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1. MOTIVATION FOR AATR AND BACKGROUND OF THE STUDY 

This report addresses the problem of automatically recognizing objects of interest (OOIs) in x-ray computed tomography 

(CT) images of baggage (plastic bins in our case).  The discussion draws heavily from the material in [1].  The material 

composition and basic physical features of interest (FOIs, such as mass and thickness) of the OOIs are defined in an 

object requirement specification (ORS).  The ORS may also provide a detection – false alarm probability goal for each 

material of interest (MOI). 

Automatic threat recognition (ATR) systems identify CT images of baggage that contain OOIs.  ATRs must also identify 

locations of OOIs within baggage.  The current ATR certification process used by DHS requires the ATR hardware and 

software to be certified on a specific ORS.  When the ORS changes, the ATR hardware and software must be re-

certified.  To pass re-certification, the hardware, algorithms and codes may need to be modified.  Because ATR-based 

certification and re-certification are so time-consuming, the current process cannot quickly adapt to changing 

requirements. 

Unlike ATRs, adaptive automatic threat recognition (AATR) systems can quickly adapt to an ORS that changes or 

evolves over time [2].  The proposed AATR-based certification process would require the AATR hardware and software 

to be certified on a specific baseline ORS.  Once certified, the same AATR hardware, algorithms and codes would be 

applied (by TSA or its delegates) to any ORS supplied in the future as input without going through lengthy re-

certification.  This proposed process would enable the AATR to quickly adapt to changing requirements. 

This report describes the AATR developed at the Lawrence Livermore National Laboratory (LLNL) for x-ray CT 

images of baggage.  The need and technical requirements for an AATR were developed in collaboration with DHS’s 

Explosives Division and Northeastern University’s Awareness and Localization of Explosives-Related Threats (ALERT) 

Center, a DHS Center of Excellence (http://www.northeastern.edu/alert/).   

Approximately 180 CT images from task order 4 (TO4) were provided to facilitate AATR algorithm development [3].  

The locations of voxels in the TO4 images that belong to OOIs were provided as “ground truth”.  While the MOIs in CT 

images from TO4 were limited to saline, rubber and clay [2], OOIs could in principle be defined for explosives, drugs or 

other contraband.  The AATR was tested on CT images from task order 7 (TO7), and these images contained a variety of 

MOIs (not necessarily limited to saline, rubber and clay).  Locations of the OOIs in the TO7 images were hidden from 

the AATR developers and known only to independent testers.  While the MOIs are not called out by name, the ORS does 

supply a range of relevant x-ray attenuations for each MOI. 

2. OVERVIEW OF THE LLNL AATR SYSTEM 

The design of LLNL’s AATR is guided by two basic philosophical points: 
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1. It may not always make sense to train an AATR on the available CT images. 

Since the available CT images may not always adequately represent the newly prescribed ORS, it may not 

always make sense to train the AATR on those images.  For example, there is no guarantee that the TO4 images 

will contain objects of desired mass and thickness composed of materials similar to the MOIs specified in a new 

ORS for TO7 images. 

2. The goals of AATR can be achieved without image segmentation. 

One can conclude that a CT image contains OOIs and highlight their locations for an operator without 

extracting any segments.  For example, one could highlight the centers of sliding window regions in 3D that 

contain enough relevant voxels (based, for example, on their x-ray attenuations).  The set of all highlighted 

voxels would indicate the presence and highlighted localized occurrence of potential OOIs to an operator. 

The first philosophical point led LLNL to develop an AATR that requires no classifier training, and thus no training 

images.  Decision thresholds on voxel or segment relevance to the ORS must thus be estimated directly from the test 

images, and not by classifier training.  Section 6 of [1] proposes a method that estimates a decision threshold for each 

MOI in each CT image based on probability density function (PDF) models for MOI attenuations and the PDF of CT 

image voxel attenuations.  Because this method is still under development, the AATR performance results provided in 

Section 5 of this report were based instead on a single sub-optimal decision threshold estimated manually and applied 

universally to all images and MOIs. 

The second philosophical point does not lead us to conclude that segmentation is useless.  Image segmentation 

algorithms are important tools for many tasks in computer vision.  However, it led us to focus less on sophisticated 

methods for image segmentation.  Our AATR in fact uses a simple and computationally efficient segmentation method.  

However, as described in Section 5, the baseline (ALERT) performance measure assesses segmentation performance.  

By this measure, when the CT images are over segmented, the computed performance can suffer tremendously, even if 

the extracted segments, when considered collectively, cover the OOIs almost entirely.  This led us to propose an 

alternative performance characterization measure (described in Section 6.1) based on matches, not between segments, 

but between binary ground truth images and images of relevance scores (from 0 for low relevance to the ORS to 1 for 

high relevance to the ORS).  The proposed performance measure can cope with over and under segmented ground truth 

objects, and it produces results that are qualitatively consistent with intuition. 

2.1  Top Level Description of the AATR 

CT images of baggage contain voxels whose values represent x-ray attenuations at one or more energies (the COE data 

in our study is single energy and was acquired using an Imatron medical scanner).  These attenuations provide 

indications of voxel material composition [4-6].  The material composition component of an ORS supplies a region of 

responsibility (ROR) for each MOI.  An ROR can be represented by a range of values in linear attenuation coefficient or 

LAC (i.e., (
L
,

H
)) space, effective electron density – atomic number (i.e., (

e
,Z

e
)) space, (

L
/

H
, 

H
) space, etc. 

The joint PDF of LACs across one or more energies might also be supplied for certain MOIs.  These joint PDFs might 

have been estimated as sample PDFs obtained from voxels across multiple bags associated with objects known to 

contain specific materials.  How narrow these sample PDFs are is impacted by material homogeneity and/or the 

accuracies of values assigned to the voxels in tomographic image reconstructions.  For example, the arrangement and 

material composition of objects in baggage can impact image reconstruction artifacts and the overall accuracy of the 

image reconstruction.  Much work has been done over many years to improve the quality of CT image reconstructions 

(see, e.g., [7-9] and the references therein).  This work is particularly relevant to us because CT image reconstructions 

are principal inputs to any AATR system.  LLNL’s AATR makes no attempt to address CT image artifacts.  It is instead 

assumed that an attempt was already made to correct for artifacts in the CT images and that corrected CT images are 

supplied as input to the AATR. 
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The ability of an ATR to classify CT image voxels by material type is fundamentally limited by the widths, shapes and 

overlaps in PDFs associated with the various MOIs and benign material (particularly benign confuser material that can 

be mistaken for a MOI).  Fig.1 shows sample and ROR-based PDFs for saline, rubber and clay in the single-energy case.  

Because the sample PDFs in Fig.1a for saline and rubber have significant overlap, one might expect saline and rubber to 

be difficult to discriminate.  However, because the saline and clay PDFs overlap less, one might expect them to be easier 

to discriminate. 

RORs contain less information than sample PDFs about the true shape of the PDF.  For material mixtures, one might 

model the PDF associated with an ROR as uniform.  For single materials, it might make more sense to model the PDF as 

unimodal with peak somewhere within the ROR (one naïve assumption being to assign the peak to the center of the 

ROR).  Fig.1b shows ROR-based PDFs for saline, rubber and clay under this assumption.  There is some basic 

resemblance between the ROR-based PDFs in Fig.1b and the sample PDFs in Fig.1a. 

In a 3D image, an object manifests as an image volume composed of voxels.  Such an object can be characterized not 

only by the material composition of the voxels it contains, but also by its physical features.  By adding object physical 

features to the ORS, one might potentially be able to improve upon the performance of an ATR that finds OOIs (e.g., a 

rubber sheet or a saline bottle) based solely on voxel material composition (e.g., rubber or saline).  For weapons such as 

guns and knives (which are not within the scope of the OOIs for this paper), specific object shape information is very 

important.  Fuzzy K nearest neighbor (KNN) [10], support vector machine (SVM) [11] and convolutional neural 

network (CNN) classifiers [12] have all been applied to ATR of weapons in CT images of baggage.  These classifiers are 

all trained on sets of positive and negative exemplars (CNN classifiers require the largest training sets).  However, for 

OOIs such as explosives, drugs or other contraband (which are relevant to the scope of this paper), one would not want 

the object physical features to be too specific because the OOIs could have vastly different presentations (e.g., they could 

potentially come in all shapes and sizes).  We thus currently limit the specification to prescribed ranges of very general 

physical features (in particular, mass and thickness) consistent with OOIs.  Other features (namely texture and 

containment) have also been considered, but are not currently being used in our AATR implementation. 

 

Fig.1 Examples of single-energy PDFs for saline, rubber and clay: (a) sample PDFs, (b) estimated ROR-based PDFs. 

Fig.2 shows a top-level block diagram of LLNL’s AATR.  The most likely MOI composition is computed for each CT 

image voxel.  Connected component segmentation is used to extract image volumes (i.e., segments or objects) from the 

material map (3D image of most likely MOI IDs).  The voxels in an extracted object will all have the same most likely 

material composition.  A score is computed for each voxel and for each extracted object.  This score reflects degree of 

relevance to the ORS (it is a relevance score).  Decision thresholds are estimated for each MOI within each bag (LLNL’s 

algorithm for automatic decision threshold estimation is still under development).  OOIs are identified by applying these 

decision thresholds to the extracted objects.  The OOIs considered were limited to specific materials.  However, OOIs 

could be defined for explosives, drugs or other contraband.  Running on a single compute core in a desktop or laptop 

(a) (b)

saline

saline

clay clay
rubber rubber
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computer with 24 GB of RAM, LLNL’s AATR can process the single energy CT image of a typical plastic bin of size 

512 x 512 x 400 voxels in ~15 – 30 seconds. 

 

Fig.2 Top-level block diagram of LLNL’s AATR. 

3. CONSENSUS RELAXATION ON CT IMAGES  

CT image cubes contain voxels v(x,y,z) of linear attenuation coefficients (scalars for single energy case, two-tuples for 

dual energy case, etc.).  Suppose the ORS accounts for m MOIs {M
k
}

m

k = 1.  For each MOI, there is an associated 

likelihood function p(v | M
k
)  (either a sample PDF or an estimated ROR-based PDF, as illustrated in Fig.1 for the single 

energy case).  The mean likelihood of MOI k within the neighborhood of v(x,y,z) is 

 p
−
(v(x,y,z) | M

k
)  =  mean

(x,y,z)  N(x,y,z)

p(v(x,y,z) | M
k
) (3.1) 

where N(x,y,z) is the neighborhood of (x,y,z) – a rectangular window with center at (x,y,z) that extends ±w
x
 in x, ±w

y
 in y 

and ±w
z
 in z.  For the test data described in this paper, we use w

x
 = w

y
 = w

z
 = w, where w is the consensus relaxation 

parameter.  p
−
(v(x,y,z) | M

k
) amounts to a moving average of p(v(x,y,z) | M

k
) in 3D, which can be computed efficiently 

using a fast moving average algorithm whose time complexity does not depend on window extent.  The consensus 

likelihood for voxel v(x,y,z) is 

 p*(v(x,y,z))  =  max
k = 1 … m

p
−
 (v(x,y,z) | M

k
) (3.2) 

and the ID of the consensus MOI for voxel v(x,y,z) is  

CT Image

Determine 
Consensus 

MOI for each 
Voxel

Connected 
Component 

Segmentation

Estimate Decision 
Thresholds

(per bag , MOI) **

Compute
Relevance

Scores

slice

orientation

X-Ray CT Image in 3D

slice

orientation

Detected Objects in 3D

X-Ray CT Image Slice Material Likelihood

(de-emphasizes clutter)

Material Map

saline

rubber

clay

materials of interest (MOIs) object physical constraints

detected

objects

voxel

scores,

object

scores

material map,

MOI likelihoods,

consensus

likelihoods

object requirement specification (ORS)

objects

X-Ray

CT Image*

Identify 
Objects of 
Interest 
(OOIs)

score threshold

(for each MOI)

PD,PFA goal



 

 
 

 

5 

 

 k*(v(x,y,z))  =  




 
arg max
k = 1 … m

 p
−
 (v(x,y,z) | M

k
) p*(v(x,y,z)) ≥ p

crit
*   (v(x,y,z))

0 otherwise

 (3.3) 

k*(v) in (3.3) varies from 0 to m.  k*(v) = 0 is reserved for background voxels (voxels believed to contain air or material 

that is of no interest).  k*(v) > 0 is reserved for foreground voxels (voxels believed to contain one of the materials of 

interest).  In (3.3), 

 p
crit
*   (v(x,y,z))  = p

crit
 · max

v

  p(v | M
k*(v(x,y,z))

) (3.4) 

is a lower bound on the admissible consensus likelihood below which the ID of the consensus MOI is set to zero.  We 

use p
crit

 = 0.2 as the value at the ROR boundary of ROR-based PDFs (see Fig.1b) normalized to a peak value of one.  

p
crit

 separates voxels that potentially belong to OOIs in the bin or bag from background voxels that do not potentially 

belong to OOIs.  The likelihood and MOI ID formulas in (3.2 - 3.3) are neighborhood operations (as opposed to point 

operations).  They express consensus within a local neighborhood as to what the material composition of the voxel at the 

center is, and the degree of belief in that consensus.  The consensus relaxation transformation from a CT image to MOI 

likelihood images, a consensus likelihood image and a material map is summarized in Fig.3.  Consensus relaxation 

classifies each voxel by material type using a maximum likelihood classifier that requires MOI RORs or PDFs, but no 

training. 

 

Fig.3  Consensus relaxation transformation from an x-ray CT image to MOI likelihood images, a consensus likelihood 

image and a material map. 

Fig.4a shows the CT image of a plastic bin rendered in 3D using LLNL’s AATR application.  Fig.4b shows one slice 

(slice 160) of the CT image.  Fig.4c-e show the consensus likelihood images of that slice for consensus relaxation 

parameters of w = 1, 2 and 3.  Fig.4f-h show the corresponding material maps of that slice.  The consensus image tends 

to become less fragmented and less busy as the degree of consensus relaxation increases.  However, if the degree of 

consensus relaxation is too large, the consensus becomes more ambiguous (less localized), and the extracted objects 

begin to spatially distort. 
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Fig.4 (a) CT image of a plastic bin with OOIs and clutter rendered in 3D, (b) CT image slice, (c-e) consensus likelihood 

images for w = 1, 2 and 3, respectively, (f-h) consensus MOI ID images for w = 1, 2 and 3, respectively (saline in 

light blue, rubber in orange, clay in red). 

 

4. RELEVANCE SCORES FOR CT IMAGE VOXELS AND SEGMENTS 

The idea of using segmentation to extract image volumes (segments) from CT images is consistent with the requirement 

to identify locations of potential OOIs within baggage.  Image segmentation has been heavily researched over many 

decades.  One general method is to spatially cluster voxels with similar properties.  To determine the number of voxel 

categories present in the image, one might use variants of standard clustering methods such as K-means [13-14], or 

analyze the sample PDF of voxel values [15]. 

Our AATR extracts volumes (segments) from CT images by applying connected component segmentation to the 

material map in 3D.  Each extracted image volume contains a complete set of spatially connected voxels for which the 

consensus MOI is the same, leading to extracted volumes of homogeneous material composition.  No attempt is made to 

split or merge the extracted segments.  Note that if particular mixed or heterogeneous material compositions are 

important, the mixtures themselves could be defined as MOIs. 

(a) (b)

(c) (d) (e)

(f) (g) (h)

slice
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The relevance score (classification statistic) that we compute for an extracted image volume (segment S) is the product 

of a segment material composition factor (which depends on the MOIs) and a segment physical features factor (which 

depends on the FOIs), both of which vary from zero to one: 

 c(S)  =  P
material

(S) P
feature

(S) (4.1) 

4.1 Segment Material Composition Factor 

The material composition factor for extracted image volume or segment S is 

 P
material

(S)   =  
1

n(S)
 
(x,y,z)  S

 

 p~*(v(x,y,z)) (4.2) 

where n(S) is the number of voxels in segment S.  In (4.2), 

 p~*(v)  =

  p*(v) / max

v

 p*(v)    [0,1] (4.3) 

where p*(v) in (3.2) is the consensus likelihood for CT image voxel v.  p~*(v) in (4.3) is the normalized consensus 

likelihood (some fraction of the peak consensus likelihood function value for CT image voxel v). 

4.2 Segment Physical Features Factor 

Regardless its material composition, the segment physical feature component for an extracted image volume restricts 

that volume to a low relevance score when any of its physical features is inconsistent with the ORS.  For an ORS that 

includes n FOIs {f
i
}

n

i = 1, P
feature

(S) is thus expressed as the product of n factors, one for each FOI: 

 P
feature

(S)  =  
i = 1

n

 P
feature,i

 (f
i
(S) ; 

i
(k(S))) (4.4) 

In (4.4), P
feature,i

 (f ; ) is the constraint function for physical feature i,  f
i
(S) is the value of feature i for segment S, and 

k(S) is the ID of the most likely MOI for segment S.  Also, 
i
(k) is the set of parameters for the feature i constraint 

function when the most likely MOI for the segment has an ID of k.  These parameters can vary not only from feature to 

feature, but also from MOI to MOI.  

“Soft rectangular” constraint functions are sufficient for our purposes.  As shown in Fig.5, these constraint functions are 

unit isosceles trapezoids, with three parameters, namely the start 
0
, end 

1
, and tail width 

2
 of the rectangular pulse (or 

alternatively, the center (
0
+

1
)/2, half width (

1
−

0
)/2, and tail width 

2
 of the rectangular pulse).  If the tail width 

parameter is unspecified, it is set to the half width.  “Soft rectangular" functions become rectangular pulses when 
2
 = 0, 

triangular pulses when 
0
 = 

1
, and Kronecker deltas when 

0
 = 

1
 and 

2
 = 0. 
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Fig.5 “Soft rectangular” constraint function for an object physical feature of interest. 

4.3 Segment Physical Features 

We define segment physical features as object macroscopic characteristics other than material composition.  Because 

OOIs for explosives, drugs and other contraband can have vastly different shapes and sizes, the OOI physical features of 

interest are kept fairly general.  

The physical features of interest used in LLNL’s AATR are object mass and thickness, both of which relate to object 

shape or geometry.  Two other features, namely texture (which is unrelated to object shape) and containment, have also 

been considered, but are not currently being used.  Object mass is estimated by multiplying object volume by the mean 

of segment voxel attenuations and a mass density factor of 1/1024 g/cm3 [2].  Object thickness is estimated in separate 

passes along the x, y and z axes over the 3D image of segment IDs.  The mean of segment run lengths is computed along 

one direction in each pass.  The minimum of over all three passes of the mean segment run length is used as the estimate 

of segment thickness.  While this computationally efficient object thickness algorithm applies to 3D objects of any 

shape, the thickness estimate tends to be less accurate for thin objects (where uncertainty in the thickness estimate is on 

order of the actual thickness of the object). 

4.4 Relevance Scores for CT Image Voxels 

 

The normalized consensus likelihood 

  c(v)  =  p~*(v)    [0,1] (4.5) 

in (4.3) could serve as a consensus-based relevance score or classification statistic c(v) for CT image voxel v.  While this 

classification statistic does account for the material composition of CT image voxel v, it does not account for physical 

features of the object that CT image voxel v belongs to (segment S(v)).  However, following the classification statistic 

for segment S in (4.1), the classification statistic 

 c(v)  =  p~*(v) P
feature

(S(v))    [0,1] (4.6) 

for CT image voxel v accounts for both. 

5. AATR PERFORMANCE 

The AATR performance metric used by ALERT [2] evaluates segmentation performance.  It focuses on how accurately 

objects extracted from CT images by the segmenter match the emplaced OOIs (the “ground truth”). 

The AATR computes a relevance score c(S) (see (4.1)) for each segment S that it extracts from the CT image.   The 

number of positive objects N
+
 is the number of OOIs packed into the test set of plastic bins.  The number of negative 

objects N
−
 is the number of non-OOIs packed into the test set of plastic bins.  At decision threshold c* on segment 

f

Pfeature,i(f ; )

0 1 1+20−20
0

1
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relevance score c(S), the number of true positives N
TP

(c*) is the number of segments extracted by the AATR for which 

c(S) ≥ c* and for which precision and recall exceed some prescribed value (0.2 for sheet objects, and 0.5 for bulk   

objects 2 [2-3]).  In the present context, precision is defined as the number of voxels in the extracted image segment that 

belong to the OOI (the number of voxels in the overlap) divided by the number of voxels in the extracted segment.  

Likewise, recall is defined as the number of voxels in the overlap divided by the number of voxels in the OOI.  The 

number of false positives N
FP

(c*) is the number segments extracted by the AATR for which c(S) ≥ c* and for which the 

overlap criteria are not met.  At a decision threshold c*, the detection false alarm probabilities are then estimated as 

 P
D

(c*)  =  N
TP

(c*) / N
+
,          P

FA
(c*)  =  N

FP
(c*) / N

−
 (5.1) 

P
D

(c*) in (5.1) will vary from zero to one.  However, P
FA

(c*) will be greater than one when the number of extracted 

image segments that are negatives exceeds the number of non-OOIs packed into the plastic bins.  If P
FA

(c*) exceeds one, 

it is clipped to one. 

The AATR performance metric used by ALERT has the following properties: 

(a) The P
FA

 ratio can produce values greater than one. 

(b) The computed numbers of true and false positives can vary depending on the “special” threshold value used for 

precision and recall (a heuristic). 

(c)  Nearly identical image segments extracted by different AATRs could potentially contribute differently to P
D

 

and P
FA

.  For example, for an image volume extracted by one AATR, a contribution will be made to P
D

 when 

the precision and recall relative to a specific OOI are slightly above the threshold.  However, for a nearly 

identical volume extracted by another AATR, a contribution will instead be made to P
FA

 when either precision 

or recall relative to that same OOI are slightly below the threshold. 

(d) An OOI will not be detected even when most of its voxels are covered by multiple extracted volumes that are 

each too small by themselves to be called detections.  Each of these extracted volumes will instead be 

considered a false positive. 

(e) An OOI will not be detected even when it is completely covered by an extracted volume that is too large to be 

called a detection.  The extracted volume will instead be considered a false positive. 

In order to classify volumes extracted by the AATR as positive vs. negative, the AATR must use a specific value for the 

decision threshold c*.  This value is currently specified manually and supplied as an input to LLNL’s AATR.  The 

performance of LLNL’s AATR is highly dependent on this manually specified value.  LLNL’s algorithm for automatic 

decision threshold estimation is still under development. 

LLNL’s AATR performance is summarized in Fig. 6.  LLNL’s AATR code was supplied to the ALERT team.  The team 

then independently conducted a series of performance studies on images of baggage from TO4 (to which the performers 

had access) and TO7 (which was sequestered). 

For TO4 adaptability metrics (AMs) 1-3, the AATR P
D

 was often lower than the P
D

 goal, and the AATR P
FA

 was 

always higher than the P
FA

goal.  By manually specifying a lower decision threshold, LLNL’s AATR could be made to 

                                                 
2  Sheet objects are thin, and the ratio of thickness to surface area is very small.  Bulk objects are either thicker, or the ratio of thickness to surface area 

is not small. 
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always meet the P
D

 goal, but the P
FA

goal would never be met. This implication here is that the simple segmentation 

algorithm used in LLNL’s AATR was often unable to extract objects from the TO4 images that matched closely enough 

to the ground truth objects, especially when the ground truth objects were small.  When the segments extracted by 

LLNL’s AATR did not match the ground truth segments well enough, P
D

 was lowered and P
FA

 was raised.  This 

happened even when the segments extracted by LLNL’s AATR collectively covered most of the ground truth segments.  

For TO4 AM 4 (varying mass), the P
FA

goal was always met or nearly met, but the P
D

 values were lower than for AM 1-

3.  This suggests that the simple segmentation algorithm used in LLNL’s AATR was often unable to extract small 

objects from the CT images that match smaller ground truth objects well enough. 

 

Fig.6 LLNL AATR performance as measured by the ALERT team.  The tables surrounded by blue background reflect 

performance on TO4 data (to which performers had access).  The table surround by pink background reflects 

performance on TO7 data of baggage (which was sequestered).  The OOIs were S for saline, R for rubber and C 

for clay.   

For TO4 AM 5 (varying thickness), the P
FA

goal was always met or nearly met, but the P
D

 goal was never met.  For 

objects of thickness from 0-6.5mm (i.e. of less than 6.5mm) or 6.5-10mm, one would get better results by manually 

specifying a smaller decision threshold as input to LLNL’s AATR.  However, since the CT image voxels have 

Performer Training / TO4 Data

ALERT Testing / TO7 Data

OOI(s)
Required 

PD
[ % ]

Required 
PFA
[ % ]

AATR
PD

[ % ]

AATR 
PFA
[ % ]

m1 90 10 94 11

m2 90 10 86 4

m3 90 10 85 2

m4 90 10 80 1

OOI
Required 

PD
[ % ]

Required 
PFA
[ % ]

AATR
PD
[ % ]

AATR 
PFA
[ % ]

C,S,R 90 10 82 24

C 90 10 95 24

S 90 10 72 24

R 90 10 82 24

AM 2: PD/PFA for Varying OOIs

OOI
Required 

PD
[ % ]

Required 
PFA
[ % ]

AATR
PD
[ % ]

AATR 
PFA
[ % ]

S 70 2 66 20

S 80 5 66 20

S 85 8 66 20

S 90 10 66 20

S 95 20 66 20

AM 1: AROC

AROC NOT DEFINED

AM 2: PD/PFA for Varying OOIs

AM 3: Varing PD Weight

OOI
Req PD

[ % ]

Req
PFA
[ % ]

AATR
PD

[ % ]

AATR 
PFA
[ % ]

C,S C:90, S:90 10 C: 95, S: 66 26

C,S C:20, S:90 10 C: 95, S: 66 26

C,S C:90, S:20 10 C: 95, S: 66 26

OOI
Min Mass 

[ g ]

Required 
PD

[ % ]

Required 
PFA
[ % ]

AATR
PD
[ % ]

AATR 
PFA
[ % ]

Incremental 
Mass Range   

[ g ]

AATR
Incremental 

PD
[ % ]

S 400 90 10 53 11 N/A N/A

S 300 90 10 22 6 300 - 400 33

S 100 90 10 50 16 100 - 300 53

AM 4: PD/PFA for Varying Mass

OOI
Min

Thickness 
[ mm ]

Required 
PD
[ % ]

Required 
PFA
[ % ]

AATR
PD

[ % ]

AATR 
PFA
[ % ]

Incremental 
Thickness 

Range 
[ mm ]

AATR
Incremental 

PD
[ % ]

R 10 90 10 68 16 N/A N/A

R 6.5 90 10 18 2 6.5 - 10 30

R 0 90 10 5 1 0 – 6.5 12

AM 5: PD/PFA for Varying Thickness
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dimensions that vary from roughly 0.9 to 1.5mm, AM 5 is attempting to detect objects with thickness of less than 

roughly 5 voxels and from roughly 5-7 voxels respectively.  The uncertainty in our estimate of object thickness may not 

allow LLNL’s AATR to reliably detect objects which are that thin. 

Since LLNL’s AATR does not train on TO4 data, one would expect a different AATR that was trained on TO4 data to 

perform better on TO4 data.  However, for a sequestered test set of baggage (such as TO7) and a different ORS, LLNL’s 

system cannot be over-trained and may adapt well.  As shown in the ALERT testing table on previously unseen baggage 

(TO7), LLNL’s AATR nearly met the (P
D

, P
FA

) goals for each of four types of unknown material.  In one case, P
D

 

exceeded the goal and in three cases, P
FA

exceeded the goal.  It should be noted that the decision threshold used was 

manually chosen, was not adaptive (did not vary from image to image or MOI to MOI), and was suboptimal.  The results 

recorded in Fig. 6 were based on a second manual choice of decision threshold, which improved results somewhat 

relative to the first choice (but the same AATR code was used in each case).  The need for manual decision threshold 

estimation will be eliminated once the adaptive automatic decision threshold estimation algorithm in [1] is fully 

integrated with LLNL’s AATR.  We hope automatic adaptive decision threshold estimation will improve performance 

beyond what is recorded in Fig. 6. 

6. DISCUSSION AND FUTURE DIRECTIONS 

6.1  Performance Metrics 

Some might view certain properties (a)-(e) of the ALERT performance metric in Section 5 as drawbacks.  The issues 

suggested by those properties can be addressed by adopting a performance metric based on similarity between consensus 

relaxation images and the ground truth image as a whole (rather than on similarity between specific ground truth objects 

and extracted objects). 

One such performance metric was proposed in [1].  N
TP

(c*) is the number of voxels across all CT images for which 

c(v) ≥ c* that belong to an OOI (where c(v) is given by (4.5)).  Similarly, N
FP

(c*) is the number of voxels across all CT 

images for which c(v) ≥ c* that do not belong to an OOI.  N
+
 is the number of voxels across all CT images that belong to 

an OOI.  N
−
 is the number of voxels across all CT images that do not belong to an OOI for which the mean of voxel 

attenuations across all energies is ≥ 
min

.  
min

 represents a lower bound on attenuations for any potential material of 

interest.  We use 
min

 = 300 (for comparison,  = 0 for air;  = 1000 for water).  
min

 = 300 excludes CT image voxels 

that occupy air and lightweight objects (such as clothing) from consideration when calculating N
−
.  P

D
(c*) and P

FA
(c*) 

are computed using (4.1). 

Using this performance metric, P
D

 and P
FA

 are easy to interpret.  Specifically, P
D

 reflects the fraction of OOI volume 

alarmed on.  P
FA

 reflects the fraction of non-OOI volume alarmed on (excluding volume composed of material for 

which the attenuation is less than 
min

).  While 
min

 does impact the computed number of false positives, it is not a 

heuristic.  In particular, 
min

 is based on RORs, theoretical values, or CT scanner measurements of MOI samples in the 

laboratory. 

Fig.7 shows TO4 ROC curves (taken from [1]) for a specific ORS based on the ALERT performance metric and the 

proposed performance metric described above.  The ROC curves in Fig.7a will vary depending on the heuristic degree of 

overlap specified as allowable for object matches.  The ROC curves in Fig.7b are not subject to heuristics.  One can see 

that these sets of ROC curves look very different.  The AATR judged to have the best performance could thus 

conceivably change depending on which performance metric is chosen.  Choice of performance metric is clearly very 

important.  Even though the ROC curve appears to improve when the proposed metric is used, one must still understand 
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what “good” false alarm performance means in the context of a given performance metric.  The bar for “good” 

performance might be higher for one performance metric than for another. 

 
(a) 

 
(b) 

Fig.7 TO4 ROC curves for a specific ORS based on (a) the ALERT performance metric and (b) the proposed 

performance metric. 

6.2  Adaptive Decision Threshold Estimation 

While the goals of performance characterization using ROC curves can be achieved by varying the decision threshold c*, 

a specific decision threshold must be chosen in order for the AATR to return concrete OOI assessment results to the 

operator.  A key weakness of LLNL’s AATR is that this decision threshold must be supplied as an input.  However, 

LLNL is developing a method for estimating c* that can adapt to different MOIs and to the clutter in different bags.  For 

Clay

Saline

Rubber

All

Clay
Saline

Rubber

All



 

 
 

 

13 

 

a given CT image, the general idea is to estimate ROC curves for each MOI based on the values of voxels in the 

consensus relaxation images and their associated PDFs.  To that end, decision threshold estimation is facilitated by using 

PDFs derived from RORs (as in Fig.1b) that vary continuously from 0 to 1 (and which would extend somewhat beyond 

the ROR support interval).  If a (P
D

, P
FA

) goal is specified for a given MOI, the point on the estimated ROC curve for 

that MOI which best meets or exceeds that goal is used as the basis for the decision threshold.  If no (P
D

, P
FA

) goal is 

specified, the point on the ROC curve is used that maximizes an objective function whose value increases (i) as P
D

increases (for fixed P
FA

), and (ii) as P
FA

decreases (for fixed P
D

).  By allowing AATR decision thresholds to adapt to 

different MOIs and to the clutter in different bags, a level of performance that exceeds what the traditional ROC curves 

predict may potentially be achieved. 

6.3  Remarks on Additional Aspects of the Project 

It is LLNL’s opinion that ALERT should consider adopting an AATR performance metric that does not rely on a 

heuristic degree of overlap between pairs of objects.  Two alternative performance metrics were proposed in [1], and 

some discussion was provided in Section 6.1. 

The idea of using an ALERT team to test AATRs supplied by the various performers on sequestered data is good, as it 

limits the ability of the various performers to adapt to the test.  The process used in generating the data sets seems 

reasonable.  However, architecting our codes so as to deliver a virtual machine (VM) to the ALERT team for use in 

independent testing took longer than anticipated, and was done at the expense of other key project deliverables (notably, 

adaptive decision threshold estimation, lack of which could be limiting our P
D

-P
FA

performance).  Also, since we did not 

have access to sequestered data, it was harder for us to troubleshoot runtime failures on said data (these were typically 

due to mishandled “corner” cases). 

LLNL appreciates being invited to participate in this effort.  We learned a great deal about the AATR problem.  Some 

key lessons learned are listed below: 

· ATR and AATR are very different problems.  While ATR may benefit from classifier training (because the 

ORS does not change), classifier training can actually be harmful in the context of AATR (because over-

training in the context of one ORS can actually lead to reduced performance in the context of a different ORS).  

Classifier training should occur only in an ORS-agnostic context. 

· AATR is not all about CT image segmentation.  Computer vision specialists instinctively think of AATR as an 

object identification problem that requires segmentation to extract objects of interest from CT images.  In 

reality, one can conclude that a CT image contains OOIs and highlight their locations for an operator without 

extracting any segments. 

· The choice of AATR performance metric is important.  This is easy to understand when one considers that 

choice of performance metric can have a profound impact on the ROC curve and which AATRs are judged to 

be superior. 

· Strong similarities between MOI and non-MOI PDFs (of attenuations) pose a major problem for any AATR.  

The community must continue to explore methodologies (e.g., (,Z) characterizations derived from dual or 

multi-energy scanners) and feasible sensor modalities that lead to signatures useful for material discrimination.  

Linear attenuation coefficients from dual energy systems will often be insufficient. 

· Sequestered data and training:  Even though the TO7 data was sequestered and could not be used for training, 

enough information was provided to the performers (in the form of non-sequestered data and performance 
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feedback) to enable them to adjust the algorithms to improve their performance and “pass the test”.  It is not 

clear that this was the intent of the project. 

6.4  Summary 

The key summary points for this report are as follows: 

1. LLNL’s AATR requires no training.  The choice to avoid training is supported by realizing that it may not 

always make sense to train an AATR for a new ORS on the available CT images.  Without training, LLNL’s 

AATR has demonstrated (P
D

, P
FA

) performance close to the goal on sets of sequestered CT images. 

2. A key weakness of LLNL’s AATR is that the decision thresholds on relevance scores must be supplied as input.  

In lieu of using a trained classifier, an adaptive decision threshold estimation method is being developed to 

address this weakness.  Since it produces decision thresholds that vary from image to image and from MOI to 

MOI (i.e., potentially from one extracted volume to another), it has the potential to perform at a level above 

what traditional ROC curves would predict.  

3. LLNL’s AATR is not based on sophisticated methods for image segmentation.  However, we have observed 

that when an AATR is evaluated based on segmentation performance, the computed level of performance 

suffers tremendously when the CT images are over segmented – even if the extracted segments, when 

considered collectively, cover the OOIs almost entirely.  We have thus developed an alternative performance 

characterization measure based on matches, not between segments, but between binary ground truth images and 

images of relevance scores (from 0 to 1).  The proposed performance measure can cope with over and under 

segmented ground truth objects, and it produces results that are qualitatively consistent with intuition. 
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