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Dynamic Networks Experiment (2018) - Quality Control Focus Area 
Efforts at LLNL

Motivation
The availability of data whose quality is fittingly labeled is of tantamount importance to signal 
detection and all other downstream signal processing operations. Without identification, the 
goals of low yield nuclear monitoring cannot reach their full potential. A fundamental question 
that remains is the knowledge of the capability gaps that prevent us from using open network 
data. With these new channels, we will need better understanding of the frequency, type, 
severity, and impact of artifacts when compared to conventional networks. Moreover, beyond 
a simple quality label, thresholds for acceptable use of the data will need to be established, 
likely on a use case by use case basis. Finally, orders of magnitude more data with an at-best 
static analyst pool size means that quality artifacts must be identified with as little human 
interaction as possible.

Automated methodologies must be developed to account for the scale of the problem when ad 
hoc networks are candidates for processing. At the same time that “data wealth” provides 
more opportunity for signal exploitation, the introduction of ad hoc networks introduces an 
increased risk quality issues in both sensor value and metadata issues. The artifacts shown 
below are examples of some sensor-based quality issues that impair downstream processing. 
The machine learning model used in this project was able to identify the artifacts that produce 
these spurious correlations, significantly improving analyst productivity. 

Figure 1 Sensor-based quality issue examples (Dodge and Walter)

Data

Nine types of synthetic sensor-based artifacts (examples shown in the figure below) were 
introduced to real data from the University of Utah network. These nine do not account for the 
full list of quality issues to be addressed in future experiments. Presently, the goal of this 
experiment was to establish the baseline capability for our tool(s) to be able to identify these 
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synthetics. Beyond those artifacts displayed below, sensor response metadata was also altered 
in some cases to simulate impaired processing.

Related work at LLNL
The approach taken at LLNL to solve the problem of automated quality issue detection at scale 
has been to use machine learning. Machine learning offers promise in that, given the right set 
of training features, models can find relationships between features previously unknown to the 
analyst. Trained models also have a constant size in memory, making them the perfect 
candidates for scalability. For robustness and explainability we chose the Random Forest 
model.

Random Forests belong to the class of supervised learning machine learning models. In 
supervised learning, an analyst assigns a class label to each seismogram that will be used to 
train and test the model. This is a time consuming up-front cost that is of critical importance to 
the performance of the resultant model.
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Feature Importance 
Machine learning models are not magic, they will only work well if they are given features with 
predictive power behind them. The Random Forest we trained was given 16 statistical features 
spread across 18,000 instances over which to learn the difference between a signal and an 
artifact. For each decision tree that made up the random forest, a random subset of these 
features and instances would be selected to be trained with.

Figure 2 plot of each feature's importance to predicting the label of the label of the segment.

In the figure above, and the table below, no one feature provided the overwhelming predictive 
power. Rather, six features provided roughly 70% of the entropy, with the remainder spread 
among the other ten. This result suggests that feature reduction methodologies would likely 
add value to this pipeline.

Feature Importance

Number of glitches 0.00030172

TEMPORAL_KURTOSIS 0.00223085

ACTIVITY 0.00252851

TEMPORAL_HYPER_KURTOSIS0.00299533

TEMPORAL_HYPER_FLATNESS 0.00300932

TEMPORAL_SKEWNESS 0.00321737

NON_CENTRALITY 0.00348043

Extreme statistic 0.00434551

PACKET_CENTROID 0.00441469

TIME_CENTROID 0.00491872

SKEWNESS 0.00661037

Signal-to-noise ratio 0.00694195

ENERGY_EDGE_TIME 0.0072597

TIME_SIGMA 0.0084726

PACKET_END 0.00900621

PACKET_SIGMA 0.01086358

NUM_DISCONTINUTIES 0.01164575

AMPLITUDE 0.01530545

MOBILITY 0.01741838
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NUMBER_OF_MODES 0.02110537

DISC_AVG_VALUE 0.02245336

SPECTRAL_EDGE_FREQ 0.03198181

KURTOSIS 0.03505331

COMPLEXITY 0.03619735

DROPOUT_IMP 0.03629349

DISC_MAX_VALUE 0.04433493

FREQ_SIGMA 0.06057438

PACKET_TBP 0.0633975

TIME-BANDWIDTH-PRODUCT 0.07181007

DISTINCT_VAL_RATIO 0.17955247

DROPOUT_FRAC 0.27227953

Model Results
The random forest model produced an accuracy of 99.09%, a precision of 99.52%, and a recall 
of 99.15% as shown in the confusion matrix below. While the accuracy is undoubtable high, in 
the context of more than a billion waveforms, every percent counts. 0.5% of the examples were 
predicted to be signals when an analyst labeled them artifacts, an annoyance that interferes 
with processing of correlation and other downstream operations. The 21 signals that were 
labeled as artifacts are potentially more serious as this could result in data loss from a filtering 
operation to remove artifact segments.

N= 6392 Predicted = 
signal

Predicted = 
artifact

Actual = signal TN = 4339 FP = 21

Actual = artifact FN = 37 TP = 1995

Table 1 Random forest confusion matrix

Challenges and Future Work
While this approach shows promise, work remains in being able to detect even the subset of QC 
issues identified with DNE-18. For example, the 16 features trained on are more successful at 
catching the onset of  DC-offset change than they are if the segment is in the middle of an 
existing offset. Additionally, these timeseries artifact features do not provide any visibility into 
metadata problems. Taken together, the thrust of future work lies in feature engineering.




