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Motivation and Goals: 
Hydrogen Compatibility of Engineering Materials

• Department of Energy (DOE) program on Codes and Standards
– Technical Reference on Materials Compatibility for hydrogen storage and 

distribution 

• Hydrogen gas pressure to 150 MPa 

• Temperature: -50˚C to 150˚C

– Identify guidelines for materials of construction

– Recommend suitable testing procedures

– Clarify phenomenology of hydrogen-assisted fracture (dispel myths)

• Piping, tubing, and devices austenitic stainless steels 

• Pressure vessel steels quench and tempered steels

aluminum 

composites

• Pipeline steels low alloy steels

microalloyed steels



Outline

• Thermodynamics of high-pressure hydrogen
– Equation of state for hydrogen

– Permeation, diffusion and dissolution of hydrogen in stainless steel

• Mechanisms of hydrogen-assisted fracture
– Important variables: materials, mechanical, environmental

• Current activities in hydrogen effects in materials: studies at 
Sandia National Laboratories

Perspective of authors:
–Metallurgists interested in design of hydrogen compatible 
structures; a challenging task since

few generalizations are meaningful in the 
study of hydrogen effects



Non-Ideal Behavior of High-Pressure Hydrogen

• Compressibility factor  Z = PVm/RT

– for ideal gas Z = 1 Ideal gas EOS

– at high pressure Z > 1 Abel-Noble EOS
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Thermodynamic functions use fugacity

• Definition of fugacity:

• Abel-Noble equation of state   —>
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Diffusion, Dissolution and Permeation

(1) Hydrogen gas

(2) Physisorption

(3) Dissociation

(4) Dissolution

(5) Diffusion

Chemical Equilibrium: 1
2 H2 H
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Permeation of Hydrogen

 1.2x104 exp 7192 T 

• single-phase austenitic stainless steels: 
independent of alloy and microstructure

  o exp H RT 
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Diffusion of Hydrogen
• Diffusivity determination from permeation experiments 

requires analysis of transient data
– transient data are more sensitive to surface condition

– studies reporting high diffusivity did not take precautions to 
remove surface oxides or films

surface effects

D  6.6x107 exp 6483 T 

D  Do exp HD RT 



1

10

100

1 1.5 2 2.5

S
o
lu

b
ili

ty
 (

m
o
l 
m

-3
 M

P
a

-1
/2
)

Temperature, 1000/T (K-1)

316

Solubility of Hydrogen

Solubility:

high D measurements
(surface effects)

K   D Ko exp Hs RT 
• depends on quality of diffusivity relationships

∆Hs=5.9 kJ/mol



Extrapolation of Solubility Relationships

• Lowest values of ∆Hs provide conservative values of 
solubility when extrapolated to room temperature
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Solubility Established by H Extraction

• Thermal precharging of material with hydrogen
– typical exposure conditions: 138 MPa H2 at 300 oC 

– uniform H concentration developed in test specimens

• Hydrogen concentration measured using H extraction

• low H trap binding energy in stainless steels
– Extraction measurements yield approximate lattice concentration

• Solubility calculated from

• Measurements for 
– 300-series stainless steels: 304L & 316

– Cr-Ni-Mn stainless steels: 21Cr-6Ni-9Mn & 22Cr-13Ni-5Mn

– Precipitation-strengthened stainless steels: A-286 & JBK-75

K  cL f
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• Solubility determined from H extraction measurements

– Solubility (& diffusion) is a function of alloy

∆Hs=5.9 kJ/mol



Conclusions and Recommendations
• Abel-Noble equation of state

• Fugacity

• Permeation measurements consistent for all austenitic stainless
– use Louthan and Derrick:

• Solubility relationships
– for 300-series stainless steel:

– for Cr-Ni-Mn stainless steel:

• Diffusivity relationships calculated from D = /K
– for 300-series stainless steel:

– for Cr-Ni-Mn stainless steel:

K 136exp 710 T  mol H2 m
-3 MPa -1/2 

 1.2x104 exp 7192 T  mol H2 m
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Hydrogen-Assisted Fracture 
Mechanisms in Metals
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All Conceivable Variables Can 
Influence Hydrogen Effects

• Material Variables
– Yield strength

– Composition

– Microstructure (welds)

• Mechanical Variables / Test Method
– Frequency (Fatigue)

– Presence of preexisting flaws (i.e., tension vs. fracture toughness)

– Strain rate effects (i.e., static load versus rising load)

– Mixed mode loading

• Environmental Variables
– Gas pressure and purity

– Temperature

– Hydrogen source: internal versus environmental

How should laboratory scale tests be translated into 
meaningful design data for hydrogen compatibility?



Testing Methodologies
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Tensile flow curves are affected by 
internal hydrogen
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Hydrogen-assisted fracture generally 
NOT well understood

0

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 900 1000

R
e
la

tiv
e
 R

e
d
u
ct

io
n
 in

 A
re

a
, 
R

R
A

Yield strength (MPa)

CW plate

bar
HERF

annealed worked

low Ni

this study

Data: from several sources and different environment conditions

H
H

HH

H
H

21Cr-6Ni-9Mn stainless steels



Material Variables: Composition

0

200

400

600

800

1000

0.12 N 0.24 N 0.31 N 0.43 N 0.47 N
0

50

100

S
tr

e
s
s
 (

M
P

a
)

Nitrogen content (wt%)

RRA = 0.80 RRA = 0.79

RRA = 0.50 RRA = 0.43 RRA = 0.42

D
u

c
tility

, R
A

 (%
)

21-6-9, annealed plate, SA (1423K / 0.5h)
internal H = 24MPa H

2
, 473K, 240h

1- tested in air
2- internal H + external H

2
 (69 MPa)

1 2
1 2 1 2

1 2 1 2
S

u

S
y

RA

RRA 
RA internal H   H 2 

RA air 

Data: from Odegard 1980.

Nitrogen plays an important role in hydrogen-
assisted fracture of 21Cr-6Ni-9Mn stainless steel 

H2H2

H2

H2

H2

H2

H2 H2
H2 H2

H
H



Material Variables: Composition

N. Bandyopadhyay et al., Metallurgical Transactions A, 1983

4340 (YS = 1450 MPa)
KTH can be strongly 
dependent on 
alloying element: 
Mn and Si are 
detrimental to KTH

of 4340
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Material Variables: Yield Strength
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Material Variables: Yield Strength

Data from: M.W. Perra, Environmental Degradation of  Engineering Materials in Hydrogen, 1981
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Mechanical Variables:
Fatigue/Frequency
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SA-105 Grade II steel (PH2 = 103 MPa)
Materials are more 
susceptible to low-
frequency loading 



Environmental Variables:
Gas Pressure

H2 gas pressure  (MPa)
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Environmental Variables: 
Temperature

G.R. Caskey, “Hydrogen Compatibility Handbook for Stainless Steels”, 1983

Austenitic stainless 
steels are most 
susceptible to 
hydrogen-assisted 
fracture near 200K
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Environmental Variables: 
Gas Purity

H.H. Johnson, Fundamental Aspects of Stress Corrosion Cracking, 1967
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Environmental Variables: 
Gas Purity

H2 H2
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Aluminum alloys 
become susceptible 
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Sandia National Laboratories

• Multiprogram national laboratory with breadth of 
responsibilities primarily to Department of Energy (DOE)
– 40+ years of original research in hydrogen effects, design and 

maintenance of hydrogen pressure vessels.

– Built and maintained a small hydrogen pipeline in the late ‘70s 
for research purposes, sponsored by DOE.

– Co-organizer of topical conferences on Hydrogen Effects on 
Materials Behavior (7th conf.: September 2008, Jackson Lake 
Lodge WY)

– Support development of Codes and Standards for Hydrogen

– Center of Excellence for the development of metal hydride 
storage materials



Current Activities on Hydrogen 
Compatibility at SNL

• Codes and Standards for the Hydrogen Economy
– Analysis of unintended hydrogen release scenarios

– Risk assessment

– Technical Reference on Hydrogen Compatibility of Materials
• Critical review and compilation of data on the effects of gaseous 

hydrogen on material performance 

• Materials testing focused on generating fracture mechanics data 
for relevant engineering materials in gaseous hydrogen 
environments

• To be released incrementally via SNL website 
http://www.ca.sandia.gov/matlsTechRef/

• Applicability of Failure Assessment Diagrams for gaseous 
hydrogen environments (R6 methodology)

• Hydrogen compatibility of welds in stainless steel



Testing Methodologies
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Slow Crack Growth Facility

• Closely mimics service conditions of 
static structures

• High-pressure hydrogen environment 
(up to 200 MPa)

• Environmental chamber for 
temperature studies (-75˚C to 175˚C)

• Test duration: up to 5000 hours
• Practical limit on crack advance: 10–

11 m/s



Instrumented WOL specimens
• Constant displacement using 

instrumented load cell

• Samples bolted to KIc > Ko > KTH

• Strain gages supply load vs. 
time: crack advance  load drop

• Crack arrests when K = KTH
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KTH measurements for 4340 steel

Initial KTH measurements for modern “clean” steels 
are similar to data for older steels
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Ductile fracture mechanisms: 
microvoid coalescence

Hydrogen 
precharged

As-forged

22-13-5 21-6-9



Material Variables: 
Composition & Deformation
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Material Variables: 
Microstructure & Phases
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Material Variables: 
Composition & Orientation
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Material Variables: 
Composition & Yield Strength
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Material Variables: 
Composition & Yield Strength
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Material Variables: Composition
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Summary

• Simple Abel-Noble EOS for hydrogen

• Permeation and diffusion nominally independent of 
compositional and microstructural variables for stainless steels

• Solubility depends on composition

• Hydrogen embrittlement in hydrogen gas is a bulk effect

• Many variables contribute to resistance/susceptibility to 
hydrogen-assisted fracture

• Fracture mechanics testing in gaseous hydrogen environment 
reveals low resistance to HEAC in pressure vessel steels

• High nickel content in SS improves resistance to IHAC

– e.g. not all 316 alloys are equivalent


