
The Structure of Random Foam

Andrew M. Kraynik

Department 1514 MS0834, Sandia National Laboratories, Albuquerque, New Mexico 87185-0834, USA

Surface Evolver models of soap froth with a wide range of cell-size distributions are used to investigate random cellular morphology, the hallmark of foams. 
Geometric properties of foams and foam cells are analyzed. A simple, accurate theory relates the total surface area of foam to cell-size distribution. Total surface area is 
approximately equal to total edge length when both quantities are scaled by average cell volume. Voronoi structures are significantly different from foams, which raises 
questions over their use for predicting structure-property relationships.
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1. Introduction
Random cellular morphology, the hallmark of foams 1-3), evolves 

when gas bubbles suspended in liquid become highly concentrated. 
Dispensing shaving foam and head formation on a glass of beer are 
familiar examples of foam production. The former involves bubble 
growth during foam expansion and the latter involves bubble rise 
and accumulation, followed by foam drainage. Producing solid 
foams, in general, and metal foams, in particular, also involves a 
phase change from liquid to solid. The films that separate gas 
bubbles and the Plateau borders that form along cell edges in liquid 
foams eventually become the cell walls and struts that are 
characteristic features in solid foams. Foam properties depend upon 
 the volume fraction of continuous phase (relative foam density),
and the distribution of material in cell walls and struts; consequently 
when developing structure-property relationships it is important to 
consider the size and shape of individual cells and the way they 
pack together to fill space. We will investigate random cellular
morphology by focusing on “dry” soap froth, an ideal but realistic 
model system that features well-defined local geometry shaped by 
surface energy minimization. In the dry foam limit where  << 1
the thin liquid films can be modeled as two-dimensional surfaces 
and the Plateau borders become curved lines that define cell edges. 
To minimize surface energy and balance mechanical forces, the 
local geometry satisfies Plateau’s laws: 1) the faces of cells are 
surfaces of constant mean curvature; 2) three faces meet at equal 
dihedral angles of 120o; and 3) four edges meet at the tetrahedral 
angle 109.47o. The last condition implies that no face can be a flat 
polygon with straight edges when the foam is at equilibrium. Note 
that Plateau’s laws only apply to dry soap foams where the 
continuous phase is well approximated by a network of surfaces.
This survey of random foam structure is based on work by Kraynik 
et al. 4-6), which should be consulted for additional background and 
details. Random foams with monodisperse, polydisperse, and 
bidisperse cell-volume distributions and up to 1728 cells in the 
representative volume (unit cell) have been simulated by using 
Brakke’s Surface Evolver 7), the standard software for calculating 
the equilibrium microstructure of foam. (The software is available 
from: http://www.susqu.edu/facstaff/b/brakke/evolver/). All of the 
structures are spatially periodic, which means they fit together to fill 
space and represent bulk foam, especially when the number of cells
is large.

Fig. 1 Spatially periodic Voronoi tessellations with 512 cells. The structure on the 
left was produced from a very loose sphere packing with density  = 0.01 and the one 
on the right is based on random close packing where  = 0.64. The first structure is 

more polydisperse and has higher surface area and more faces per cell F than the 
second structure.

2. Simulations

2.1 Voronoi structures
Voronoi tessellations based on randomly distributed seed points 

are used as initial conditions for the Surface Evolver simulations; 
the seeds coincide with the centers of hard spheres that are 
randomly packed to density . Each Voronoi cell consists of all
points that lie closest to a particular seed. Voronoi structures are 
primitive froths with enough foam-like characteristics (three faces 
meet at each edge, four edges meet at each vertex, and the cells are 
trivalent polyhedra) that they are often used to model random foam 
structure. We will show that there are significant differences 
between Voronoi structures and foams that can affect physical
properties. Voronoi polyhedra have flat faces and therefore do not 
satisfy Plateau’s laws, which have a strong influence on the 
topological and geometric properties of foams and foam cells. Fig.
1 shows two Voronoi structures that were produced from different 
sphere packings:  = 0.01 approaches randomly distributed 
(Poisson) points, and at the other extreme,  = 0.64 corresponds to 
random close packed spheres accomplished through molecular 
dynamics simulations. When  is small the Voronoi polyhedra have
highly irregular shapes with sharp angles and both the average 
number of faces per cell F = 15.51 and the standard deviation of 
cell volumes V/V = 0.37 are relatively large (V is the average 
cell volume). The dense sphere packing produces Voronoi 
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polyhedra that are more compact and both F = 14.25 and V/V = 
0.044 are smaller. The latter structure also has about 7.3% less 
surface area and visually is more foam-like than the former.

        

Fig. 2 Random monodisperse foam with 512 cells.

Fig. 3 Inventory (%) of the most common types of cells found in random 
monodisperse foam before and after annealing. The experimental data of Matzke are 
shown for comparison. The notation n4-n5-n6 refers to cells with n4 quadrilateral, n5

pentagonal and n6 hexagonal faces.

Fig. 4 The probability (F) of finding cells with F faces in monodisperse foams
before and after annealing.

Fig. 5 The probability (n) of finding faces with n edges in monodisperse foams.

Fig. 6  The probability () of finding individual edges of length  in foams with 

polydispersity p, as defined in Eq. (1).  is scaled by V1/3.

2.2 Monodisperse Foam
Random monodisperse foams are produced from Voronoi 

structures by using the Surface Evolver to minimize surface area
under the constraint that all cells have equal volume. This relaxation 
process requires a large number of topological transitions, which
involve cell-neighbor switching, and produces faces with subtle
curvatures that are required to satisfy Plateau’s laws, as shown in 
Fig. 2. Since the solution is a local energy minimum, the surface 
area can be reduced even further by subjecting the foam to 
large-deformation tension-compression cycles that provoke 
additional neighbor switching; we refer to this process as annealing.
Annealing has a relatively small effect on the foam energy E =  Sf

( is surface tension and Sf is the total surface area per unit volume 
of foam) and the average number of faces per cell F but a 
significant influence on the population of cell types as classified by 
Matzke 8) in his classic experimental study of monodisperse foam 
structure; see Fig. 3. The corresponding probabilities (F) that a cell
has F faces and (n) that a face has n edges are graphed in Figs. 4 
and 5. The excellent agreement between the simulations and 
Matzke’s data gives us a high degree of confidence that the foam 
structures being produced are realistic. Whereas Matzke counted 
and classified topological features such as faces and edges, the 
simulations enable us to obtain accurate data on geometric 
properties such as the volume, surface area, and edge length of the 



entire foam, individual cells, and cell-level features. For example, 
Fig. 6 contains distribution functions for individual edges of length 
The difference between foams and Voronoi structures is striking.

   

Fig. 7 This spatially periodic packing of polydisperse hard spheres was obtained by 
using molecular dynamics simulations.

2.3 Polydisperse Foam
The procedure for modeling random foams with a wide range of 

cell-size distributions starts with molecular dynamics simulations to 
generate dense packings of polydisperse spheres (see Fig. 7). Foam 
polydispersity is controlled by varying the distribution of sphere
diameters (e.g., log-normal, gamma, Gaussian). Weighted-Voronoi 
(Laguerre) tessellations are used to fill space with convex 
polyhedral cells that enclose each sphere and establish the cell-size
distribution. The Laguerre structure is then relaxed and annealed 
with the Surface Evolver to produce the foam (see Fig. 8). The cell 
volumes can vary by three orders of magnitude and F the number of 
faces on a cell ranges from four to over 150. 

A useful measure of foam polydispersity p is based on the 

surface-volume (Sauter) mean bubble radius R32 = R
3
/R

2
:

p = R32/R
3
1/3 – 1 ,             (1)

where the equivalent sphere radius R is determined from V=4R
3
/3 

and V is cell volume. Note that p is non-negative and equal to zero 
only when the foam is monodisperse. For log-normal cell-size 
distributions R/R = p1/2, where R is the standard deviation of R; 
this relation is compared with data in Fig. 9. 

Figs. 10 and 11 show (F) and (n) for random foams with 
different polydispersity p. Polydisperse foams have broad
distributions of F-hedra because small cells have fewer faces and 
large cells have more faces than monodisperse foams. As 
polydispersity increases we observe the following trends: the peak 
in (F) shifts to lower F; the average face count F decreases; and 
the topological disorder of the foam increases (topological disorder 
is measured by the normalized variance of (F): 2/F

2 = F2/F2

– 1). Compared to (F) the distribution of n-gons measured by (n) 
is less sensitive to polydispersity, especially when p is small. 
Pentagonal faces are most abundant unless the foam is extremely 
polydisperse. The relationship between various statistical quantities 
is shown in Fig. 9. In contrast with the Voronoi structures pictured 

in Fig. 1, the average number of faces in relaxed foams is less than 
fourteen and F decreases as p increases.

    

   

Fig. 8 The weighted-Voronoi (Laguerre) tessellation (top) is relaxed to obtain the 
polydisperse foam (bottom).

Fig. 9 The average face count F, topological disorder 2/F
2, and an alternate 

measure of polydispersity R/R are graphed against polydispersity p. The solid lines 
are quadratic fits to guide the eye and the dashed line is p1/2.



Fig. 10 Distribution of cells with F faces in foams with different polydispersity p.

Fig. 11  Distribution of faces with n edges in foams with different polydispersity p.  
(Same legend as Fig. 10.)

          

Fig. 12 Bidisperse foam with 1000 cells, VL/VS = 8 and faction of large cells XL= 1/9.

2.4 Bidisperse foam
Bidisperse foams are produced from bidisperse sphere packings 

by constraining the cells to have two different volumes, as shown in 
Fig. 12. The simulations are in good agreement with topological 
statistics obtained by Matzke and Nestler 9) on foams with 

cell-volume ratio VL/VS = 8 and three different fractions of large 
cells.

2.5 Geometric properties
The simulations enable us to gather a wide variety of geometric 

statistics. The most striking result involves the surface area S of 
individual cells, which is found to be about 10% greater than a
sphere of equal volume. The reduced surface-to-volume ratio
S/(36V2)1/3 is graphed against F in Fig. 13;  is very 
insensitive to F and has a very narrow range:  = 1.100  0.008.
This is a consequence of Plateau’s laws, as illustrated by the foam 
cells pictured in Fig. 14: the faces on cells with small F curve 
outward, reducing  relative to the flat-faced Laguerre polyhedra;
and the faces on cells with large F curve inward, increasing  just 
like the “dimples” on a golf ball. 

Fig. 13 Reduced surface-to-volume ratio of foam cells and Laguerre polyhedra 
graphed against the number of faces F and compared with the theory for isotropic 
Plateau polyhedra (IPP, solid line) and convex isotropic polyhedra (CIP, dashed line).

Fig. 14 Shape of typical foam cells with four, six, 14 and 60 faces.

By assuming that  is constant, we can derive a very simple 
theory for the surface free energy density of foam:

E =  Sf =  (36)1/3 (1+p)-1  V-1/3 ,      (2)

where  is surface tension and Sf is the total surface area per unit 
volume of foam. The results in Fig. 15 show that the theory is in 
excellent agreement with simulations for foams that have a wide 
range of cell-size distributions and have been annealed. This 
indicates that the foam energy or total surface area can be calculated 
very accurately by knowing the cell-size distribution. We have also 
found that the total edge length per unit volume of foam Lf is 
approximately equal to the total surface area Sf when both 
quantities are normalized by the average cell volume. The data in 
Fig. 16 support the empirical relationship: Lf V

2/3 ≈ Sf V
1/3.

Some of the scatter in the data can be attributed to weak 
dependence on the shape of the cell-size distribution 10).



Fig. 15 Foam energy E (or normalized surface area Sf V
1/3) plotted against 

polydispersity p and compared with the theory in Eq. (2) with  = 1.10. Energy is 
scaled by  V-1/3.

  

Fig. 16 The normalized edge length of a foam Lf V
2/3 is approximately equal to the 

normalized surface area Sf V
1/3.

Fig. 17 Total edge length L of individual cells is graphed against number of faces F; 
simulations are compared with IPP theory.

Other geometric properties of foam cells such as the total edge 
length L and the average mean curvature of the faces both depend 
on cell topology as measured by F. This dependence is captured by 
the theory of idealized foam cells called isotropic Plateau polyhedra
11) (IPP), which have F identical spherical-cap faces and satisfy 
Plateau’s laws. Convex isotropic polyhedra (CIP) are flat-faced 
counterparts of IPP. The predictions of IPP and CIP theory for  are 
shown in Fig. 13; neither theory contains adjustable constants. Fig.
17 shows a comparison between L from simulations and IPP theory, 
which predicts F1/2 dependence.

The average curvature of the faces can be expressed as the 
dimensionless diffusive growth rate G given by 

G = V-1/3 ∫ Hda ,   (3)

where His the mean curvature and the integral is evaluated over 

the cell surface. Fig. 18 compares data for G with IPP theory. 

Fig. 18 Diffusive growth G of individual cells is graphed against number of faces F; 
simulations are compared with IPP theory.

Fig. 6 also contains the edge-length distribution () for a 
weighted-Voronoi structure and polydisperse and bidisperse foams. 
Voronoi structures that are based on random seeds have many small 
edges. In sharp contrast, () has Gaussian character for all of the 
relaxed foams. The difference is dramatic and raises caution against 
using Voronoi structures to model real foams, especially when the 
foam property of interest is sensitive to edge-length characteristics. 

3. Wet Foams
The Surface Evolver 7) can be used to model wet foams in the 

dry-film limit where all of the liquid is assumed to be located in the 
Plateau borders because the film thickness set by colloidal forces is 
so small. These calculations demand much more computational 
effort than dry foams because of the large number of facets required 
to discretize the Plateau borders. Fig. 19 shows unit cells for two 
structures: the wet Kelvin foam and the wet rhombic dodecahedral 
foam, which are associated with body-centered-cubic and 
face-centered-cubic lattices, respectively. Both of these structures 
are stable over some overlapping range of liquid volume fraction, 
which indicates that there are two perfectly ordered wet foams, 
whereas the Kelvin cell is the only perfectly ordered dry foam.
Eight Plateau borders meet at some of the junctions in the wet 
dodecahedron; this is permitted since Plateau’s laws do not apply to 
foams with finite liquid content.



  

Fig. 19 The wet Kelvin cell (left) has liquid volume fraction  = 0.01 and the 

wet rhombic dodecahedron (right) has  = 0.04.

    

Fig. 20  Random monodisperse wet foam with 64 cells and  = 0.025. The films 
have been removed in the lower image to reveal the network of Plateau borders.

  Fig. 20 shows the unit cell of a wet random monodisperse foam 
with 64 cells and  = 0.025. When the films are removed the wet 
foam looks like a solid foam with open cells; this suggests that wet 
foams may provide useful models for the strut-level geometry of 
open-cell foams. The figure reveals the variation in cross-section 
along individual “struts” that is a characteristic feature of open-cell 
foams. As an example of the microstructural information that can 
be obtained from simulations, Fig. 21 shows the dependence of 
strut cross-section on strut length. The radius of curvature RPB is 
evaluated from the cross-sectional area at the center of each strut by 

assuming ideal Plateau-border shape, the curved triangular region 
defined by three circles in mutual contact. This information can be 
used to develop a model for strut shape, which in turn can be used 
to build realistic beam element models for open-cell foams that are
based on soap-froth microstructure, as shown in Fig. 22. Spatial 
periodicity is beneficial because many foam micromechanics 
problems are very sensitive to boundary conditions. 

Fig. 21  Minimum strut cross-section RPB vs. strut length  evaluated from the 
random wet foam structure shown in Fig. 20.

  

Fig. 22  The random polydisperse soap froth was used as a template to create a beam
model of a low-density open-cell foam. 

Sandia is a multiprogram laboratory operated by Sandia 
Corporation, a Lockheed Martin Company, for the United States 
Department of Energy’s National Nuclear Security Administration 
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