The Structure of Random Foam
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Surface Evolver models of soap froth with a wide range of cell-size distributions are used to investigate random cellular morphology, the hallmark of foams.
Geometric properties of foams and foam cells are analyzed. A simple, accurate theory relates the total surface area of foam to cell-size distribution. Total surface area is
approximately equal to total edge length when both quantities are scaled by average cell volume. Voronoi structures are significantly different from foams, which raises

questions over their use for predicting structure-property relationships.
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1. Introduction

Random cellular morphology, the hallmark of foams ', evolves
when gas bubbles suspended in liquid become highly concentrated.
Dispensing shaving foam and head formation on a glass of beer are
familiar examples of foam production. The former involves bubble
growth during foam expansion and the latter involves bubble rise
and accumulation, followed by foam drainage. Producing solid
foams, in general, and metal foams, in particular, also involves a
phase change from liquid to solid. The films that separate gas
bubbles and the Plateau borders that form along cell edges in liquid
foams eventually become the cell walls and struts that are
characteristic features in solid foams. Foam properties depend upon
¢, the volume fraction of continuous phase (relative foam density),
and the distribution of material in cell walls and struts; consequently
when developing structure-property relationships it is important to
consider the size and shape of individual cells and the way they
pack together to fill space. We will investigate random cellular
morphology by focusing on “dry” soap froth, an ideal but realistic
model system that features well-defined local geometry shaped by
surface energy minimization. In the dry foam limit where ¢ << 1
the thin liquid films can be modeled as two-dimensional surfaces
and the Plateau borders become curved lines that define cell edges.
To minimize surface energy and balance mechanical forces, the
local geometry satisfies Plateau’s laws: 1) the faces of cells are
surfaces of constant mean curvature; 2) three faces meet at equal
dihedral angles of 120° and 3) four edges meet at the tetrahedral
angle 109.47°. The last condition implies that no face can be a flat
polygon with straight edges when the foam is at equilibrium. Note
that Plateau’s laws only apply to dry soap foams where the
continuous phase is well approximated by a network of surfaces.
This survey of random foam structure is based on work by Kraynik
et al. *, which should be consulted for additional background and
details. Random foams with monodisperse, polydisperse, and
bidisperse cell-volume distributions and up to 1728 cells in the
representative volume (unit cell) have been simulated by using
Brakke’s Surface Evolver ”, the standard software for calculating
the equilibrium microstructure of foam. (The software is available
from: http://www.susqu.edu/facstaft/b/brakke/evolver/). All of the
structures are spatially periodic, which means they fit together to fill
space and represent bulk foam, especially when the number of cells
is large.
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Fig. 1 Spatially periodic Voronoi tessellations with 512 cells. The structure on the
left was produced from a very loose sphere packing with density p =0.01 and the one
on the right is based on random close packing where p = 0.64. The first structure is
more polydisperse and has higher surface area and more faces per cell (F) than the
second structure.

2. Simulations

2.1 Voronoi structures

Voronoi tessellations based on randomly distributed seed points
are used as initial conditions for the Surface Evolver simulations;
the seeds coincide with the centers of hard spheres that are
randomly packed to density p. Each Voronoi cell consists of all
points that lie closest to a particular seed. Voronoi structures are
primitive froths with enough foam-like characteristics (three faces
meet at each edge, four edges meet at each vertex, and the cells are
trivalent polyhedra) that they are often used to model random foam
structure. We will show that there are significant differences
between Voronoi structures and foams that can affect physical
properties. Voronoi polyhedra have flat faces and therefore do not
satisfy Plateau’s laws, which have a strong influence on the
topological and geometric properties of foams and foam cells. Fig.
1 shows two Voronoi structures that were produced from different
sphere packings: p = 0.01 approaches randomly distributed
(Poisson) points, and at the other extreme, p = 0.64 corresponds to
random close packed spheres accomplished through molecular
dynamics simulations. When p is small the Voronoi polyhedra have
highly irregular shapes with sharp angles and both the average
number of faces per cell (F) = 15.51 and the standard deviation of
cell volumes ov/(V) = 0.37 are relatively large ((V) is the average
cell volume). The dense sphere packing produces Voronoi



polyhedra that are more compact and both (F) = 14.25 and oy/V) =
0.044 are smaller. The latter structure also has about 7.3% less
surface area and visually is more foam-like than the former.
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Fig. 3 Inventory (%) of the most common types of cells found in random
monodisperse foam before and after annealing. The experimental data of Matzke are
shown for comparison. The notation ns-ns-ns refers to cells with ny quadrilateral, ns
pentagonal and ne hexagonal faces.
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Fig. 4 The probability p(F) of finding cells with F faces in monodisperse foams
before and after annealing.
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Fig. 6 The probability p(L) of finding individual edges of length A in foams with
polydispersity p, as defined in Eq. (1). A is scaled by (V)">.

2.2 Monodisperse Foam

Random monodisperse foams are produced from Voronoi
structures by using the Surface Evolver to minimize surface area
under the constraint that all cells have equal volume. This relaxation
process requires a large number of topological transitions, which
involve cell-neighbor switching, and produces faces with subtle
curvatures that are required to satisfy Plateau’s laws, as shown in
Fig. 2. Since the solution is a local energy minimum, the surface
area can be reduced even further by subjecting the foam to
large-deformation tension-compression cycles that provoke
additional neighbor switching; we refer to this process as annealing.
Annealing has a relatively small effect on the foam energy E = o S¢
(o is surface tension and Syis the total surface area per unit volume
of foam) and the average number of faces per cell (F) but a
significant influence on the population of cell types as classified by
Matzke ® in his classic experimental study of monodisperse foam
structure; see Fig. 3. The corresponding probabilities p(F) that a cell
has F faces and p(n) that a face has n edges are graphed in Figs. 4
and 5. The excellent agreement between the simulations and
Matzke’s data gives us a high degree of confidence that the foam
structures being produced are realistic. Whereas Matzke counted
and classified topological features such as faces and edges, the
simulations enable us to obtain accurate data on geometric
properties such as the volume, surface area, and edge length of the



entire foam, individual cells, and cell-level features. For example,
Fig. 6 contains distribution functions for individual edges of length
A. The difference between foams and Voronoi structures is striking.

in Fig. 1, the average number of faces in relaxed foams is less than
fourteen and (F) decreases as p increases.

Fig. 7 This spatially periodic packing of polydisperse hard spheres was obtained by
using molecular dynamics simulations.

2.3 Polydisperse Foam

The procedure for modeling random foams with a wide range of
cell-size distributions starts with molecular dynamics simulations to
generate dense packings of polydisperse spheres (see Fig. 7). Foam
polydispersity is controlled by varying the distribution of sphere
diameters (e.g., log-normal, gamma, Gaussian). Weighted-Voronoi
(Laguerre) tessellations are used to fill space with convex
polyhedral cells that enclose each sphere and establish the cell-size
distribution. The Laguerre structure is then relaxed and annealed
with the Surface Evolver to produce the foam (see Fig. 8). The cell
volumes can vary by three orders of magnitude and F the number of
faces on a cell ranges from four to over 150.

A useful measure of foam polydispersity p is based on the

surface-volume (Sauter) mean bubble radius R3; = (R3)/(R2):
3
p=RaAR)" -1, M)

where the equivalent sphere radius R is determined from V=47R>/3
and V is cell volume. Note that p is non-negative and equal to zero
only when the foam is monodisperse. For log-normal cell-size
distributions or/(R) = p”z, where oy is the standard deviation of R;
this relation is compared with data in Fig. 9.

Figs. 10 and 11 show p(F) and p(n) for random foams with
different polydispersity p. Polydisperse foams have broad
distributions of F-hedra because small cells have fewer faces and
large cells have more faces than monodisperse foams. As
polydispersity increases we observe the following trends: the peak
in p(F) shifts to lower F; the average face count (F) decreases; and
the topological disorder of the foam increases (topological disorder
is measured by the normalized variance of p(F): p/(F)* = (F2)XF)*
—1). Compared to p(F) the distribution of n-gons measured by p(n)
is less sensitive to polydispersity, especially when p is small.
Pentagonal faces are most abundant unless the foam is extremely
polydisperse. The relationship between various statistical quantities
is shown in Fig. 9. In contrast with the Voronoi structures pictured

Fig. 8 The weighted-Voronoi (Laguerre) tessellation (top) is relaxed to obtain the
polydisperse foam (bottom).
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Fig. 9 The average face count (F), topological disorder AF), and an alternate
measure of polydispersity or/XR) are graphed against polydispersity p. The solid lines
are quadratic fits to guide the eye and the dashed line is p'*.
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Fig. 11 Distribution of faces with n edges in foams with different polydispersity p.
(Same legend as Fig. 10.)

Fig. 12 Bidisperse foam with 1000 cells, Vi/Vs = 8 and faction of large cells X;= 1/9.

2.4 Bidisperse foam

Bidisperse foams are produced from bidisperse sphere packings
by constraining the cells to have two different volumes, as shown in
Fig. 12. The simulations are in good agreement with topological
statistics obtained by Matzke and Nestler % on foams with

cell-volume ratio Vi/Vs = 8 and three different fractions of large
cells.

2.5 Geometric properties
The simulations enable us to gather a wide variety of geometric
statistics. The most striking result involves the surface area S of
individual cells, which is found to be about 10% greater than a
sphere of equal volume. The reduced surface-to-volume ratio
B=S/(36nV?)" is graphed against F in Fig. 13; B is very
insensitive to F and has a very narrow range: § = 1.100 £ 0.008.
This is a consequence of Plateau’s laws, as illustrated by the foam
cells pictured in Fig. 14: the faces on cells with small F curve
outward, reducing {3 relative to the flat-faced Laguerre polyhedra;
and the faces on cells with large F curve inward, increasing 3 just

like the “dimples” on a golf ball.
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Fig. 13 Reduced surface-to-volume ratio 3 of foam cells and Laguerre polyhedra
graphed against the number of faces F and compared with the theory for isotropic
Plateau polyhedra (IPP, solid line) and convex isotropic polyhedra (CIP, dashed line).
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Fig. 14  Shape of typical foam cells with four, six, 14 and 60 faces.

By assuming that 8 is constant, we can derive a very simple
theory for the surface free energy density of foam:

E=0Sr=B36m)"* (1+p)" o (V)'?, )

where o is surface tension and S¢is the total surface area per unit
volume of foam. The results in Fig. 15 show that the theory is in
excellent agreement with simulations for foams that have a wide
range of cell-size distributions and have been annealed. This
indicates that the foam energy or total surface area can be calculated
very accurately by knowing the cell-size distribution. We have also
found that the total edge length per unit volume of foam Ly is
approximately equal to the total surface area Sy when both
quantities are normalized by the average cell volume. The data in
Fig. 16 support the empirical relationship: L¢ (V)** = Sy (V)"
Some of the scatter in the data can be attributed to weak
dependence on the shape of the cell-size distribution .
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Fig. 15 Foam energy E (or normalized surface area S¢ (V)'?) plotted against
polydispersity p and compared with the theory in Eq. (2) with B = 1.10. Energy is
scaled by o (V).
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Fig. 16 The normalized edge length of a foam L (V)** is approximately equal to the
normalized surface area S¢(V)'?.
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Fig. 17 Total edge length L of individual cells is graphed against number of faces F;
simulations are compared with IPP theory.

Other geometric properties of foam cells such as the total edge
length L and the average mean curvature of the faces both depend
on cell topology as measured by F. This dependence is captured by
the theory of idealized foam cells called isotropic Plateau polyhedra
' (IPP), which have F identical spherical-cap faces and satisfy
Plateau’s laws. Convex isotropic polyhedra (CIP) are flat-faced
counterparts of IPP. The predictions of IPP and CIP theory for 3 are
shown in Fig. 13; neither theory contains adjustable constants. Fig.
17 shows a comparison between L from simulations and IPP theory,
which predicts F'* dependence.

The average curvature of the faces can be expressed as the
dimensionless diffusive growth rate G given by

G=V'"| #da, (3)

where A is the mean curvature and the integral is evaluated over
the cell surface. Fig. 18 compares data for G with IPP theory.
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Fig. 18 Diffusive growth G of individual cells is graphed against number of faces F;
simulations are compared with IPP theory.

Fig. 6 also contains the edge-length distribution p(A) for a
weighted-Voronoi structure and polydisperse and bidisperse foams.
Voronoi structures that are based on random seeds have many small
edges. In sharp contrast, p(A) has Gaussian character for all of the
relaxed foams. The difference is dramatic and raises caution against
using Voronoi structures to model real foams, especially when the
foam property of interest is sensitive to edge-length characteristics.

3. Wet Foams

The Surface Evolver ” can be used to model wet foams in the
dry-film limit where all of the liquid is assumed to be located in the
Plateau borders because the film thickness set by colloidal forces is
so small. These calculations demand much more computational
effort than dry foams because of the large number of facets required
to discretize the Plateau borders. Fig. 19 shows unit cells for two
structures: the wet Kelvin foam and the wet rhombic dodecahedral
foam, which are associated with body-centered-cubic and
face-centered-cubic lattices, respectively. Both of these structures
are stable over some overlapping range of liquid volume fraction,
which indicates that there are two perfectly ordered wet foams,
whereas the Kelvin cell is the only perfectly ordered dry foam.
Eight Plateau borders meet at some of the junctions in the wet
dodecahedron; this is permitted since Plateau’s laws do not apply to
foams with finite liquid content.



Fig. 19 The wet Kelvin cell (left) has liquid volume fraction ¢ = 0.01 and the
wet rhombic dodecahedron (right) has ¢ = 0.04.

Fig. 20 Random monodisperse wet foam with 64 cells and ¢ = 0.025. The films
have been removed in the lower image to reveal the network of Plateau borders.

Fig. 20 shows the unit cell of a wet random monodisperse foam
with 64 cells and ¢ = 0.025. When the films are removed the wet
foam looks like a solid foam with open cells; this suggests that wet
foams may provide useful models for the strut-level geometry of
open-cell foams. The figure reveals the variation in cross-section
along individual “struts” that is a characteristic feature of open-cell
foams. As an example of the microstructural information that can
be obtained from simulations, Fig. 21 shows the dependence of
strut cross-section on strut length. The radius of curvature Rpp is
evaluated from the cross-sectional area at the center of each strut by

assuming ideal Plateau-border shape, the curved triangular region
defined by three circles in mutual contact. This information can be
used to develop a model for strut shape, which in turn can be used
to build realistic beam element models for open-cell foams that are
based on soap-froth microstructure, as shown in Fig. 22. Spatial
periodicity is beneficial because many foam micromechanics
problems are very sensitive to boundary conditions.
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Fig. 21 Minimum strut cross-section Rpg vs. strut length A evaluated from the
random wet foam structure shown in Fig. 20.

Fig.22  The random polydisperse soap froth was used as a template to create a beam
model of a low-density open-cell foam.

Sandia is a multiprogram laboratory operated by Sandia
Corporation, a Lockheed Martin Company, for the United States
Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
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