
Presentation at INFORMS Fall 2006, Pittsburgh

The AMPL
R©

/Solver Interface
Library

David M. Gay

Optimization and Uncertainty Estimation

dmgay@sandia.gov

+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation,

a Lockheed Martin Company, for the United States Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

Released as SAND2006-4717C.

1

SAND2006-7048C

Outline

• Motivation and problems addressed

• Information available

• Sparsity

• Complementarity

• Suffixes

• Imported functions

• Turning Solver Knobs

• Forthcoming additions
2

Motivation

AMPL
R©

helps state, solve, analyze &

manipulate finite-dimensional math.

programming problems involving

algebraic constraints and objectives.

AMPL (normally) uses separate solvers

and must communicate with them.

ASL source is available from netlib.

3

Problems Addressed

Minimize (or maximize) f(x)

s.t. ` ≤ c(x) ≤ u

and x ∈ D

f : Rn → R

c : Rn → Rm

D = Cartesian prod. of integer or real

intervals.

4

Variations in Solver Views

Some want standard form:

c(x) = 0, ` ≤ x ≤ u.

Some disallow range constraints:

` ≤ c(x) ≤ u

with −∞ < ` < u <∞.

Some forbid ` = −∞ or u =∞.

Some require ` = −∞ or u =∞.

5

More Variations in Solver Views

Some want only function values,

some want functions and gradients,

some want functions, gradients, and

the Lagrangian Hessian.

Some want to see linear and nonlinear

constraints separately.

6

Still More Solver Variations

Some distinguish the numbers of

nonlinear variables in objectives and

constraints.

Only a few handle complementarity

constraints — and differ in generality.

Some want funcs. component-wise;

others want everything at once.

7

Yet More Solver Variations

Some want Hessian-vector products;

others want explicit Hessians

• entirely (dense or sparse)

•• only a triangle (row- or col-wise).

Sign conventions for dual variables

vary.
8

Interface Library + Solver Drivers

AMPL/Solver interface library (ASL)

helps write solver drivers.

• .nl file has all info except names

•• build structures for efficient eval.

while reading .nl file

• write .sol file with “solve” results.

9

Solver Driver Outline

#include "asl.h"

....

ASL *asl = ASL alloc(ASL read kind);

FILE *nl = jac0dim ASL(asl, stub, 0);

....allocate some things....

kind read ASL(asl, nl, flags);

....solve the problem....

write sol ASL(asl, msg, x, y, 0);

ASL free(&asl);

10

Places to Elide “asl” and “ ASL”

#include "asl.h"

....

ASL *asl = ASL alloc(ASL read kind);

FILE *nl = jac0dim ASL(asl, stub, 0);

....allocate some things....

kind read ASL(asl, nl, flags);

....solve the problem....

write sol ASL(asl, msg, x, y, 0);

ASL free(&asl);

11

#defines permit eliding “asl” and “ ASL”

#include "asl.h"

....

ASL *asl = ASL alloc(ASL read kind);

FILE *nl = jac0dim(stub, 0);

....allocate some things....

kind read(nl, flags);

....solve the problem....

write sol(msg, x, y, 0);

ASL free(&asl);

12

Driver with Option Processing

#include "getstub.h"

....

ASL *asl = ASL alloc(ASL read kind);

char *stub = getstops(argv, &Oinfo);

FILE *nl = jac0dim(stub, 0);

....allocate some things....

kind read(nl, flags);

....solve the problem....

write sol(msg, x, y, &Oinfo);

ASL free(&asl);
13

ASL read kind Choices

ASL read f LP only

ASL read fg f and ∇f

ASL read pfgh p.s. f , ∇f , and ∇2f

Assign want deriv = 0 for no ∇f .

Others (fgh, pfg) for debugging only.

14

Problem Dimensions

jac0dim reads .nl header, providing

n var no. of variables

n con no. of constraints

n obj no. of objectives

n cc no. of complementarities

And much more (e.g., on nonlin.).

15

Sample .nl Header

g3 2 1 0 # problem pg6

10 19 1 0 0 # vars, constraints, objectives, ranges, eqns

15 1 # nonlinear constraints, objectives

0 0 # network constraints: nonlinear, linear

10 10 10 # nonlinear vars in constraints, objectives, both

0 0 0 1 # linear network variables; functions; arith, flags

0 0 0 0 0 # discrete variables: binary, integer, nonlinear (b,c,o)

53 10 # nonzeros in Jacobian, gradients

0 0 # max name lengths: constraints, variables

0 0 0 0 0 # common exprs: b,c,o,c1,o1

16

Misc. Features

#defines enhance readability:

n var = asl->i.n var

Memory from M1alloc(size t len)

freed implicitly by ASL free(&asl).

M1zapalloc(len)

= M1alloc(len) + zero-init.

17

More Misc. Features

Malloc = malloc + fail check.

Assign A vals before f read(...) for

col-wise LP constraint matrix.

To check for a QP, replace fg read

with qp read, nqpcheck, and (before

nonlin. eval’s) qpopify.

18

Bounds

Arrays x, x, c, and c give bounds on

variables and constraints:

x ≤ x ≤ x

c ≤ c(x) ≤ c.

Available as separate arrays or arrays

of pairs.

19

Nonlinear Functions

objval(i,x,e) = fi(x).

conival(i,x,e) = ci(x).

conval(x,r,e) sets

r← (c0(x), c1(x), ..., cm−1(x))T .

objgrd(i,x,g,e) sets g← ∇fi(x).

conigrd(i,x,g,e) sets g← ∇ci(x).

conval(x,J,e) sets

J← [∇c0(x),∇c1(x), ...,∇cm−1(x)]T .
20

Hessians

H = ∇2
x

(

f(x) +
∑m−1

i=0 yici(x)
)

or more generally

H(w, x, y) = ∇2
x

(

∑n obj−1
i=0 wifi(x)

+σ
∑n con−1

i=0 yici(x)
)

Can get Hv, (dense or sparse triangle

of) H, and sparsity of H.

21

Complementarity

When n cc > 0,

j = cvar[i]− 1 ≥ 0 ⇒ constraint i is

a complementarity condition:

xj = xj ⇒ ci(x) ≥ 0;

xj = xj ⇒ ci(x) ≤ 0;

xj < xj < xj ⇒ ci(x) = 0.

22

Suffixes ←→ Auxiliary Info.

• Initial, final basis

•• Ray of unboundedness

• Solver-specific variable, constraint,

or objective info

• SOS info (e.g., from nonconvex p-l)

• priorities
23

Imported Functions

• User-defined functions come from

shared libraries.

•• Same libs. work with AMPL and

solvers.

• AMPL sets $ampl funclibs to say

which libs are used. (ASL looks at

$AMPLFUNC if $ampl funclibs = 0.)
24

Some Imported Function Details

• Args numeric or string.

•• If nonzero, al->derivs ←− ∇f ,

al->hes ←− ∇2f w.r.t. num. args.

• al->funcinfo passed through.

• “AmplExports *ae = al->AE” +

#defines give access to stdio, temp.

mem., at exit, at reset, getenv.
25

Turning Solver Knobs

stub = getstops(argv, &Oinfo);

or

stub = getstub(&argv, &Oinfo);

....read .nl header, open lic....

if (getopts(argv, &Oinfo))...

provide control, common options.
26

Solver Options

Command line...

minos pg6 outlev=2

or

minos options=’outlev=2’ minos pg6

or from AMPL

option minos options ’outlev=2’;

27

Common Command-Line Options

-? show usage

-= summarize “name=...” options

-s write .sol files (without -AMPL)

— alternative to wantsol=1

-u report available imported functions

-v just report version, license

28

Forthcoming (?)

• More constraint-programming

facilities

•• Random variables for stochastic

prog.

• Update of “Hooking Your Solver to

AMPL”

29

More Info.

Hooking Your Solver to AMPL and

pointers to source and examples:

http://www.ampl.com/hooking.html

Writing .nl Files : http://endo.

sandia.gov/∼dmgay/nlwrite.pdf

30

