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Inv

Inverse Problem Definition

Inverse problem :
f@0) =y

Given z, 9, solve for A
e 2 € R%: independent coordinates, space, time, operating conditions

@ A € R™: model parameters — objects of inference
— Generally A(z) : © — R, infinite dimensional

e f(): forward model
— e.g. polynomial fit model, PDE system, etc

@ y € R™: prediction observable, data
— Data: D = {(1'17?/1)7 ($27y2)7 L} (xNny)}
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Sparse

Challenges with Inverse Problems

@ Inverse problem solution is difficult
e f~! often non-local, non-causal

@ Inverse problems are typically ill-posed:
@ No solution may match the data (existence)

@ Many solutions may match the data (uniqueness)
@ Dependence on initial guess on A

@ lll-conditioning or lack of stability

— Small changes in y can lead to large changes in A
— Sensitivity to noise

@ Regularization
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Inv Sparse

Challenges with — noise and ill-conditioning
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Least-Squares Parameter Estimation

Fit model f(); unknown parameters \; measurement y
Forward Problem:

fA) =y
Estimate A for best fit between f(\) and y :
Aiw = ()
Inverse problem — solve using least-squares regression

)‘rms = argm}%n(| |y - f<>‘>||)

i.e. minimize the x2:

Uncertainty estimation, e.g. with Support Planes method
o 2 value decays with parameter variation away from optimum
@ Vary one parameter at a time away from A, refit, estimate
stdv based on y? decay below specified threshold
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Inv LS rse

Issues with Least Squares (LS) Parameter Estimation

@ Choice of optimal number of fit parameters (p)
o x? decreases with increased p
o Danger of overfitting
@ No general means for handling nuisance parameters
@ Other uncertain parameters in the problem
@ Not objects of inference
@ LS best fit is the Maximum Likelihood Estimate (MLE)
assuming Gaussian noise in the data
@ What about non-Gaussian noise?

@ LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

@ Uncertainty estimate does not provide general probabilistic
characterization of parameters

SNL Najm Bayes 8/73



Inv LS Reg Sparse

Regularization for Deterministic Inverse Problem Solution

@ Regularization allows enforcement of select constraints on the
inverse problem solution

@ Smoothness

o Positivity, ...
o Example: Tikhonov-type regularization:

A = argmin (|f(\) =yl + ol ZX]3)

@ How to choose regularization form, L, o 7

— Somewhat arbitrary
@ Regularization introduces bias, destroys consistency
e What about uncertainty/confidence intervals in A ?

Najm Bayes




Inv

The choice of norm

@ The use of the L2-norm

1
lly —g(z,0)5 = NZ(%—Q(J%G))Q
117\;
IO = MZ(J(%))Q
k=1

is not the only option for regression fitting or regularization
e Fitting:
@ Model-data misfit, Likelihood function
@ Reflect known data noise structure; Gaussian, Poisson, etc
@ The modeler’s choice of metric for measuring misfit “distance”
between data and model predictions
@ Regularization
@ Optimization regularization term
@ Subjective choices; Prior information
@ Previous measurement
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¢, norm fitting

@ The ¢;-norm is of particular interest

1 N
ly =9z, 0, = NZI%—Q(%@)I
i=1
1 M
O = 32 1J0)
PR

@ The ¢;-norm is useful because it automatically identifies sparsity in
the model, when

@ there is underlying sparsity
@ the model is linear in the parameters
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Sparsity

@ A sparse model is one that provides reliable predictions with only small
number of its parameters being non-zero

@ Physical models: usually sparse in prediction of smooth observables
o Consider e.g. a chemical model for a hydrocarbon fuel

@ thousands of reactions = thousands of parameters
@ Not all these parameters are important for smooth quantities of interest

— e.g. laminar flame burning speed S},
@ Full dimensionality for a chemical model with N reactions

S, =f((A,n,E)y,,(An,E)y), N ~10* (Hydrocarbon fuel)
Intrinsic dimensionality

S, =g9((A,n,E)y,,(An,E)g), K ~ 10 (important reactions)

(]

For linear models, ¢;-norm constrained /, fitting allows identification of
the underlying sparse structure of the model
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Sparse regression

Model:
K-1
y=f(z)~ Z V()
k=0

with © € R", ¥, max order p, and K = (p + n)!/p!/n!

° Nsamples (:Elvyl),'“ ) (mNayN)
o Estimate K terms ¢, ..., cx_1, S.t.

min ||y — Ac||3
where y € RN, c e RE, A, = U, (z,), A € RV*E

With N << K = under-determined

o Need some form of regularization
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Inv LS Reg Sparse

Regularization — Compressive Sensing (CS)

@ /5-norm — Tikhonov regularization; Ridge regression:
min {|ly — Ac[3 + |lc[3}
@ ¢;-norm — Compressive Sensing; LASSO; basis pursuit

min {|ly — Ac3 + |cf }
min {|y — Ac|3} subject to |c|; <€
min {|c[;} subject to |y — Ac|3 <€

= discovery of sparse signals \\P/]\‘/\ N
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statinv

Statistical Inverse Problem

Motivation
@ Empirical data D generally provides noisy measurements of y
@ Best fit A is uncertain

@ Seeking a single best-fit answer contributes to ill-conditioning

Recasting as a statistical inverse problem improves conditioning
@ Solve for a set of solutions, rather than a best fit answer
@ Statistical formulation
— Use statistical methods to estimate confidence intervals on A

@ Formulation as a Bayesian inverse problem — Bayesian inference

Use probability to describe degree of belief about A

— Discrepancy between model and data represented using
statistical models

Build a data model mapping A\ to D

Solve for p(A|D)
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Bayes formula for Parameter Inference

Data Model (fit model with noise)
Introduce random variable (field) e(w) to model data misfit

y:f()‘76>

Bayes Formula:
p(Ay) = p(Aly)p(y) = p(ylA\)p(A)

Likelihood Prior

A A
o pylA)  p(A)
Posteri
osterior p(y)
Evidence

Prior: knowledge of A prior to data
Likelihood: forward model and measurement noise

Posterior: combines information from prior and data

Evidence: normalizing constant for present context
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Advantages of Bayesian Methods

Formal means of logical inference and machine learning
Means of incorporation of prior knowledge/measurements and
heterogeneous data

Full probabilistic description of uncertain parameters

General means of handling nuisance parameters through
marginalization

Means of identification of optimal model complexity

@ Ockham's razor

@ Only as much complexity as is required by the physics, and no
more

@ Avoid fitting to noise

Najm Bayes
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The Prior

Prior p(\) comes from
@ Physical constraints, prior data, Prior knowledge

The prior can be uninformative

It can be chosen to impose regularization

Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters
Examples:

@ A~ U(1,5) - Uniform distribution between 1 and 5

® A~ N(p,0?)
— Normal distribution with mean p and standard deviation o
— (w,0) hyper/nuisance parameters to be inferred from data

Note:
@ The prior can be crucial when there is little information in the data

@ When there is sufficient information in the data, the data can
overrule the prior
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Construction of the Likelihood p(y|A)

@ Where does probability enter the mapping A — y in p(y|\)?
@ Through a presumed error model:
o Example:

o Model:

Ym = ()
e Data: y
@ Error between data and model prediction: €
y = fA)+e

@ Model this error as a random variable
@ Example

@ Error is due to instrument measurement noise
@ Instrument has Gaussian errors, with no bias

e~ N(0,0?%)

SNL Najm Bayes 19/73
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Construction of the Likelihood p(y|\) — cont'd

For any given A, this implies

YA, o~ N(f(A),0?)

or
1 y— f(N)?
(YA, o) = oo P (—(202»))

Given N measurements (yq, ..., Yy), and presuming independent

identically distributed (iid) noise

y; = fN)+eg
e ~ N(0,0%)
N
L) =p(ys, - ynlho) = []pwlr o)
=1
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Construction of the Likelihood p(y|\) — cont'd

It is useful to use the log-Likelihood

N - 2
ML) = %Nln o2 — gln(%r) _ % ) [yf@)}

Frequently, signal noise amplitude is not constant
e.g. o varies with signal amplitude
then

T N Lgh (g —fNT?
InL(\) = 2;111032111(2@22{%]

K3
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Construction of the Likelihood p(y|\) — cont'd

Recall that the weighted least-squares data mis-fit is given by

£ ]

i=1 i

and the best-fit estimate of A is
Arms = argmin(x*(A))

Minimizing %2 is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

)‘MLE = )‘rms

Exploration of the likelihood provides for a more general examination of
quality of fit than y?
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Likelihood Modeling

This is frequently the core modeling challenge
@ Error model: a statistical model for the discrepancy between
the forward model and the data
@ composition of the error model with the forward model

Error model composed of discrepancy between

— data and the truth — (data error)
— model prediction and the truth — (model error)

Mean bias and correlated/uncorrelated noise structure

Hierarchical Bayes modeling, and dependence trees

p(¢,0|D) = p(¢|0, D)p(6| D)

@ Choice of observable — constraint on Quantity of Interest?

SNL Najm Bayes 23/73
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Experimental Data

Empirical data error model structure can be informed based on
knowledge of the experimental apparatus

Both bias and noise models are typically available from instrument
calibration
@ Noise PDF structure

@ A counting instrument would exhibit Poisson noise
@ A measurement combining many noise sources would exhibit
Gaussian noise

Noise correlation structure

— Point measurement
— Field measurement

Najm Bayes 24/73
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Posterior

p(Aly) < p(y[A)p(A)

Continuing the above iid Gaussian likelihood example, consider also an
iid Gaussian prior on A\ with

SNL Najm Bayes 25 /73
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Posterior cont'd

Then the posterior is
p(Ay) oy, e Il=TIl g=lIA=ml]
and the log posterior is
Inp(Aly) = —lly—fNI = IIA=ml|+Cy

Thus, the maximum a-posteriori (MAP) estimate of X is equivalent to
the solution of the regularized least-squares problem

argmin([ly — fFA)[] + ||A —ml])

The prior plays the role of a regularizer

Najm Bayes
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Line fitting example

Consider the fitting of a straight line

Y = aT + D

to data D = {(z;,y;), i=1,..., N}.
Consider an (improper) uninformative prior

m(a,b) = Const
providing no prior information on (a,b).
Assume Jid additive unbiased Gaussian noise in y with a given constant
noise variance o2, thus the data model is:

y=axr+b+e, e~ N(0,0?)

with no noise in the independent variable x.

Najm Bayes
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Line fitting example

Presuming o known, we have the likelihood,

L(a,b) = p(Da, b) Hp yila,b)

1 (y; — az; b)2>
exp | ——H—TLt—
V2ro P ( 202

and, per Bayes formula, the posterior density p(a,b|D) is

where

p(yila,b) =

p(Dla,b)r(ab)

p(a,b|D) (D)

p(Dla,b)m(a,b)
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Line fitting example — cont'd

The posterior on (a,b) is the two-dimensional Multivariate Normal
(MVN) distribution

—N/2 —ax; —b)?
p(a,b|D) o (2mo?)~N/ | Iexp( T
N
- —az, —b)?
2ra2)—N/2 _ (yz ax;
x (2m0*?) exp ( ;:1 552

Linear model, Gaussian noise, o-given, and a Gaussian or
constant-uninformative prior.
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Line fitting example — Effect of data size on p(a, b|D)

Low data noise: o = 0.25

28 266
-2 2
25 -2.5
3 % 3
-3.5 -3.5
4 4
45 -4.5
-5 -5
0.5 1 15 2 25 3 0.5 1 1.5 2 25 3
N =20 N =200

@ More data = more accurate parameter estimates
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Line fitting example — Effect of data size on p(a, b|D)

Medium data noise: o = 0.5

18 -26
-2 2
25 - -2.5
3 = 3
-35 \5 35
4 4
45 -4.5
5 5
0.5 1 15 2 25 3 05 1 15 2 25 3
N =20 N =200

@ More data = more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty
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Line fitting example — Effect of data size on p(a, b|D)

High data noise: 0 = 1.0

s 18
pE— 2
25 = 25
3 X 3 %
] > ;
35 iL 35
4 4
45 45
5 5
05 1 15 2 25 3 05 1 15 2 25 3
N =20 N =200

@ More data = more accurate parameter estimates
@ Higher noise amplitude = higher uncertainty
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Line fitting example — Effect of data range on p(a, b|D)

Medium data noise: o = 0.5

18 18
2 2
25 -2.5 (G
. / 3 \
-3.5 ﬁ -35 =
&
-4 -4
-45 -45
5 -5
05 1 15 2 25 3 05 1 15 2 25 3
x € [-2,0] r € 0,2]

@ Posterior correlation structure depends on subjective details of the
experiment
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Line fitting — Effect of data realization on p(a,b|D)

Medium data noise: o = 0.5

-18 -18
-2 2
25 - -2.5
3 = 3
-3.5 \5 -3.5
4 4
45 -4.5
-5 -5
0.5 1 15 2 25 3 0.5 1 1.5 2 25 3

@ Posterior depends on specific measured data set
@ Two data sets, each with N = 20
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Line fitting example — prior vs. data-size

20 data points

15 -1.5
-2 -2

25 -2.5

-3 -3

-3.5 -3.5

) -4 @ -4

45 -4.5

a 5 00 -5
0 05 1 15 2 25 3 35 0 05 1 15 2 25 3 35

Constant uninformative prior Gaussian prior
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Line fitting example — prior vs. data-size

80 data points

A

-4.5
-5

0 05 1 15 2 25 3 35

Constant uninformative prior

Najm

i0

Bayes Ex BRS

@ -3.5

©

-4.5

-5

0 05 1

1.5 2 25 3 35

Gaussian prior

Bayes
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statinv

Line fitting example — prior vs. data-size

data points

h)

-4.5
-5

0 05 1 15 2 25 3 35

Constant uninformative prior

Najm

i0

Bayes Ex BRS

©

-4.5
-5

0 05 1 15 2 25 3 35

Gaussian prior

Bayes
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Line fitting example — prior vs. data-size

2000 data points

10

-4.5

-5
0 05 1 15 2 25 3 35

Constant uninformative prior

Najm

10

Bayes Ex BRS

© 4

-4.5

-5
0 05 1 15 2 25 3 35

Gaussian prior

Bayes
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Bayesian inference illustration: noiseT = uncertainty?

. 6
. 55
Y 5
Z \\\\; - : S - S(YZ-C) l - . e,
: 55
s I 05 0 0s ! s 5
o data: y =222 —3x+5+¢ s
e e~ N(0,02), 0 ={0.1,0.5,1.0} N SR P I
e Fit model y = az? + bz + ¢ . -y
NG
Marginal posterior density p(a, ¢): Q)
5 =)
* 1 0.5 0 0.5 1 15 2 25
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[llustration: Data range = correlation structure

s ! o 51
R 5

3 -1 0 1 2 3 4.8

ata: y =222 —3x+5+¢ 46
e~ N(0,0.04) o
ranges: x € {[—2,0],[—1,1],[0,2]} 5
Fit model y = az? + bz + ¢ s ¢

Marginal posterior density p(b, ¢): h %

3.5 -3
p(bc)
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Bayesian illustration: Data realization = posterior

. T~
14 . x
12 : =]
)y
10 ‘,‘ s —~—
) ' \&\;\\‘ 4_45 4 .3‘3) , 3 2.5
“‘x,”n‘v,‘ -+ * e
4 ¥ : : o
2 55
0715 -1 05 0 05 1 15 5
o data: y =222 -3z +5+¢ 45
@ € N(07 1) 441.5 4 73.(5b ) 3 25
o 3 different random seeds os -
o Fit model y = az?® + bz + ¢ 6
55
Marginal posterior density p(b, ¢): 4; ( ( () B\
. —
4.5 4 -3.5 -3 2.5
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Bayesian Regression

Bayes formula
p(c|D) o p(Dle)w(c)

Bayesian regression: prior as a regularizer, e.g.

e Log Likelihood < |y — Ac|3
e Log Prior & |c|b

Laplace sparsity priors m(c;|a) = ieflck\/a
LASSO (Tibshirani 1996) ... formally:

min {[ly — Ac|3 + Alef, }

Solution ~ the posterior mode of ¢ in the Bayesian model
Y~ N(Ac Iy), o —elerlfa
) ) 2a

@ Bayesian LASSO (Park & Casella 2008)
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Bayesian Compressive Sensing (BCS)

@ BCS (Ji 2008; Babacan 2010)— hierarchical priors:
e Gaussian priors V(0,0%) on the ¢,
e Gamma priors on the o
= Laplace sparsity priors on the ¢,

e Evidence maximization establishes ML estimates of the o},
@ many of which are found x 0 = ¢, ~0
@ iteratively include terms that lead to the largest increase in the
evidence
o iterative BCS (iBCS) (Sargsyan 2012):
@ adaptive iterative order growth
@ BCS on order-p Legendre-Uniform PC

@ repeat with order-p + 1 terms added to surviving p-th order
terms
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CS and BCS

Corner-peak Genz function
o fla)=(1+37, a;z;) Y g, oc 1/42
o Legendre-Uniform PC, 10""-order/5d; 5'"-order/10d

0.1
5 =
£ o0 £
E S 01
A(\l Al‘l

0.001

0.0001

100 I\%00 N f300 40(? 500 0.0 200 300 200 500
umber of measurements Number of measurements
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CS and BCS

Oscillatory Genz function
o f(z) =cos(2mr + 3" ax;); a;oc1/i% r=0
o Legendre-Uniform PC, 10""-order/5d; (5, 6)*-order/10d

“—BCS 5" order
0.1 “—CS Sm order
BCS 6" order
5 ]
g
£ S 0.l
001 o
0.001
100 200 300 400 500 00155 200 300 300 500
Number of measurements Number of measurements
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Oscillatory function — BCS number of terms

10000 _ o s08_______ (p=106

[ op=(510.005) ____ses_ ]

£ 1000f E

— - 3

] - ]

= a y I ]

S I \ i I

5 100} ) ; ' ' ! ]

el - + - E

E [ ]
=] T

Z i + dim=5, ord=10|

10k dim=10, ord=5 E

g dim=10, ord=6 E

o 100 200 300 400 500 600

Number of measurements

SNL Najm Bayes 46 /73



statinv

5.
T 07| — Gaussian (,) s e e Data
& Wl — Laplace (I;) ‘ | =— Gaussian likelihood
& / \ 40l| — Laplace likelihood
&
g |\ N
O o. s 3
£ 5 R
o .
c
3 /R
) / \ 2.
e
o
@ o 1.5
a
o1 3 1O 05 0.0 0.5 1.0
Discrepancy, e Yright

@ Using ¢,-norm fitting, or Laplace likelihood, provides significant
robustness to outliers

@ The ¢,-norm effectively minimizes the number of significant error
terms

@ Neglects occasional outlier with large error
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Exploring the Posterior - MCM

@ Given any sample A, the un-normalized posterior probability can be
easily computed

p(Aly) o< p(y[A)p(A)

e Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:

@ Random walk with proposal PDF & rejection rules

— Computationally intensive, ©(10%) samples
— Each sample: evaluation of the forward model

@ Surrogate models

e Evaluate moments/marginals from the MCMC statistics

SNL Najm Bayes 4873
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Metropolis-Hastings MCMC sampling of density 7(z)

Algorithm:
e Given a starting point x, and proposal density p(y|z,,)
@ Draw a proposed sample y from proposal density
@ Calculate acceptance ratio
- min{L m(y)a(w,ly) }

m(z,)q(ylz,,)
R i with probability a(z,,,y)
n+l x,, with probability 1 — a(z,,,y)

Note:
o If q(y|z,,) o< w(y) then « =1
@ ¢ does not have to be symmetric.

o 7 need be evaluated only up to a multiplicative constant
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Adaptive Metropolis

@ Idea: learn a better proposal ¢(y|xz) from past samples.

@ Learn an appropriate proposal scale.

@ Learn an appropriate proposal orientation and anisotropy; this

is essential in problems with strong correlation in 7

o Adaptive Metropolis scheme of [Haario et al. 2001]:

@ Covariance matrix at step n

Ch =s,Cov(xg,...,z,) + sl

where € > 0, d is the dimension of the state, and s; = 2.42/d
(scaling rule-of-thumb).
Proposals are Gaussians centered at x,,.
Use fixed covariance Cj; for the first n, steps, then use C7;.
Chain is not Markov.
Nonetheless, one can prove that the chain converges to 7

@ Other adaptive MCMC ideas have been developed

SNL Najm Bayes 50/73
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Line fitting example — MCMC - (a, b,In o) samples

. ) ! , ) - | | | | | | | | |
A 20 40 80 B0  doc0 200 400 600 800 100C
@ Initial transient “Burn-in" period, =~ 100 steps

@ Problem and initial condition dependent
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Line fitting example — MCMC - (a, b,In o) samples

O B
r Inc

-1 —

-2 b -

-3

4

B R IS RS RN R R
0 2000 4000 6000 8000 1000C

@ Visual inspection reveals “good mixing"

@ No significant long-term correlation or periodicity
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Line fitting example — MCMC — acceptance probability

0.8 B

0.6 B

0.4 :

0.2

ol |

0 20 40 60 ‘ 80 10C 400 600 800  100C

@ An average acceptance probability of ~ 0.2 is “good”
@ A typical compromise between accepting most samples
@ not moving much, strong correlation
and rejecting most samples

@ moving too far off, wasted CPU time in rejections

Najm Bayes 53/73



Alg MCMCEx

Line fitting example — MCMC — posterior density

0 : 0

-500 -500[ *
1000 -10001 7
-1500 - -1500- 7
20003540 e0 80 Toc2°°% 200 400 600 800  700C

@ Chain finds high posterior density (HPD) region

@ stays there generating many random samples
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MCMC practicalities

Effective use of MCMC still requires some (problem-specific) experience.

Some useful rules of thumb:

Adaptive schemes are not a panacea.

Whenever possible, parameterize the problem in order to minimize
posterior correlations.

What to do, if anything, about “burn-in?"

Visual inspection of chain components is often the first and best
convergence diagnostic.

Also look at:

— autocorrelation plots

— multivariate potential scale reduction factor (MPSRF,
Gelman & Brooks)

— and other diagnostics.

Optimal acceptance rates? Maybe ... ~0.2
— But in practice it's best to explore chain diagnostics

Najm Bayes
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Chemical Rate Parameter Estimation example

Synthetic ignition data generated using a detailed model+noise

@ Ignition using GRImech3.0
methane-air chemistry

@ Ignition time versus Initial GRI

Temperature N

| GRI+noise
041 1

@ Multiplicative noise error
model

Ignition time (sec)

@ 11 data points:

o= ORI (Lt oe)
e ~ N(0,1) 0.01 \ ! ‘ | ‘ E
1000 1100 1200 130C

Initial Temperature (K)
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MCMC Alg MCMCEx

Fitting with a simple chemical model

o Fit a global single-step
irreversible chemical model

CH, + 20, — CO, + 2H,0
k; = Aexp(—E/R°T) 10.6-

@ Infer 3-D parameter vector
(InA,InE,Ino)

@ Good mixing with adaptive
MCMC when start at MLE

P T I S U N
2000 4000 6000 8000 1000(
Chain Step
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MCMC Alg MCMCEx

Marginal Posteriors on In A and In E

0.8 15
0.6 .
10- 4
o o
57 ]
0.2 .
O—=5 82 0—os 107 108 10.¢
InA InE
InA=32.15+3 x0.61 InE =10.73 + 3 x 0.032
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Alg MCMCEx

Bayesian Inference Posterior and Nominal Prediction

— GRI
GRI |=—=GRI+noise
h Fit Model

| GRI+noise

Ignition time (sec)

01 E
30 31 32 33 34 0.015‘ ‘ ‘ : E
1000 1100 1200 130C
Initial Temperature (K)
Marginal joint posterior on
(In A, In E) exhibits strong cor- Nominal fit model is consistent
relation with the true model
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ABC

Approximate Bayesian Computation (ABC)

e Data model: y = f(z,A) + €4, €q ~ N(0,0%) and a = () 0)
o Full Likelihood: L(a) = p(D|a) = p(yq|c)

o Often, the likelihood cannot be formulated or is too costly to
compute, e.g.

=
£
[

L*(a)Z(«) where Z(a) is unknown

=
L
i

/L*(mu)du where w is high dimensional

Resolution:
@ Bypass computation of Likelihood
@ Generate replicate data samples z from the data model

@ Employ a pseudo-likelihood based on a kernel density that enforces
select constraints on the predictions z

@ Constraint employs some distance measure between y,; and z

Najm Bayes
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ABC Likelihood

With p(S) being a metric of the statistic &, use the kernel function as an

ABC likelihood: . ()
P
Lppc(a) = EK <6>

where € controls the severity of the consistency control

Example, enforce the mean data prediction

S(y) = E(y) = u,
with z = z(«), and
p(8) := p () —

Propose the Gaussian kernel density:

L. (a)= . 1271- exp <<u2(a)2€_2 uyd) )
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Model UQ

@ No model of a physical system is strictly true
@ The probability of a model being strictly true is zero
@ Given limited information, some models may be relied upon for
describing the system
Let M = {M;, M,, ...} be the set of all models
o p(M|I) is the probability that M, is the model behind the available
information
@ Model Plausibility
@ Parameter estimation from data is conditioned on the model
p(D|0, M) 7 (6| M)

PO === D)
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Model
Bayesian Model Comparison

Evidence (marginal likelihood) for M)

p(DIM,) = / p(DI6, M) (8] M,)do

Bayes Factor B;;:
5 _ pDIM,)
By,
p(D|Mj)
Plausibility of M,:
p(D|My) m(My| )

PP = & Dm0 ey P

Posterior odds:

p(MID.M) (M)
p(M,|D.30) ~ 7 (M,{5)
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Marginal Likelihood example

o Consider Fitting with data from a truth model
y, =23 +22—6

Gaussian iid additive noise model with fixed variance s

Bayesian regression with a Gaussian Likelihood, iid and given s

Consider a set of Legendre Polynomial expansion models, order 1-10

P
Ym = Z C/Wk(@
k=0

Uniform priors [—D, D] on all coefficients
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Model

Too much model complexity leads to overfitting

Order =1
—3.5— : :
—— Fitted model
—4.0f| e e Noisy data - [
--- True function ,"
—4.5} g
-5.01
-5.5
-6.0
e ‘ ‘ ‘ ‘
-1.0 -0.5 0.0 0.5 1.0
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Model

Too much model complexity leads to overfitting

Order = 2

—3. 5p— : :

—  Fitted model
—4.0/| e e Noisy data o [

--- True function /
—4.50
5.0
-5.5
—-6.0
—-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 3

—3.5p— ‘ ‘

—  Fitted model
—-4.0r{ o e Noisy data

=== True function
—4.5}
—-5.0
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 4

—3.5p— ‘ ‘

—  Fitted model
—-4.0r{ o e Noisy data

=== True function
—4.5}
—-5.0
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order =5

—3.5p— ‘ ‘

—  Fitted model
—-4.0r{ o e Noisy data

=== True function
—4.5}
—-5.0
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 6

—3.5p— ‘ ‘

—  Fitted model
—-4.0r{ o e Noisy data

=== True function
—4.5}
—-5.0
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order =7

—3.5— : ‘

—— Fitted model
—-4.0r{ o e Noisy data :

--- True function A
—4.5}
-5.0-
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 8

—3.5— : :

—— Fitted model
—-4.0r{ o e Noisy data :

--- True function K
—4.5} .
-5.0-
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 9

—3.5— : :

—— Fitted model
—-4.0r{ o e Noisy data :

--- True function A
—4.5} g
-5.0-
-5.5
-6.0
-6.5

10 05 0.0 05 1.0
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Model

Too much model complexity leads to overfitting

Order = 10
-3.5— : : ‘ ‘
—— Fitted model 1
—4.0F| « e Noisy data T 2
--- True function ,"
—4.5} g
-5.01
-5.5
-6.0
—6.5

10 05 0.0 05 1.0
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Evidence and Validation Error

-1 -2.5
- \\\
™N -3.0
AV \\\\ /
A | :
o] -350
Log Evidence: 5} 5
g Eviden E‘S l /\ §
In p(D|My) A / o
[\ .
_7I \ A -4.5
A\~
B S R T 5 10°>°

JOrder
@ Validation error — ¢, error for a random set of 1000 points

— Minimal at 3rd-order
o Log evidence: sum of two scores, balances complexity & fit
— Peaks at 3rd order
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Model

Evidence — Discrimination among Models

A —
%-‘ — | _ ,/ §\
\

|
-

~S

Log (Evidence)
I
\
—_

Log (Evidence)
I I
\\\

+—e Data variance = 0.01
+— Data variance = 0.001

[l

N =31 h l «— Data variance = 0.1

—10 T 5

5 3 B 9 10
Order Order

@ Discrimination among models is more clear-cut with higher amount
of data D and/or less data noise
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Model
Prediction

Consider that a model
Y = f(z,A)

was fitted according to
y=f(z,\) +e, €e~N(0,0?%),

providing:
@ The posterior p(A, o|D)
@ The marginal posterior p(A|D)
Define:
@ Pushed forward posterior (PFP) distribution : p(y,, |z, D)
@ Posterior predictive (PP) distribution : p(y|x, D)
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Model

Pushed forward posterior (PFP)

e PFP distribution p(y,, |z, D)
@ Push-forward of the marginal posterior measure on A through f(x,\)
@ PFP random process
Y (r,w) = fz,AMw)
~  P(Ymlz, D)

@ The PFP provides the uncertain prediction by the calibrated model

— Forward UQ
— Mean prediction E[Y,,]
— Predictive variance VY, ]
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Model

Posterior Predictive (PP)

Posterior Predictive distribution p(y|z, D)
o With a = () 0),

p(vf2.D) = [ plylz. 0, Dip(a|D)da
PP random process

VPP(z,w) = E,[Y(z,w)]
p(ylz, D)

2

provides the marginal prediction of the data. Where
Y(z,w) = f(z,\) + e(w,0)

is the PP data predictor

@ Posterior predictive check — evaluate distance between the PP and
the actual/empirical distribution of the data

Najm Bayes
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Validation

o Validity is a statement of model utility for predicting a given
observable under given conditions

@ Inspection of model utility requires accounting for uncertainty
@ Statistical tool-chest for model validation

— Cross-validation

— Bayes Factor
Model Plausibility
Posterior Odds
Posterior predictive:

p(DID, M,) = / p(DI6, My)p(6|D, M,)d6
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Model Averaging

@ When multiple models are acceptable, and no model is a clear

winner, model averaging can be used to provide a prediction of
interest

@ If prediction errors among models are uncorrelated, then averaging is
expected to reduce prediction errors

o Not likely if models are dependent, or if they have comparable
large bias errors in a given observable of interest

@ Bayesian Model Averaging

2

p(¢|D, M) = p(¢|D, My)p(M,| D, M)
k=1

where
M ={My,.., My}
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Closure
Closure

@ Inverse problems are ubiquitous in science and engineering

@ Where possible, employing the Bayesian framework provides for more
robust, reliable and informed solutions

@ Bayesian inversion facilitates subsequent prediction with uncertainty

@ Bayesian model selection strategies are relevant to the identification
of parsimonious models that explain empirical data
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