The AMPL /Solver Interface
Library

David M. Gay

Optimization and Uncertainty Estimation
dmgay@sandia.gov
+1-505-284-1456

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s

'
4 ' SAND2006- 7048C
#esentation at INFORMS Fall 2006, Pittsburgh

National Nuclear Security Administration under contract DE-AC04-94AL8&85000.

Released as SAND2006-4717C.

h

Sandia
National
Laboratories

> Outline

e Motivation and problems addressed
e Information available

® Sparsity

e Complementarity

o Suffixes

e Imported functions

e Turning Solver Knobs

e Forthcoming additions
)

;—; - Motivation
®
AMPL helps state, solve, analyze &

manipulate finite-dimensional math.
programming problems involving

algebraic constraints and objectives.

AMPL (normally) uses separate solvers

and must communicate with them.

ASL source is available from netlab.
) i,

3

- G
Problems Addressed

Minimize (or maximize) f(x)
s.t. £ <c(zr)<u
and r € D
f:R"—=R
c: R"— R™
D = Cartesian prod. of integer or real

Intervals.

. i //{/
/ ° ° ° °
& ; Variations in Solver Views

Some want standard form:
c(r) =0, {<x<u.
Some disallow range constraints:
¢ <clz) <u
with —oco </ < u < 0.

Some forbid ¢ = —o0 or u = 0.

Some require £ = —00 Or ©4 = 0O0.

™ More Variations in Solver Views
Some want only function values,
some want functions and gradients,
some want functions, gradients, and

the Lagrangian Hessian.

Some want to see linear and nonlinear

constraints separately.

€

>4
- o~
7
\ 1 >
P

i
; Still More Solver Variations

Some distinguish the numbers ot
nonlinear variables in objectives and

constraints.

Only a few handle complementarity

constraints — and differ in generality.

Some want funcs. component-wise;

others want everything at once.

7

-
o ;’ Yet More Solver Variations

Some want Hessian-vector products:

others want explicit Hessians

e entirely (dense or sparse)

e only a triangle (row- or col-wise).

Sign conventions for dual variables

vary.

I

€

>4
- o~
7
\ 1 >
P

>
; Interface Library + Solver Drivers

AMPL /Solver interface library (ASL)

helps write solver drivers.

e .nl file has all info except names

e build structures for efficient eval.

while reading .nl file

e write .sol file with “solve” results.

Sandia
m National
Laboratories

_
-~
Solver Driver Outline

#include "asl.h"

ASL *asl = ASL_alloc(ASL_read_kind) ;
FILE *nl = jacOdim_ASL(asl, stub, 0);
....allocate some things....
kind read_ASL(asl, nl, flags);
....80lve the problem.. ..
write_sol_ASL(asl, msg, x, y, 0);
ASL. free(&asl);

10

e '
% Places to Elide “asl” and “_ASL”

#include "asl.h"

ASL *asl = ASL_alloc(ASL_read_kind) ;
FILE *nl = jacOdim ASL(asl, stub, 0);
....allocate some things....
kind read ASL(asl, nl, flags);
....80lve the problem.. ..
write_sol ASL(asl, msg, x, y, 0);
ASIL. free(&asl);

11

e
&defines permit eliding “asl” and “_ASL”

#include "asl.h"

ASL *asl = ASL_alloc(ASL_read_kind) ;
FILE *nl = jacOdim(stubdb, 0);
....allocate some things....
kind read(nl, flags);
....80lve the problem.. ..
write_sol(msg, x, y, 0);
ASL_free(&asl);

12

_
-
Driver with Option Processing

#include "getstub.h"

ASL *asl = ASL_alloc(ASL_read_kind) ;
char *stub = getstops(argv, &0info);
FILE *nl = jacOdim(stub, 0);

....allocate some things....
kind read(nl, flags);

....S0lve the problem....

write_sol(msg, x, y, &0info);
ASL_free(&asl);

13

-
ASL _read_kind Choices

ASL _read_f
ASL read fg

Assign want_deriv

LP only
fand Vf
ASL read pfgh p.s. f, Vf, and V*f

0 for no V.

Others (fgh, pfg) for debugging only.

14

Sandia

LE
Laboratories

ational

r’

el

e

e

jacOd1i

\

n_var no.
n_con no.
n_obj no.

1 CC 1O.

Problem Dimensions

reads .nl header, providing

of variables
ol constraints
of objectives

of complementarities

And much more (e.g., on nonlin.).

15

4
: Sample .nl Header

g3 2 1 0 # problem pg6

10 19 1 0 O # vars, constraints, objectives, ranges, e
15 1 # nonlinear constraints, objectives

O O # network constraints: nonlinear, linear

10 10 10 # nonlinear vars in constraints, objectives,
O 001 # linear network variables; functions; arith,
O OO0 O O # discrete variables: binary, integer, nonli
53 10 # nonzeros in Jacobian, gradients

O O # max name lengths: constraints, variables

O 0O0OO# common exprs: b,c,o0,cl,ol

Sandia
m National
Laboratories

16

-~
Misc. Features

defines enhance readability:

nvar — asl->1.n var._

Memory from Mlalloc(size_t len)
freed implicitly by ASL_free(&asl).

Mlzapalloc(len)
—= Mlalloc(len) + zero-init.

17

N

\
e /-# More Misc. Features

Malloc = malloc + fail check.

Assign A_vals beftore £ _read(...) for

col-wise LLP constraint matrix.

To check for a QP, replace fg_read
with gp_read, ngpcheck, and (before

nonlin. eval’s) qpopify.

18

-y '
Bounds

Arrays z, T, ¢, and ¢ give bounds on
variables and constraints:
r<r<<T
c<c(x) LT

Available as separate arrays or arrays

of pairs.

19

> Nonlinear Functions
objval(i,x,e) = f;(x).
conival(i,x,e) = ¢;(x).

conval(x,r,e) sets

r « (co(x), ci(x), ..., cme1 ().

objgrd(i,x,g,e) sets g «— Vfi(z).
conigrd(i,x,g,e) sets g «— V¢;(z).
conval(x,J,e) sets

J «— [Veo(x), Ve (o), ..., Ven—1(x)]E

20

:’ g Hessians
H = V2 (f(a) + X0 yei(a))

or more generally

Hw,z,y) = V2 (SE57 wifile)
ST vici(x))

Can get Hv, (dense or sparse triangle
of) H, and sparsity of H.

21

Complementarity

When n_cc > 0,
79 =-cvar[i:] —1>0 = constraint 7 is

a complementarity condition:

ri=x; = ci(z)>0;

=]
v, =2; = ci(z) <0;
= 0.

AN

N——"

X < X <Tj — CZ'(QZ’

29

-
g }-} Suffixes «—— Auxiliary Info.

e Initial, final basis

e Ray of unboundedness

e Solver-specific variable, constraint,

or objective info
e SOS info (e.g., from nonconvex p-1)

® priorities

23

—? Imported Functions

e User-defined functions come from

shared libraries.

e Same libs. work with AMPL and

solvers.

o AMPL sets $ampl _funclibs to say
which libs are used. (ASL looks at
$AMPLFUNC if $ampl_funclibs = (.)

2y

andia

24

€

y
e
#
#
\ Y %
”
-

4} ~ Some Imported Function Details

e Args numeric or string.

e If nonzero, al->derivs «—— VT,

al->hes «+— V?f w.r.t. num. args.

e al->funcinfo passed through.

e “AmplExports *ae = al->AE” +

defines give access to stdio, temp.

mem., at_exit, at_reset, geteny
285

Sandia
m National
Laboratories

-
Turning Solver Knobs

stub = getstops(argv, &0info);
or

stub = getstub(&argv, &0info);
....1read .nl header, open lic....

if (getopts(argv, &0info))...

provide control, common options.

20

- G
Solver Options

Command line...

inos pgb outlev=2
or

minos_options=’outlev=2’ minos pgo6

or from AMPL

option minos_options ’outlev=2’;

27

__ — ‘ -

=7

DA

€

r’-l'
r
-

show usage

summarize ‘na

e=. ..

Common Command-Line Options

77

options

write .sol files (without —AMPL)

— alternative to wantsol=1

report available imported functions

just report version, license

K -~ ’ // o
i ; Forthcoming (7)

e More constraint-programming

facilities

e Random variables for stochastic

prog.

o U

bdate of “Hooking Your Solver to

AMPL”

20

~r ¢

f‘rll.
’/-.
P
z .
:

More Info.

Hooking Your Solver to AMPL and

pointers to source and examples:

http://www.a

pl.co

/hooking.ht

Writing .nl Files: http://endo.

sandia.gov/~d

30)

gay/nlwrite.pdf

Sandia

