representing
K(S R 9 R ¢) . . . . Operator 5) Valid for both P and S waves. 2 : s '((')()))gftgg))gg(((?))g((%))sg(«?))gt@))). / * osk 1 .
P(S,Q,qﬁ) = n(9,¢)- - dot product of unit propagation direction vector sl - ,@%@%@%@%@%@%@»») | - analogous harmonic source waveforms.
HKH n and normalized discrete wavenumber vector. 6) Increasing spatial order N @%g@@%gé@ﬁg@%@%g@ﬁg@%g@b °e ,
Improves d'sc.fte polarization 7008 z 1 ;%ggcé}:')Ssg«#}))gg:&g»%gg@ﬁg;:@;&g@&g@%ﬁg@»,, Body Diagonal Propagation 3) For each frequency, zero-crossings are
: qreement wift confinuum case. 3 B D S e S T T T e icked, and phase speed calculated.
1) Plane wave phase and group speed formulae, and polarization measure apply to either P-waves or S-waves. TN NN DRI ) ) . ] . ,
o0y eep 20, Ceptdy oo ey, e oy, e diy, echoh) G e oy ey I I
: SN o o ol ] i 1 B NI NN I adealy & 4) Example executes velocity-stress elastic
2) All formulae reduce to analogous continuous expressions in limit of vanishing temporal and spatial grid intervals. range-dependent £ .t)'),))()((t()t;,gg((()t)))gtQ)(),)g%)(;))gy(()')))g(Q)()))g(@»g,@»g«%;)g%?»g ool ] . .
3) Generalization to unequal spatial grid intervals (Ax # Ay # Az) exist. gain aPP'?;d : 3 7_ }pf.',{t‘m%bﬁt(?))f'ft))S"(?))g?t(%))§(t(?3)$f(@)f"(?))fgfq?))ﬁfq oo , algorithm with Vp = 350 m/s and Vs = 0 m/s
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5) 3D formylae_ reducg to appropriate 2D and 1D versions as one or two spatial grid intervals — «, respectively. Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, - 0 20 00 40 T 70 0 9 100 shin (i.e., acoustic wave propagation example).
4) Generalization to higher-order temporal FD operator (M > 2) exist. a Lockheed-Martin Company, for the US Department of Energy under contract DE-AC04-94AL85000.




