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Elastic Earth Model Parameters:
(x), (x) - Lamé coefficients
b(x) - mass buoyancy

Wavefield Variables:
v(x,t) - velocity vector
(x,t) - stress tensor 

Seismic Body Sources:
f(x,t) - force density vector
m(x,t) - moment density tensor
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3D velocity-stress system is numerically solved with an explicit, time-domain, O(2,4) staggered-grid, FD algorithm

Staggered Spatial Grid

Velocity-Stress Elastodynamic System and Finite-Difference Grid
Nine, coupled, first-order, non-homogeneous, 

partial differential equations:

Numerical Dispersion Example:  The Marmousi Model
The Marmousi model is a synthetic 2D earth model developed from geologic aspects of the Cuanza basin of 
offshore Angola.  It contains several realistic features relevant to marine seismic exploration for petroleum: a 
water layer with a horizontal seabed, a sequence of dipping growth faults that offset and truncate sedimentary 
beds, anticlinal structures, two high-velocity salt sills, a near-horizontal erosional unconformity, and a deep 
petroleum reservoir. The model is commonly utilized to generate synthetic data for evaluating seismic 
reflection imaging algorithms.  A 2D P-wave speed model, spatially sampled at Δx = Δz = 24 m, is obtainable 
at the website http://www-rocq.inria.fr/~benamou/marmousi.html.

We extrapolate the Marmousi model to three spatial dimensions, and calculate shot gathers and timeslices 
with a 3D O(2,4) FD algorithm based on the velocity-pressure equations of acoustic wave propagation.   The 
required mass density model is generated via the Gardner relation ρ = c Vp

1/4.

Modeling Parameters:
1) Seismic source: isotropic explosion, 24 m deep, activated by a Ricker wavelet with 10 Hz peak frequency.
2) Seismic receivers:  341 hydrophones, 24 m beneath pressure-free surface of water layer, 12 m spacing.

Different spatial grid intervals are utilized in four FD simulations, in order to visualize and assess numerical 
dispersion effects in the calculated seismic data.

Vp

Source Receiver spread

1) Note differences in direct wave (D), 
seabed reflection (B), sea-surface reflection 
(S), fault diffractions (F), and interface 
reflection (R).

2) Coarsely sampled model (M1, Δh=24 m) 
and greatly enhanced crossline grid interval 
(M4, Δy=48 m) generate dispersion noise.

3) Finely sampled model (M2, Δh=12 m) 
created by bilinear interpolation of down-
load model (M1) appears superior, although 
M3 (with doubled Δy for rapid computation) 
is comparable.

4) Downgoing direct wave (DD) is very 
similar in models M2, M3, and M4.

D

B

F

M1 M2 M3 M4

R

t = 1.0 s t = 1.0 s t = 1.0 s t = 1.0 s

S

M1 M2 M3 M4

DD

Strong numerical dispersion  noise!
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O(2,N) Stability Factor, Phase & Group Speeds, and Polarization Measure
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3) Plane Wave Group Speed:

4) Particle Velocity Polarization:

2) Plane Wave Phase Speed:

NOTES:
1) Plane wave phase and group speed formulae, and polarization measure apply to either P-waves or S-waves.
2) All formulae reduce to analogous continuous expressions in limit of vanishing temporal and spatial grid intervals.
3) Generalization to unequal spatial grid intervals (Δx ≠ Δy ≠ Δz) exist.
5) 3D formulae reduce to appropriate 2D and 1D versions as one or two spatial grid intervals → ∞, respectively.
4) Generalization to higher-order temporal FD operator (M > 2) exist.
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1) FD Stability Factor:

Derivational procedure is a modern variant of von Neumann analysis:  assume a homogeneous 
wholespace with no body sources, and perform a 4D discrete space/time Fourier transform of coupled 
system of FD updating formulae.  Numerical dispersion relation is obtained by setting determinant of 
matrix of coefficients in transformed (i.e., algebraic) system equal to zero.  Further manipulation yields:

bn are coefficients of an O(N) staggered, spatial FD operator.

Δt = FD timestep,      Δh = spatial grid interval.

s = Δh/ = spatial sampling ratio.

(,) = polar and azimuthal propagation 
direction angles of a plane harmonic wave 
with wavelength .

For FD algorithm stability, must have  < 1, where c is maximum wavespeed in 3D earth model!

where

- obtained by differentiating phase speed.

- dot product of unit propagation direction vector
n and normalized discrete wavenumber vector.

O(2,4) Phase Speed O(2,4) Group Speed
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O(4,4) Phase Speed O(4,4) Group Speed

O(2,4) Phase Speed O(2,4) Group Speed

Phase and group speed depend 
on plane wave propagation 
direction (,), FD stability factor 
, as well as spatial sampling 
ratio s.

At 5 grid intervals per  (red line) 
O(2,4) phase speeds vary by 
-1.1% to +1.6%, and group 
speeds vary by -5.1% to +4.5%, 
relative to ideal (green line).

Phase/group speeds faster than 
physical speed c are possible, 
particularly along body diagonal.

Crossline spatial grid interval Δy 
is four times larger than inplane 
spatial grid intervals Δx = Δz.

Both in-plane and out-of-plane 
performance is adversely 
affected.

Extremely poor out-of-plane 
propagation performance.

Fourth-order temporal operator 
FD algorithm reduces spread of 
phase/group speed curves with 
respect to stability parameter .

For O(M,N) FD algorithms with 
M = N, and executed at stability 
limit  = 1, perfect phase/group 
speed performance is achieved 
along body diagonal!

Also, all phase/group speeds are 
less than ideal c.

Equal spatial grid intervals Δx = 
Δy = Δz.
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Numerical Examples: Phase/Group Speed and Polarization

1) Polar plots of P vs. , for 
various propagation azimuths .

2) Each plot contains 6 curves, 
for spatial sampling ratio s = 0.0 
(outermost curve) to 0.5 
(innermost curve) in steps of 0.1.

3) Origin corresponds to 0.99 
(angle ~8º) and rim corresponds 
to 1.0. (angle 0º). 

4) Polarization is independent of 
temporal discretization interval 
Δt and stability factor .

5) Valid for both P and S waves.

6) Increasing spatial order N 
improves discrete polarization 
agreement with continuum case.

Polarization vs. Plane Wave Propagation Direction

O(2) Spatial FD        
Operator

O(4) Spatial FD 
Operator

range-dependent 
gain applied

V = 350 m/s

Numerical Validation of Phase Speed Dispersion

Processing Procedure

1) Impulse response seismograms are 
generated by executing 3D FD algorithm with 
a unit impulse source waveform.  Note 
severe numerical dispersion!

2) Impulse seismograms are convolved with 
a suite of narrowband signals, representing 
analogous harmonic source waveforms.

3) For each frequency, zero-crossings are 
picked, and phase speed calculated.

4) Example executes velocity-stress elastic
algorithm with Vp = 350 m/s and Vs = 0 m/s 
(i.e., acoustic wave propagation example).  

 = 0.1415

 = 0.1415

 = 0.1415

Impulse Response Seismograms 40 Hz Narrowband Seismograms

Phase speed calculated from 
all picked zero crossings

Introduction
Numerical solution of partial differential equations by explicit, time-domain, finite-difference (FD) techniques entails
approximating temporal and spatial derivatives by discrete function differences. Hence, the solution of the difference
equation will not be identical to the solution of the underlying differential equation. Solution accuracy degrades if the grid
intervals are too large. Overly coarse spatial gridding leads to spurious artifacts in the calculated results referred to as
numerical dispersion, whereas coarse temporal sampling may produce numerical instability (manifest as unbounded
growth in the calculations as FD timestepping proceeds). Quantitative conditions for minimizing dispersion and avoiding
instability are developed by deriving the dispersion relation appropriate for the discrete difference equation (or coupled
system of difference equations) under examination. In this study, a dispersion relation appropriate for 3D O(M,N)
staggered-grid, FD solution of the velocity-stress elastodynamic system is derived, from which formulae for discrete
phase speed, group speed, and particle velocity polarization are developed.
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