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1. MOTIVATION FOR AATR AND BACKGROUND OF THE STUDY

This report addresses the problem of automatically recognizing objects of interest (OOls) in x-ray computed tomography
(CT) images of baggage (plastic bins in our case). The discussion draws heavily from the material in [1]. The material
composition and basic physical features of interest (FOls, such as mass and thickness) of the OOls are defined in an
object requirement specification (ORS). The ORS may also provide a detection — false alarm probability goal for each
material of interest (MOI).

Automatic threat recognition (ATR) systems identify CT images of baggage that contain OOls. ATRs must also identify
locations of OOIs within baggage. The current ATR certification process used by DHS requires the ATR hardware and
software to be certified on a specific ORS. When the ORS changes, the ATR hardware and software must be re-
certified. To pass re-certification, the hardware, algorithms and codes may need to be modified. Because ATR-based
certification and re-certification are so time-consuming, the current process cannot quickly adapt to changing
requirements.

Unlike ATRs, adaptive automatic threat recognition (AATR) systems can quickly adapt to an ORS that changes or
evolves over time [2]. The proposed AATR-based certification process would require the AATR hardware and software
to be certified on a specific baseline ORS. Once certified, the same AATR hardware, algorithms and codes would be
applied (by TSA or its delegates) to any ORS supplied in the future as input without going through lengthy re-
certification. This proposed process would enable the AATR to quickly adapt to changing requirements.

This report describes the AATR developed at the Lawrence Livermore National Laboratory (LLNL) for x-ray CT
images of baggage. The need and technical requirements for an AATR were developed in collaboration with DHS’s
Explosives Division and Northeastern University’s Awareness and Localization of Explosives-Related Threats (ALERT)
Center, a DHS Center of Excellence (http://www.northeastern.edu/alert/).

Approximately 180 CT images from task order 4 (TO4) were provided to facilitate AATR algorithm development [3].
The locations of voxels in the TO4 images that belong to OOIs were provided as “ground truth”. While the MOIs in CT
images from TO4 were limited to saline, rubber and clay [2], OOls could in principle be defined for explosives, drugs or
other contraband. The AATR was tested on CT images from task order 7 (TO7), and these images contained a variety of
MOiIs (not necessarily limited to saline, rubber and clay). Locations of the OOls in the TO7 images were hidden from
the AATR developers and known only to independent testers. While the MOls are not called out by name, the ORS does
supply a range of relevant x-ray attenuations for each MOI.

2. OVERVIEW OF THE LLNL AATR SYSTEM

The design of LLNL’s AATR is guided by two basic philosophical points:

1 LLNL Release number LLNL-TR-754219. This work was funded by the Science and Technology Directorate of the Department
of Homeland Security (DHS). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
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1. It may not always make sense to train an AATR on the available CT images.

Since the available CT images may not always adequately represent the newly prescribed ORS, it may not
always make sense to train the AATR on those images. For example, there is no guarantee that the TO4 images
will contain objects of desired mass and thickness composed of materials similar to the MOls specified in a new
ORS for TO7 images.

2. The goals of AATR can be achieved without image segmentation.

One can conclude that a CT image contains OOls and highlight their locations for an operator without
extracting any segments. For example, one could highlight the centers of sliding window regions in 3D that
contain enough relevant voxels (based, for example, on their x-ray attenuations). The set of all highlighted
voxels would indicate the presence and highlighted localized occurrence of potential OOIs to an operator.

The first philosophical point led LLNL to develop an AATR that requires no classifier training, and thus no training
images. Decision thresholds on voxel or segment relevance to the ORS must thus be estimated directly from the test
images, and not by classifier training. Section 6 of [1] proposes a method that estimates a decision threshold for each
MOI in each CT image based on probability density function (PDF) models for MOI attenuations and the PDF of CT
image voxel attenuations. Because this method is still under development, the AATR performance results provided in
Section 5 of this report were based instead on a single sub-optimal decision threshold estimated manually and applied
universally to all images and MOls.

The second philosophical point does not lead us to conclude that segmentation is useless. Image segmentation
algorithms are important tools for many tasks in computer vision. However, it led us to focus less on sophisticated
methods for image segmentation. Our AATR in fact uses a simple and computationally efficient segmentation method.
However, as described in Section 5, the baseline (ALERT) performance measure assesses segmentation performance.
By this measure, when the CT images are over segmented, the computed performance can suffer tremendously, even if
the extracted segments, when considered collectively, cover the OOIls almost entirely. This led us to propose an
alternative performance characterization measure (described in Section 6.1) based on matches, not between segments,
but between binary ground truth images and images of relevance scores (from 0 for low relevance to the ORS to 1 for
high relevance to the ORS). The proposed performance measure can cope with over and under segmented ground truth
objects, and it produces results that are qualitatively consistent with intuition.

2.1 Top Level Description of the AATR

CT images of baggage contain voxels whose values represent x-ray attenuations at one or more energies (the COE data
in our study is single energy and was acquired using an Imatron medical scanner). These attenuations provide
indications of voxel material composition [4-6]. The material composition component of an ORS supplies a region of
responsibility (ROR) for each MOI. An ROR can be represented by a range of values in linear attenuation coefficient or
LAC (i.e., (,uL,,uH)) space, effective electron density — atomic number (i.e., (pe,Ze)) space, (,uL/,uH, ,uH) space, etc.

The joint PDF of LACs across one or more energies might also be supplied for certain MOIs. These joint PDFs might
have been estimated as sample PDFs obtained from voxels across multiple bags associated with objects known to
contain specific materials. How narrow these sample PDFs are is impacted by material homogeneity and/or the
accuracies of values assigned to the voxels in tomographic image reconstructions. For example, the arrangement and
material composition of objects in baggage can impact image reconstruction artifacts and the overall accuracy of the
image reconstruction. Much work has been done over many years to improve the quality of CT image reconstructions
(see, e.g., [7-9] and the references therein). This work is particularly relevant to us because CT image reconstructions
are principal inputs to any AATR system. LLNL’s AATR makes no attempt to address CT image artifacts. It is instead
assumed that an attempt was already made to correct for artifacts in the CT images and that corrected CT images are
supplied as input to the AATR.



The ability of an ATR to classify CT image voxels by material type is fundamentally limited by the widths, shapes and
overlaps in PDFs associated with the various MOIs and benign material (particularly benign confuser material that can
be mistaken for a MOI). Fig.1 shows sample and ROR-based PDFs for saline, rubber and clay in the single-energy case.
Because the sample PDFs in Fig.1a for saline and rubber have significant overlap, one might expect saline and rubber to
be difficult to discriminate. However, because the saline and clay PDFs overlap less, one might expect them to be easier
to discriminate.

RORs contain less information than sample PDFs about the true shape of the PDF. For material mixtures, one might
model the PDF associated with an ROR as uniform. For single materials, it might make more sense to model the PDF as
unimodal with peak somewhere within the ROR (one naive assumption being to assign the peak to the center of the
ROR). Fig.1b shows ROR-based PDFs for saline, rubber and clay under this assumption. There is some basic
resemblance between the ROR-based PDFs in Fig.1b and the sample PDFs in Fig.1a.

In a 3D image, an object manifests as an image volume composed of voxels. Such an object can be characterized not
only by the material composition of the voxels it contains, but also by its physical features. By adding object physical
features to the ORS, one might potentially be able to improve upon the performance of an ATR that finds OOls (e.g., a
rubber sheet or a saline bottle) based solely on voxel material composition (e.g., rubber or saline). For weapons such as
guns and knives (which are not within the scope of the OOIs for this paper), specific object shape information is very
important. Fuzzy K nearest neighbor (KNN) [10], support vector machine (SVM) [11] and convolutional neural
network (CNN) classifiers [12] have all been applied to ATR of weapons in CT images of baggage. These classifiers are
all trained on sets of positive and negative exemplars (CNN classifiers require the largest training sets). However, for
OOls such as explosives, drugs or other contraband (which are relevant to the scope of this paper), one would not want
the object physical features to be too specific because the OOIs could have vastly different presentations (e.g., they could
potentially come in all shapes and sizes). We thus currently limit the specification to prescribed ranges of very general
physical features (in particular, mass and thickness) consistent with OOls. Other features (namely texture and
containment) have also been considered, but are not currently being used in our AATR implementation.
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Fig.1 Examples of single-energy PDFs for saline, rubber and clay: (a) sample PDFs, (b) estimated ROR-based PDFs.

Fig.2 shows a top-level block diagram of LLNL’s AATR. The most likely MOI composition is computed for each CT
image voxel. Connected component segmentation is used to extract image volumes (i.e., segments or objects) from the
material map (3D image of most likely MOI IDs). The voxels in an extracted object will all have the same most likely
material composition. A score is computed for each voxel and for each extracted object. This score reflects degree of
relevance to the ORS (it is a relevance score). Decision thresholds are estimated for each MOI within each bag (LLNL’s
algorithm for automatic decision threshold estimation is still under development). OOls are identified by applying these
decision thresholds to the extracted objects. The OOIls considered were limited to specific materials. However, OOls
could be defined for explosives, drugs or other contraband. Running on a single compute core in a desktop or laptop
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computer with 24 GB of RAM, LLNL’s AATR can process the single energy CT image of a typical plastic bin of size
512 x 512 x 400 voxels in ~15 — 30 seconds.
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Fig.2 Top-level block diagram of LLNL’s AATR.
3. CONSENSUS RELAXATION ON CT IMAGES

CT image cubes contain voxels v(x,y,z) of linear attenuation coefficients (scalars for single energy case, two-tuples for
dual energy case, etc.). Suppose the ORS accounts for m MOlIs {Mk}rkn: 1. For each MOI, there is an associated
likelihood function p(v | Mk) (either a sample PDF or an estimated ROR-based PDF, as illustrated in Fig.1 for the single
energy case). The mean likelihood of MOI k within the neighborhood of v(x,y,z) is

PUy.2) (M) = mean  p(u(x.y.Z)|M,) (3.1)
(Xyly’YZ’) € N(XYyYZ)

where N(x,y,z) is the neighborhood of (x,y,z) — a rectangular window with center at (x,y,z) that extends w inx, iWy iny

and W, in z. For the test data described in this paper, we use w = wy =w =W, where w is the consensus relaxation

parameter. p(v(x,y,z) | Mk) amounts to a moving average of p(v(x,y,z) | Mk) in 3D, which can be computed efficiently

using a fast moving average algorithm whose time complexity does not depend on window extent. The consensus
likelihood for voxel v(x,y,z) is

pru(xy.2) =  max P (v(xy.2) [ M,) 3.2)

..m

and the ID of the consensus MOI for voxel v(x,y,z) is



. { arg max p (u(x.y,2) [M,) P (u(xy.2) = p_, (u(xy.2)
K*(v(X,y,2)) =y k=1...m (3.3)

0 otherwise

k*(v) in (3.3) varies from 0 to m. k*(v) = 0 is reserved for background voxels (voxels believed to contain air or material
that is of no interest). k*(v) >0 is reserved for foreground voxels (voxels believed to contain one of the materials of
interest). In (3.3),

Py (Uxy.2) =p (3.4)

k*(y(x,y,Z)))

crit m\?x P IM

is a lower bound on the admissible consensus likelihood below which the ID of the consensus MOI is set to zero. We
use p_;, =0.2as the value at the ROR boundary of ROR-based PDFs (see Fig.1b) normalized to a peak value of one.

P, Separates voxels that potentially belong to OOls in the bin or bag from background voxels that do not potentially

belong to OOIs. The likelihood and MOI ID formulas in (3.2 - 3.3) are neighborhood operations (as opposed to point
operations). They express consensus within a local neighborhood as to what the material composition of the voxel at the
center is, and the degree of belief in that consensus. The consensus relaxation transformation from a CT image to MOI
likelihood images, a consensus likelihood image and a material map is summarized in Fig.3. Consensus relaxation
classifies each voxel by material type using a maximum likelihood classifier that requires MOl RORs or PDFs, but no
training.
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Fig.3 Consensus relaxation transformation from an x-ray CT image to MOI likelihood images, a consensus likelihood
image and a material map.

Fig.4a shows the CT image of a plastic bin rendered in 3D using LLNL’s AATR application. Fig.4b shows one slice
(slice 160) of the CT image. Fig.4c-e show the consensus likelihood images of that slice for consensus relaxation
parameters of w=1, 2 and 3. Fig.4f-h show the corresponding material maps of that slice. The consensus image tends
to become less fragmented and less busy as the degree of consensus relaxation increases. However, if the degree of
consensus relaxation is too large, the consensus becomes more ambiguous (less localized), and the extracted objects
begin to spatially distort.



slice
orientation

Fig.4 (a) CT image of a plastic bin with OOls and clutter rendered in 3D, (b) CT image slice, (c-e) consensus likelihood
images for w =1, 2 and 3, respectively, (f-h) consensus MOI ID images for w = 1, 2 and 3, respectively (saline in
light blue, rubber in orange, clay in red).

4. RELEVANCE SCORES FOR CT IMAGE VOXELS AND SEGMENTS

The idea of using segmentation to extract image volumes (segments) from CT images is consistent with the requirement
to identify locations of potential OOls within baggage. Image segmentation has been heavily researched over many
decades. One general method is to spatially cluster voxels with similar properties. To determine the number of voxel
categories present in the image, one might use variants of standard clustering methods such as K-means [13-14], or
analyze the sample PDF of voxel values [15].

Our AATR extracts volumes (segments) from CT images by applying connected component segmentation to the
material map in 3D. Each extracted image volume contains a complete set of spatially connected voxels for which the
consensus MOI is the same, leading to extracted volumes of homogeneous material composition. No attempt is made to
split or merge the extracted segments. Note that if particular mixed or heterogeneous material compositions are
important, the mixtures themselves could be defined as MOls.



The relevance score (classification statistic) that we compute for an extracted image volume (segment S) is the product
of a segment material composition factor (which depends on the MOIs) and a segment physical features factor (which
depends on the FOIs), both of which vary from zero to one:

c(S) =P (S) Prosure®) (4.1)

material feature

4.1 Segment Material Composition Factor

The material composition factor for extracted image volume or segment S is

Pt = g 2 By (42)

(xy,2) €S

where n(S) is the number of voxels in segment S. In (4.2),

P*W) 2 p*(¥) / max p*(v) € [0,1] (4.3)

where p*(v) in (3.2) is the consensus likelihood for CT image voxel v. p*(v) in (4.3) is the normalized consensus
likelihood (some fraction of the peak consensus likelihood function value for CT image voxel v).

4.2 Segment Physical Features Factor

Regardless its material composition, the segment physical feature component for an extracted image volume restricts
that volume to a low relevance score when any of its physical features is inconsistent with the ORS. For an ORS that

includes n FOIs {fi}in: P (S) is thus expressed as the product of n factors, one for each FOI:

feature
n
Pfeature(s) = H F)feature,i (fi(S) ,_Hl(k(S))) (4'4)
1=
In (4.4), Pfeaturei (f: 6) is the constraint function for physical feature I, fi(S) is the value of feature I for segment S, and

k(S) is the ID of the most likely MOI for segment S. Also, _0i(k) is the set of parameters for the feature i constraint

function when the most likely MOI for the segment has an ID of k. These parameters can vary not only from feature to
feature, but also from MOI to MOI.

“Soft rectangular” constraint functions are sufficient for our purposes. As shown in Fig.5, these constraint functions are
unit isosceles trapezoids, with three parameters, namely the start 6., end 61, and tail width 6'2 of the rectangular pulse (or

alternatively, the center (60+61)/2, half width (91—00)/2, and tail width 492 of the rectangular pulse). If the tail width
parameter is unspecified, it is set to the half width. “Soft rectangular” functions become rectangular pulses when 492 =0,
triangular pulses when 6,= 0, and Kronecker deltas when 6,= 0, and 6,=0.
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Fig.5 “Soft rectangular” constraint function for an object physical feature of interest.
4.3 Segment Physical Features

We define segment physical features as object macroscopic characteristics other than material composition. Because
OOQis for explosives, drugs and other contraband can have vastly different shapes and sizes, the OOI physical features of
interest are kept fairly general.

The physical features of interest used in LLNL’s AATR are object mass and thickness, both of which relate to object
shape or geometry. Two other features, namely texture (which is unrelated to object shape) and containment, have also
been considered, but are not currently being used. Object mass is estimated by multiplying object volume by the mean
of segment voxel attenuations and a mass density factor of 1/1024 g/cm?® [2]. Object thickness is estimated in separate
passes along the x, y and z axes over the 3D image of segment IDs. The mean of segment run lengths is computed along
one direction in each pass. The minimum of over all three passes of the mean segment run length is used as the estimate
of segment thickness. While this computationally efficient object thickness algorithm applies to 3D objects of any
shape, the thickness estimate tends to be less accurate for thin objects (where uncertainty in the thickness estimate is on
order of the actual thickness of the object).

4.4 Relevance Scores for CT Image Voxels

The normalized consensus likelihood

cv) = p(v) e [0.1] (4.5)

in (4.3) could serve as a consensus-based relevance score or classification statistic c(v) for CT image voxel v. While this
classification statistic does account for the material composition of CT image voxel v, it does not account for physical
features of the object that CT image voxel v belongs to (segment S(v)). However, following the classification statistic
for segment S in (4.1), the classification statistic

c(¥) = P (W P, oSW) € [01] (4.6)

feature
for CT image voxel v accounts for both.
5. AATR PERFORMANCE

The AATR performance metric used by ALERT [2] evaluates segmentation performance. It focuses on how accurately
objects extracted from CT images by the segmenter match the emplaced OOIs (the “ground truth”).

The AATR computes a relevance score ¢(S) (see (4.1)) for each segment S that it extracts from the CT image. The
number of positive objects N is the number of OOIs packed into the test set of plastic bins. The number of negative
objects N™ is the number of non-OOls packed into the test set of plastic bins. At decision threshold ¢* on segment
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relevance score c(S), the number of true positives NTP(C*) is the number of segments extracted by the AATR for which

c(S) > c¢* and for which precision and recall exceed some prescribed value (0.2 for sheet objects, and 0.5 for bulk
objects 2 [2-3]). In the present context, precision is defined as the number of voxels in the extracted image segment that
belong to the OOI (the number of voxels in the overlap) divided by the number of voxels in the extracted segment.
Likewise, recall is defined as the number of voxels in the overlap divided by the number of voxels in the OOl. The
number of false positives NFP(C*) is the number segments extracted by the AATR for which ¢(S) > c¢* and for which the

overlap criteria are not met. At a decision threshold c*, the detection false alarm probabilities are then estimated as
*\  — * + x\ * —
PD(c ) = NTP(c AN PFA(c ) = NFP(C )/ N (5.1)

PD(c*) in (5.1) will vary from zero to one. However, PF A(c*) will be greater than one when the number of extracted
image segments that are negatives exceeds the number of non-OOIs packed into the plastic bins. If PF A(c*) exceeds one,
it is clipped to one.

The AATR performance metric used by ALERT has the following properties:

(@ The PFA ratio can produce values greater than one.

(b) The computed numbers of true and false positives can vary depending on the “special” threshold value used for
precision and recall (a heuristic).

(c) Nearly identical image segments extracted by different AATRs could potentially contribute differently to PD
and PFA. For example, for an image volume extracted by one AATR, a contribution will be made to PD when

the precision and recall relative to a specific OOI are slightly above the threshold. However, for a nearly
identical volume extracted by another AATR, a contribution will instead be made to PFA when either precision

or recall relative to that same OOl are slightly below the threshold.

(d) An OOI will not be detected even when most of its voxels are covered by multiple extracted volumes that are
each too small by themselves to be called detections. Each of these extracted volumes will instead be
considered a false positive.

(e) An OOI will not be detected even when it is completely covered by an extracted volume that is too large to be
called a detection. The extracted volume will instead be considered a false positive.

In order to classify volumes extracted by the AATR as positive vs. negative, the AATR must use a specific value for the
decision threshold c*. This value is currently specified manually and supplied as an input to LLNL’s AATR. The
performance of LLNL’s AATR is highly dependent on this manually specified value. LLNL’s algorithm for automatic
decision threshold estimation is still under development.

LLNL’s AATR performance is summarized in Fig. 6. LLNL’s AATR code was supplied to the ALERT team. The team
then independently conducted a series of performance studies on images of baggage from TO4 (to which the performers
had access) and TO7 (which was sequestered).

For TO4 adaptability metrics (AMs) 1-3, the AATR PD was often lower than the PD goal, and the AATR PF , Was
always higher than the PF Agoal. By manually specifying a lower decision threshold, LLNL’s AATR could be made to

2 Sheet objects are thin, and the ratio of thickness to surface area is very small. Bulk objects are either thicker, or the ratio of thickness to surface area
is not small.
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always meet the PD goal, but the PFAgoaI would never be met. This implication here is that the simple segmentation

algorithm used in LLNL’s AATR was often unable to extract objects from the TO4 images that matched closely enough
to the ground truth objects, especially when the ground truth objects were small. When the segments extracted by
LLNL’s AATR did not match the ground truth segments well enough, PD was lowered and PF A Was raised. This

happened even when the segments extracted by LLNL’s AATR collectively covered most of the ground truth segments.

For TO4 AM 4 (varying mass), the PFAgoaI was always met or nearly met, but the PD values were lower than for AM 1-

3. This suggests that the simple segmentation algorithm used in LLNL’s AATR was often unable to extract small
objects from the CT images that match smaller ground truth objects well enough.

Performer Training / TO4 Data

AM 1: AROC | AM 4: PD/PFA for Varying Mass
Required | Required AATR AATR AATR
Required Required AATR | AATR | Incremental
PD PFA PD PFA PD PFA PD | PFA | MassR Incremental
[%] [%] [%] [%] ass Range °D
[%] [%] [%] | [%] [g] (%]
S 70 2 66 20 °
s 80 5 66 20 S 400 90 10 53 11 N/A N/A
s 85 8 66 20 S 300 90 10 22 6 300 - 400 33
s 90 10 66 20 S 100 90 10 50 16 100 - 300 53
S 95 20 66 20

AM 5: PD/PFA for Varying Thickness

AROC NOT DEFINED
_ Min Required | Required | AATR | AATR "_'I_':;T:::Sal Inc::::mal
AM 2: PD/PFA for Varying OOls Thickness PD PFA PD PFA Range PD
[mm] | (%] (%1 | %1 | 1%l | e (%]
Required | Required | AATR | AATR °
PD PFA PD PFA R 10 90 10 68 16 N/A N/A
[%] [%] [%] [%]
R 6.5 90 10 18 2 6.5-10 30
CSR
R 0 90 10 5 1 0-6.5 12
C 90 10 95 24
s 90 10 72 24 ALERT Testing / TO7 Data
R 9 10 82 24

AM 2: PD/PFA for Varying OOls

| |
| AM 3: Varing PD Weight | Required Required AATR AATR
EESEEE RN
(%] PFA PD PFA o o o 6
ml 90 10 94 11
cS

[%] [%] [%]
€:90,5:90 10  C:955:66 26 m2 90 10 36 4
CS (20,590 10  C:955:66 26 m3 90 10 85 5
CS (90,520 10  C:955:66 26 ma 90 10 80 1

Fig.6 LLNL AATR performance as measured by the ALERT team. The tables surrounded by blue background reflect
performance on TO4 data (to which performers had access). The table surround by pink background reflects
performance on TO7 data of baggage (which was sequestered). The OOls were S for saline, R for rubber and C
for clay.

For TO4 AM 5 (varying thickness), the PF Agoal was always met or nearly met, but the PD goal was never met. For

objects of thickness from 0-6.5mm (i.e. of less than 6.5mm) or 6.5-10mm, one would get better results by manually
specifying a smaller decision threshold as input to LLNL’s AATR. However, since the CT image voxels have
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dimensions that vary from roughly 0.9 to 1.5mm, AM 5 is attempting to detect objects with thickness of less than
roughly 5 voxels and from roughly 5-7 voxels respectively. The uncertainty in our estimate of object thickness may not
allow LLNL’s AATR to reliably detect objects which are that thin.

Since LLNL’s AATR does not train on TO4 data, one would expect a different AATR that was trained on TO4 data to
perform better on TO4 data. However, for a sequestered test set of baggage (such as TO7) and a different ORS, LLNL’s
system cannot be over-trained and may adapt well. As shown in the ALERT testing table on previously unseen baggage
(TO7), LLNL’s AATR nearly met the (PD, PF A) goals for each of four types of unknown material. In one case, PD

exceeded the goal and in three cases, PF Aexceeded the goal. It should be noted that the decision threshold used was

manually chosen, was not adaptive (did not vary from image to image or MOI to MOI), and was suboptimal. The results
recorded in Fig. 6 were based on a second manual choice of decision threshold, which improved results somewhat
relative to the first choice (but the same AATR code was used in each case). The need for manual decision threshold
estimation will be eliminated once the adaptive automatic decision threshold estimation algorithm in [1] is fully
integrated with LLNL’s AATR. We hope automatic adaptive decision threshold estimation will improve performance
beyond what is recorded in Fig. 6.

6. DISCUSSION AND FUTURE DIRECTIONS
6.1 Performance Metrics

Some might view certain properties (a)-(e) of the ALERT performance metric in Section 5 as drawbacks. The issues
suggested by those properties can be addressed by adopting a performance metric based on similarity between consensus
relaxation images and the ground truth image as a whole (rather than on similarity between specific ground truth objects
and extracted objects).

One such performance metric was proposed in [1]. NTP(C*) is the number of voxels across all CT images for which
c(v) > c* that belong to an OOI (where c(v) is given by (4.5)). Similarly, NFP(C*) is the number of voxels across all CT

images for which c(v) > ¢* that do not belong to an OOI. N is the number of voxels across all CT images that belong to
an OOIl. N is the number of voxels across all CT images that do not belong to an OOI for which the mean of voxel
attenuations across all energies is > Moo M. TEpresents a lower bound on attenuations for any potential material of
interest. We use Hoin = 300 (for comparison, g =0 for air; g = 1000 for water). TR 300 excludes CT image voxels
that occupy air and lightweight objects (such as clothing) from consideration when calculating N PD(c*) and PFA(C*)

are computed using (4.1).

Using this performance metric, PD and PFA are easy to interpret. Specifically, PD reflects the fraction of OOI volume
alarmed on. PFA reflects the fraction of non-OOI volume alarmed on (excluding volume composed of material for
which the attenuation is less than ‘umin)' While Hein does impact the computed number of false positives, it is not a
heuristic. In particular, Hein is based on RORs, theoretical values, or CT scanner measurements of MOI samples in the
laboratory.

Fig.7 shows TO4 ROC curves (taken from [1]) for a specific ORS based on the ALERT performance metric and the
proposed performance metric described above. The ROC curves in Fig.7a will vary depending on the heuristic degree of
overlap specified as allowable for object matches. The ROC curves in Fig.7b are not subject to heuristics. One can see
that these sets of ROC curves look very different. The AATR judged to have the best performance could thus
conceivably change depending on which performance metric is chosen. Choice of performance metric is clearly very
important. Even though the ROC curve appears to improve when the proposed metric is used, one must still understand
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what “good” false alarm performance means in the context of a given performance metric. The bar for “good”
performance might be higher for one performance metric than for another.
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Fig.7 TO4 ROC curves for a specific ORS based on (a) the ALERT performance metric and (b) the proposed
performance metric.

6.2 Adaptive Decision Threshold Estimation

While the goals of performance characterization using ROC curves can be achieved by varying the decision threshold c*,
a specific decision threshold must be chosen in order for the AATR to return concrete OOl assessment results to the
operator. A key weakness of LLNL’s AATR is that this decision threshold must be supplied as an input. However,
LLNL is developing a method for estimating c* that can adapt to different MOls and to the clutter in different bags. For
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a given CT image, the general idea is to estimate ROC curves for each MOI based on the values of voxels in the
consensus relaxation images and their associated PDFs. To that end, decision threshold estimation is facilitated by using
PDFs derived from RORs (as in Fig.1b) that vary continuously from 0 to 1 (and which would extend somewhat beyond
the ROR support interval). If a (PD, PFA) goal is specified for a given MOI, the point on the estimated ROC curve for

that MOI which best meets or exceeds that goal is used as the basis for the decision threshold. If no (PD, PFA) goal is
specified, the point on the ROC curve is used that maximizes an objective function whose value increases (i) as PD
increases (for fixed PF A), and (ii) as PF Adecreases (for fixed PD). By allowing AATR decision thresholds to adapt to

different MOls and to the clutter in different bags, a level of performance that exceeds what the traditional ROC curves
predict may potentially be achieved.

6.3 Remarks on Additional Aspects of the Project

It is LLNL’s opinion that ALERT should consider adopting an AATR performance metric that does not rely on a
heuristic degree of overlap between pairs of objects. Two alternative performance metrics were proposed in [1], and
some discussion was provided in Section 6.1.

The idea of using an ALERT team to test AATRs supplied by the various performers on sequestered data is good, as it
limits the ability of the various performers to adapt to the test. The process used in generating the data sets seems
reasonable. However, architecting our codes so as to deliver a virtual machine (VM) to the ALERT team for use in
independent testing took longer than anticipated, and was done at the expense of other key project deliverables (notably,
adaptive decision threshold estimation, lack of which could be limiting our PD—PFAperformance). Also, since we did not

have access to sequestered data, it was harder for us to troubleshoot runtime failures on said data (these were typically
due to mishandled “corner” cases).

LLNL appreciates being invited to participate in this effort. We learned a great deal about the AATR problem. Some
key lessons learned are listed below:

ATR and AATR are very different problems. While ATR may benefit from classifier training (because the
ORS does not change), classifier training can actually be harmful in the context of AATR (because over-
training in the context of one ORS can actually lead to reduced performance in the context of a different ORS).
Classifier training should occur only in an ORS-agnostic context.

AATR is not all about CT image segmentation. Computer vision specialists instinctively think of AATR as an
object identification problem that requires segmentation to extract objects of interest from CT images. In
reality, one can conclude that a CT image contains OOls and highlight their locations for an operator without
extracting any segments.

The choice of AATR performance metric is important. This is easy to understand when one considers that
choice of performance metric can have a profound impact on the ROC curve and which AATRs are judged to
be superior.

Strong similarities between MOI and non-MOI PDFs (of attenuations) pose a major problem for any AATR.
The community must continue to explore methodologies (e.g., (p,Z) characterizations derived from dual or
multi-energy scanners) and feasible sensor modalities that lead to signatures useful for material discrimination.
Linear attenuation coefficients from dual energy systems will often be insufficient.

Sequestered data and training: Even though the TO7 data was sequestered and could not be used for training,
enough information was provided to the performers (in the form of non-sequestered data and performance
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feedback) to enable them to adjust the algorithms to improve their performance and “pass the test”. It is not
clear that this was the intent of the project.

6.4 Summary

The key summary points for this report are as follows:

[1]
[2]
3]
[4]
[5]
[6]

[7]
8]

[9]
[10]

1.

LLNL’s AATR requires no training. The choice to avoid training is supported by realizing that it may not
always make sense to train an AATR for a new ORS on the available CT images. Without training, LLNL’s
AATR has demonstrated (PD, PF A) performance close to the goal on sets of sequestered CT images.

A key weakness of LLNL’s AATR is that the decision thresholds on relevance scores must be supplied as input.
In lieu of using a trained classifier, an adaptive decision threshold estimation method is being developed to
address this weakness. Since it produces decision thresholds that vary from image to image and from MOI to
MOI (i.e., potentially from one extracted volume to another), it has the potential to perform at a level above
what traditional ROC curves would predict.

LLNL’s AATR is not based on sophisticated methods for image segmentation. However, we have observed
that when an AATR is evaluated based on segmentation performance, the computed level of performance
suffers tremendously when the CT images are over segmented — even if the extracted segments, when
considered collectively, cover the OOIls almost entirely. We have thus developed an alternative performance
characterization measure based on matches, not between segments, but between binary ground truth images and
images of relevance scores (from 0 to 1). The proposed performance measure can cope with over and under
segmented ground truth objects, and it produces results that are qualitatively consistent with intuition.
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