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Motivation and Goals:

ydrogen Compatibility of Engineering Materials

Department of Energy (DOE) program on Codes and Standards
- Technical Reference on Materials Compatibility for hydrogen storage and

distribution

« Hydrogen gas pressure to 150 MPa

o Temperature: -50°C to 150°C

- Identify guidelines for materials of construction
- Recommend suitable testing procedures
- Clarify phenomenology of hydrogen-assisted fracture (dispel myths)

Piping, tubing, and devices

Pressure vessel steels

Pipeline steels

austenitic stainless steels

quench and tempered steels
aluminum
composites

low alloy steels @ Sandia

microalloyed steels s
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Outline

Thermodynamics of high-pressure hydrogen
- Equation of state for hydrogen
- Permeation, diffusion and dissolution of hydrogen in stainless steel

Mechanisms of hydrogen-assisted fracture
- Important variables: materials, mechanical, environmental

Current activities in hydrogen effects in materials: studies at
Sandia National Laboratories

Perspective of authors:

-Metallurgists interested in design of hydrogen compatible
structures; a challenging task since

few generalizations are meaningful in the
study of hydrogen effects
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on-ldeal Behavior of High-Pressure Hydrogen

Compressibility Factor, Z

Fitting data of
Michels et al (1955)
for

223 < T<473K

P < 200 MPa

b =15.84 cm3 mol!
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e Compressibility factor Z=PV,,/RT
- for ideal gas
- at high pressure

Z=1 |ldeal gas EOS Vmo = RT/P
Z>1 Abel-Noble EOS V =V °+pb
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ermodynamic functions use fugacity

K
 Definition of fugacity: 1“(ij:j(ﬁ_l P
P) \RT P
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iffusion, Dissolution and Permeation

Chemical Equilibrium: »H, < H

(1) Hydrogen gas
(2) Physisorption
(3) Dissociation
(4) Dissolution
(5) Diffusion

Solubility K =L
\f
C DK
Diffusivity ~ J, =Dt =""1[f
t

Permeability ¢ = DK
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Permeation of Hydrogen

e single-phase austenitic stainless steels:

independent of alloy and microstructure
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}" Diffusion of Hydrogen

o Diffusivity determination from permeation experiments
requires analysis of transient data
- transient data are more sensitive to surface condition

- studies reporting high diffusivity did not take precautions to
remove surface oxides or films
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}" Solubility of Hydrogen

Solubility: K = % =K, exp(-A H /RT)

« depends on quality of diffusivity relationships

Solubility (mol m™® MPa™’?)
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' rapolation of Solubility Relationships

o Lowest values of AHs provide conservative values of
solubility when extrapolated to room temperature

Solubility (mol H, m™ MPa™"?)
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#ﬁl‘ubility Established by H Extraction

Thermal precharging of material with hydrogen
- typical exposure conditions: 138 MPa H, at 300 °C
- uniform H concentration developed in test specimens

Hydrogen concentration measured using H extraction

low H trap binding energy in stainless steels
- Extraction measurements yield approximate lattice concentration

Solubility calculated from

K=c, / \/7
Measurements for

- 300-series stainless steels: 304L & 316
- Cr-Ni-Mn stainless steels: 21Cr-6Ni-9Mn & 22Cr-13Ni-5Mn
- Precipitation-strengthened stainless steels: A-286 & JBK-75
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*&ommended Solubility Relationships

 Solubility determined from H extraction measurements
- Solubility (& diffusion) is a function of alloy
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*ﬁ)nclusions and Recommendations

« Abel-Noble equation of state Vo= R% iy

: Pb
 Fugacity f =Pexp(ﬁj b=15.84 cm’-mol™

e Permeation measurements consistent for all austenitic stainless
- use LOUthan and Derr]Ck: ¢ — 1.2X1 0—4 eXp(—7192/T) [mo] Hz-m'l-s'l-MPa'l/z]

o Solubility relationships
- for 300-series stainless steel: K = 136exp(—710/ T) [ mol H,-m - MPa™”2

- for Cr-Ni-Mn stainless steel: K =224 exp(—7lO/T) ]

« Diffusivity relationships calculated from D = ¢/K
- for 300-series stainless steel: D =8.8x107 exp(—6483/T) [m>.s']

- for Cr-Ni-Mn stainless steel:  p=54x10" exp(—6483/T) [m2.s]
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Hydrogen-Assisted Fracture
Mechanisms in Metals

Hvdrogen attack:

chemical reaction of atomic hydrogen with microstructural features

H
/% rxn

inclusions | 4 4 H )

Hydrogen solute effects:

pressurized gas,
" hydride phase,

y &
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IG

/ ™~ crack
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§s

solute hydrogen enhanced failure of interfaces and deformation mechanisms

t o)
Hydrogen accumulation
at interfaces affects
strength of interface
(grain boundaries,

second phases,
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Il Conceivable Variables Can
Influence Hydrogen Effects

e Material Variables
- Yield strength
- Composition
- Microstructure (welds)
e Mechanical Variables / Test Method
Frequency (Fatigue)
Presence of preexisting flaws (i.e., tension vs. fracture toughness)
Strain rate effects (i.e., static load versus rising load)
Mixed mode loading
e Environmental Variables
- Gas pressure and purity
- Temperature
- Hydrogen source: internal versus environmental

How should laboratory scale tests be translated into
meaningful design data for hydrogen compatibility?
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Testing Methodologies

Strength of Materials:

OyuTs,.Oys, &, RA

'\

Fracture Mechanics:

Testing in air after precharging

with atomic hydrogen

IHAC
Internal Hydrogen
Assisted Cracking

K|H7 KTH

Testing in hydrogen gas

HEAC

Hydrogen Environment

Assisted Cracking

1 1
.| 1115 =constant
Hopgl 1
HZHZZ:EZ%B_
Hy
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nsile flow curves are affected by
internal hydrogen

Engineering Stress (MPa)

21Cr-6Ni-9Mn stainless steels
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ogen-assisted fracture generally
NOT well understood

_21Cr-6Ni-9Mn stainless steels
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aterial Variables: Composition

Nitrogen plays an important role in hydrogen- 1
assisted fracture of 21Cr-6Ni-9Mn stainless steel —

N\
1000
- 21-6-9, annealed plate, SA (1423K / 0.5h) RA(internal H + H,) ]
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5 ST B2 'xq‘ls':- 2 .
19R2Y s RINESS A AR N
- T S e o TR o l R R o S
& 600F %‘th% é\ \E ;\ \; ; \; ;\ \; ;‘h 1 =
=1 NN NN NN AN NN 1 H
: % \ \\\ \ D 1100
© 400k | : | B h
5 & - Sy 7 g
AN 1 2
200 RRA=0.80 150 =
. T A
" >
s | NN I BN 1 BN 1T ety =

0.12N 0.24 N | 0.31 N 0.43 047N
Nitrogen content (Wwt%)

Data: from Odegard 1980. @ ﬁg%gﬁal
Laboratories



%Aaterial Variables: Composition

100 T T T T T T T ] |
Ma = 0.007
| o7[37852 4340 (s = 1450 MPa) -
y 3 *0003 0.11 MPo H,,23°C 3
80'\ Ma =002
840 51 «00!
./ P <0014 -
- $ +0003
~ 60
c Mo = Q09 i
843| si =001
- L. P 0012
x $ «0.00% 3
Ma » 002
J 40 \:7942 S +027
= 000386 Mn 072 7
S <0005 35 S| +0.32
= LY P +0.003
P «0009 *0.003]
S «00I6
201 Mo =072 p’ 1
Mne 023 Sl « 00! | *0.75
6[5: « 0.0l P «Q008 Bi [‘:-azo
- P = 0009 $ «000%
S » 0003 3 '0004
o | | ! | ] 1 i
0 02 04 0.6 0.8

(Mn + 05 Si+S+P) wt %
N. Bandyopadhyay et al., Metallurgical Transactions A, 1983

100

80

60

40

20

MPa l,,.,‘IIS!

Ky can be strongly
dependent on
alloying element:
Mn and Si are
detrimental to Ky
of 4340

[ ]

0 = constant

H?)J:LH

1
Hy i

Sandia
National
Laboratories



-

}Wﬁaterial Variables: Yield Strength

2

Ratio: 69MPa H / 69MPa He

Low yield strength materials tend to have greater
resistance to hydrogen-assisted fracture

X Notched tensile strength
® Reduction in Area (smooth tensile)

Yield Strength (ksi)
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- aterial Variables: Yield Strength

L , Ky of stainless
75 304L7
120 //// steels depends on
/ JBK-75 HDA ,
- / % yield strength and
« 189 microstructure
1 ;
S IN903 I
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= |
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20 7 !
O ] ] ] ] ] ]
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Data from: M.W. Perra, Environmental Degradation of Engineering Materials in Hydrogen, 1981
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Mechanical Variables:

2d
‘ Fatigue/Frequency

SA-105 Grade |l steel (P4, = 103 MPa)
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Materials are more
susceptible to low-
frequency loading
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Environmental Variables:
Gas Pressure

H, gas pressure (ksi)
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Environmental Variables:

2k

Temperature

CRRRY S Austenitic stainless
3 ®
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G.R. Caskey, “Hydrogen Compatibility Handbook for Stainless Steels”, 1983
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Hydrogen Source

Environmental Variables:

K, MPa-m1/2
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Data from: N.R. Moody et al., Hydrogen Effects on Material Behavior, 1990
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4 'Environmental Variables:
Gas Purity

1 | 1 | 1 | I |
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Environmental Variables:

2

CRACK LENGTH (cm)

Gas Purity
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M.O. Speidel, Hydrogen Embrittlement
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# Sandia National Laboratories

e Multiprogram national laboratory with breadth of
responsibilities primarily to Department of Energy (DOE)

- 40+ years of original research in hydrogen effects, design and
maintenance of hydrogen pressure vessels.

- Built and maintained a small hydrogen pipeline in the late ‘70s
for research purposes, sponsored by DOE.

- Co-organizer of topical conferences on Hydrogen Effects on
Materials Behavior (7th conf.: September 2008, Jackson Lake
Lodge WY)

- Support development of Codes and Standards for Hydrogen

- Center of Excellence for the development of metal hydride
storage materials

Sandia
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}f urrent Activities on Hydrogen

Compatibility at SNL

e Codes and Standards for the Hydrogen Economy
- Analysis of unintended hydrogen release scenarios
- Risk assessment

- Technical Reference on Hydrogen Compatibility of Materials

» Critical review and compilation of data on the effects of gaseous
hydrogen on material performance

e Materials testing focused on generating fracture mechanics data
for relevant engineering materials in gaseous hydrogen
environments

e To be released incrementally via SNL website
http://www.ca.sandia.gov/matlsTechRef/

o Applicability of Failure Assessment Diagrams for gaseous
hydrogen environments (R6 methodology)

« Hydrogen compatibility of welds in stainless steel

Sandia
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Testing Methodologies

Strength of Materials:

Fracture Mechanics:

OyuTs,.Oys, &, RA

N

K|H7 KTH

Current capabilities
at Sandia

Thermal precharging in
high-pressure H, gas,
testing in air

e pressure up to 138 MPa

e temperature up to 300°C

D

EI 3 = constant

|

Static testing in high-
pressure H, gas

e pressure up to 200 MPa
« temperature: -75°C to

+175°C
@ Sandia
National
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Closely mimics service conditions of
static structures

High-pressure hydrogen environment
(up to 200 MPa)

Environmental chamber for
temperature studies (-75°C to 175°C)
Test duration: up to 5000 hours
Practical limit on crack advance: 10
"' m/s




g '
} Instrumented WOL specimens

e Constant displacement using
instrumented load cell

e Samples bolted to K. > K, > Ky

o Strain gages supply load vs.
time: crack advance — load drop

e Crack arrests when K = K

Pconstant da

Load

Time
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}" Kty measurements for 4340 steel

H, gas pressure (ksi)

0 5 10 15 20
180 —————t———— — 1 160
{Pressure Vessel Steels A
150 & O 4147 steel (c,5=869 MPa [126 ksi]) | 140
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< - 100
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H, gas pressure (MPa)
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1 N

o0 = constant

Initial K1y measurements for modern “clean” steels
are similar to data for older steels
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quctile fracture mechanisms:
microvoid coalescence

As-forged

Hydrogen ™
precharged g
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Material Variables:

ii Composition & Deformation

316/316L Stainless Steel
High Ni improves resistance to H-assisted fracture

[1 testedin air

100 100

> 1

< 80 80 —

4 N2

S 60 60 |ny
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40 40 H
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0 4

X
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Microstructure & Phases

Material Variables:

—_—
S )] oo o
o o o o

Reduction of Area, RA (%)
S

[[] testedin air

thermally precharged, tested in air

A-286  A-286 22-13-5
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100
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Material Variables:
Composition & Orientation
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Material Variables:

; Composition & Yield Strength

Yield Strength (MPa)
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g
},' Material Variables:

Composition & Yield Strength
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}’Material Variables: Composition

Relative Reduction in Area, RRA

0.9
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0.7

0.6

IHAC of Stainless Steels
High Ni1 improves resistance to H-assisted fracture
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« Simple Abel-Noble EOS for hydrogen

e Permeation and diffusion nominally independent of
compositional and microstructural variables for stainless steels

« Solubility depends on composition

Summary

« Hydrogen embrittlement in hydrogen gas is a bulk effect

e Many variables contribute to resistance/susceptibility to
hydrogen-assisted fracture

e Fracture mechanics testing in gaseous hydrogen environment
reveals low resistance to HEAC in pressure vessel steels

« High nickel content in SS improves resistance to IHAC
- e.g. not all 316 alloys are equivalent
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