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Inverse Problem Definition

Inverse problem :
𝑓(𝑥; 𝜆) = 𝑦

Given 𝑥, 𝑦, solve for 𝜆

𝑥 ∈ ℝ𝑑: independent coordinates, space, time, operating conditions

𝜆 ∈ ℝ𝑛: model parameters – objects of inference
– Generally 𝜆(𝑥) ∶ Ω → ℝ𝑛, infinite dimensional

𝑓(): forward model
– e.g. polynomial fit model, PDE system, etc

𝑦 ∈ ℝ𝑚: prediction observable, data
– Data: 𝐷 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)}
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Challenges with Inverse Problems

Inverse problem solution is difficult
𝑓−1 often non-local, non-causal

Inverse problems are typically ill-posed:
No solution may match the data (existence)

Many solutions may match the data (uniqueness)
Dependence on initial guess on 𝜆

Ill-conditioning or lack of stability
– Small changes in 𝑦 can lead to large changes in 𝜆
– Sensitivity to noise

Regularization
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Challenges with – noise and ill-conditioning
True Input
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Parameter Estimation and Inverse Problems
Aster, Borchers, and Thurber
Academic Press, 2004, 2012
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Least-Squares Parameter Estimation

Fit model 𝑓(); unknown parameters 𝜆; measurement 𝑦
Forward Problem:

𝑓(𝜆) = 𝑦
Estimate 𝜆 for best fit between 𝑓(𝜆) and 𝑦 :

𝜆fit = 𝑓−1(𝑦)

Inverse problem – solve using least-squares regression

𝜆rms = argmin
𝜆

(||𝑦 − 𝑓(𝜆)||)

i.e. minimize the 𝜒2:

𝜒2 =
𝒟

∑
𝑘=1

((𝑓(𝜆) − 𝑦)2

𝜎2
𝑘

Uncertainty estimation, e.g. with Support Planes method
𝜒2 value decays with parameter variation away from optimum
Vary one parameter at a time away from 𝜆rms, refit, estimate
stdv based on 𝜒2 decay below specified threshold
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Issues with Least Squares (LS) Parameter Estimation

Choice of optimal number of fit parameters (𝑝)
𝜒2 decreases with increased 𝑝
Danger of overfitting

No general means for handling nuisance parameters
Other uncertain parameters in the problem
Not objects of inference

LS best fit is the Maximum Likelihood Estimate (MLE)
assuming Gaussian noise in the data

What about non-Gaussian noise?

LS Estimation of Uncertainty in inferred parameter values
relies on assumed linearity of the model in the parameters

Uncertainty estimate does not provide general probabilistic
characterization of parameters
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Regularization for Deterministic Inverse Problem Solution

Regularization allows enforcement of select constraints on the
inverse problem solution

Smoothness
Positivity, ...

Example: Tikhonov-type regularization:

𝜆 = argmin
𝜆′

(‖𝑓(𝜆′) − 𝑦‖2
2 + 𝛼‖𝐿𝜆′‖2

2)

How to choose regularization form, 𝐿, 𝛼 ?
– Somewhat arbitrary

Regularization introduces bias, destroys consistency
What about uncertainty/confidence intervals in 𝜆 ?
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The choice of norm

The use of the L2-norm

||𝑦 − 𝑔(𝑥, 𝜃)||22 = 1
𝑁

𝑁
∑
𝑖=1

(𝑦𝑖 − 𝑔(𝑥𝑖, 𝜃))2

||𝐽(𝜃)||22 = 1
𝑀

𝑀
∑
𝑘=1

(𝐽(𝜃𝑘))2

is not the only option for regression fitting or regularization
Fitting:

Model-data misfit, Likelihood function
Reflect known data noise structure; Gaussian, Poisson, etc
The modeler’s choice of metric for measuring misfit “distance”
between data and model predictions

Regularization
Optimization regularization term
Subjective choices; Prior information
Previous measurement
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ℓ1 norm fitting

The ℓ1-norm is of particular interest

||𝑦 − 𝑔(𝑥, 𝜃)||1 = 1
𝑁

𝑁
∑
𝑖=1

|𝑦𝑖 − 𝑔(𝑥𝑖, 𝜃)|

||𝐽(𝜃)||1 = 1
𝑀

𝑀
∑
𝑘=1

|𝐽(𝜃𝑘)|

The ℓ1-norm is useful because it automatically identifies sparsity in
the model, when

there is underlying sparsity
the model is linear in the parameters
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Sparsity

A sparse model is one that provides reliable predictions with only small
number of its parameters being non-zero

Physical models: usually sparse in prediction of smooth observables
Consider e.g. a chemical model for a hydrocarbon fuel

thousands of reactions ⇒ thousands of parameters
Not all these parameters are important for smooth quantities of interest

– e.g. laminar flame burning speed 𝑆𝐿

Full dimensionality for a chemical model with 𝑁 reactions

𝑆𝐿 = 𝑓 ((𝐴, 𝑛, 𝐸)1, ⋯ , (𝐴, 𝑛, 𝐸)𝑁) , 𝑁 ∼ 104 (Hydrocarbon fuel)

Intrinsic dimensionality

𝑆𝐿 = 𝑔 ((𝐴, 𝑛, 𝐸)1, ⋯ , (𝐴, 𝑛, 𝐸)𝐾) , 𝐾 ∼ 10 (important reactions)

For linear models, ℓ1-norm constrained ℓ2 fitting allows identification of
the underlying sparse structure of the model
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Sparse regression

Model:

𝑦 = 𝑓(𝑥) ≃
𝐾−1
∑
𝑘=0

𝑐𝑘Ψ𝑘(𝑥)

with 𝑥 ∈ ℝ𝑛, Ψ𝑘 max order 𝑝, and 𝐾 = (𝑝 + 𝑛)!/𝑝!/𝑛!
𝑁 samples (𝑥1, 𝑦1), … , (𝑥𝑁, 𝑦𝑁)
Estimate 𝐾 terms 𝑐0, … , 𝑐𝐾−1, s.t.

min ||𝒚 − 𝑨𝒄||22

where 𝒚 ∈ ℝ𝑁, 𝒄 ∈ ℝ𝐾, 𝑨𝑖𝑘 = Ψ𝑘(𝑥𝑖), 𝑨 ∈ ℝ𝑁×𝐾

With 𝑁 << 𝐾 ⇒ under-determined
Need some form of regularization
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Regularization – Compressive Sensing (CS)

ℓ2-norm — Tikhonov regularization; Ridge regression:

min {‖𝒚 − 𝑨𝒄‖2
2 + ‖𝒄‖2

2}

ℓ1-norm — Compressive Sensing; LASSO; basis pursuit

min {‖𝒚 − 𝑨𝒄‖2
2 + ‖𝒄‖1}

min {‖𝒚 − 𝑨𝒄‖2
2} subject to ‖𝒄‖1 ≤ 𝜖

min {‖𝒄‖1} subject to ‖𝒚 − 𝑨𝒄‖2
2 ≤ 𝜖

⇒ discovery of sparse signals
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Statistical Inverse Problem

Motivation
Empirical data 𝐷 generally provides noisy measurements of 𝑦
Best fit 𝜆 is uncertain
Seeking a single best-fit answer contributes to ill-conditioning

Recasting as a statistical inverse problem improves conditioning
Solve for a set of solutions, rather than a best fit answer
Statistical formulation

– Use statistical methods to estimate confidence intervals on 𝜆
Formulation as a Bayesian inverse problem – Bayesian inference

– Use probability to describe degree of belief about 𝜆
– Discrepancy between model and data represented using

statistical models
– Build a data model mapping 𝜆 to 𝐷
– Solve for 𝑝(𝜆|𝐷)
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Bayes formula for Parameter Inference

Data Model (fit model with noise)
Introduce random variable (field) 𝜖(𝜔) to model data misfit

𝑦 = 𝑓(𝜆, 𝜖)

Bayes Formula:
𝑝(𝜆, 𝑦) = 𝑝(𝜆|𝑦)𝑝(𝑦) = 𝑝(𝑦|𝜆)𝑝(𝜆)

𝑝(𝜆|𝑦)
Posterior

=

Likelihood

𝑝(𝑦|𝜆)
Prior

𝑝(𝜆)

𝑝(𝑦)
Evidence

Prior: knowledge of 𝜆 prior to data
Likelihood: forward model and measurement noise
Posterior: combines information from prior and data
Evidence: normalizing constant for present context
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Advantages of Bayesian Methods

Formal means of logical inference and machine learning
Means of incorporation of prior knowledge/measurements and
heterogeneous data
Full probabilistic description of uncertain parameters
General means of handling nuisance parameters through
marginalization
Means of identification of optimal model complexity

Ockham’s razor
Only as much complexity as is required by the physics, and no
more
Avoid fitting to noise
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The Prior

Prior 𝑝(𝜆) comes from
Physical constraints, prior data, Prior knowledge

The prior can be uninformative
It can be chosen to impose regularization
Unknown aspects of the prior can be added to the rest of the
parameters as hyperparameters

Examples:
𝜆 ∼ 𝑈(1, 5) – Uniform distribution between 1 and 5
𝜆 ∼ 𝑁(𝜇, 𝜎2)

– Normal distribution with mean 𝜇 and standard deviation 𝜎
– (𝜇, 𝜎) hyper/nuisance parameters to be inferred from data

Note:
The prior can be crucial when there is little information in the data
When there is sufficient information in the data, the data can
overrule the prior
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Construction of the Likelihood 𝑝(𝑦|𝜆)

Where does probability enter the mapping 𝜆 → 𝑦 in 𝑝(𝑦|𝜆)?
Through a presumed error model:
Example:

Model:
𝑦𝑚 = 𝑓(𝜆)

Data: 𝑦
Error between data and model prediction: 𝜖

𝑦 = 𝑓(𝜆) + 𝜖

Model this error as a random variable
Example

Error is due to instrument measurement noise
Instrument has Gaussian errors, with no bias

𝜖 ∼ 𝑁(0, 𝜎2)
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Construction of the Likelihood 𝑝(𝑦|𝜆) – cont’d

For any given 𝜆, this implies

𝑦|𝜆, 𝜎 ∼ 𝑁(𝑓(𝜆), 𝜎2)

or
𝑝(𝑦|𝜆, 𝜎) = 1√

2𝜋 𝜎
exp (−(𝑦 − 𝑓(𝜆))2

2𝜎2 )

Given 𝑁 measurements (𝑦1, … , 𝑦𝑁), and presuming independent
identically distributed (iid) noise

𝑦𝑖 = 𝑓(𝜆) + 𝜖𝑖

𝜖𝑖 ∼ 𝑁(0, 𝜎2)

𝐿(𝜆) = 𝑝(𝑦1, … , 𝑦𝑁|𝜆, 𝜎) =
𝑁

∏
𝑖=1

𝑝(𝑦𝑖|𝜆, 𝜎)
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Construction of the Likelihood 𝑝(𝑦|𝜆) – cont’d

It is useful to use the log-Likelihood

ln 𝐿(𝜆) = −1
2

𝑁 ln 𝜎2 − 𝑁
2

ln(2𝜋) − 1
2

𝑁
∑
𝑖=1

[𝑦𝑖 − 𝑓(𝜆)
𝜎

]
2

Frequently, signal noise amplitude is not constant
e.g. 𝜎 varies with signal amplitude
then

ln 𝐿(𝜆) = −1
2

𝑁
∑
𝑖=1

ln 𝜎2
𝑖 − 𝑁

2
ln(2𝜋) − 1

2

𝑁
∑
𝑖=1

[𝑦𝑖 − 𝑓(𝜆)
𝜎𝑖

]
2
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Construction of the Likelihood 𝑝(𝑦|𝜆) – cont’d

Recall that the weighted least-squares data mis-fit is given by

𝜒2 =
𝑁

∑
𝑖=1

[𝑦𝑖 − 𝑓(𝜆)
𝜎𝑖

]
2

and the best-fit estimate of 𝜆 is

𝜆rms = argmin
𝜆

(𝜒2(𝜆))

Minimizing 𝜒2 is equivalent to maximizing the likelihood
Maximum Likelihood Estimate (MLE):

𝜆MLE ≡ 𝜆rms

Exploration of the likelihood provides for a more general examination of
quality of fit than 𝜒2
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Likelihood Modeling

This is frequently the core modeling challenge
Error model: a statistical model for the discrepancy between
the forward model and the data
composition of the error model with the forward model

Error model composed of discrepancy between
– data and the truth – (data error)
– model prediction and the truth – (model error)

Mean bias and correlated/uncorrelated noise structure
Hierarchical Bayes modeling, and dependence trees

𝑝(𝜙, 𝜃|𝐷) = 𝑝(𝜙|𝜃, 𝐷)𝑝(𝜃|𝐷)

Choice of observable – constraint on Quantity of Interest?
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Experimental Data

Empirical data error model structure can be informed based on
knowledge of the experimental apparatus
Both bias and noise models are typically available from instrument
calibration
Noise PDF structure

A counting instrument would exhibit Poisson noise
A measurement combining many noise sources would exhibit
Gaussian noise

Noise correlation structure
– Point measurement
– Field measurement
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Posterior

𝑝(𝜆|𝑦) ∝ 𝑝(𝑦|𝜆)𝑝(𝜆)

Continuing the above iid Gaussian likelihood example, consider also an
iid Gaussian prior on 𝜆 with

𝜆 ∼ 𝑁(𝑚, 𝑠2)

𝑝(𝜆) = 1√
2𝜋 𝑠

exp (−(𝜆 − 𝑚)2

2𝑠2 )
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Posterior cont’d

Then the posterior is

𝑝(𝜆|𝑦) ∝𝜆 𝑒−||𝑦−𝑓(𝜆)|| 𝑒−||𝜆−𝑚||

and the log posterior is

ln 𝑝(𝜆|𝑦) = −||𝑦 − 𝑓(𝜆)|| − ||𝜆 − 𝑚|| + 𝐶𝜆

Thus, the maximum a-posteriori (MAP) estimate of 𝜆 is equivalent to
the solution of the regularized least-squares problem

argmin
𝜆

(||𝑦 − 𝑓(𝜆)|| + ||𝜆 − 𝑚||)

The prior plays the role of a regularizer
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Line fitting example

Consider the fitting of a straight line

𝑦𝑚 = 𝑎𝑥 + 𝑏

to data 𝐷 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑁}.
Consider an (improper) uninformative prior

𝜋(𝑎, 𝑏) = Const

providing no prior information on (𝑎, 𝑏).
Assume iid additive unbiased Gaussian noise in 𝑦 with a given constant
noise variance 𝜎2, thus the data model is:

𝑦 = 𝑎𝑥 + 𝑏 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2)

with no noise in the independent variable 𝑥.
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Line fitting example

Presuming 𝜎 known, we have the likelihood,

𝐿(𝑎, 𝑏) = 𝑝(𝐷|𝑎, 𝑏) =
𝑁

∏
𝑖=1

𝑝(𝑦𝑖|𝑎, 𝑏)

where
𝑝(𝑦𝑖|𝑎, 𝑏) = 1√

2𝜋 𝜎
exp (−(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2

2𝜎2 )

and, per Bayes formula, the posterior density 𝑝(𝑎, 𝑏|𝐷) is

𝑝(𝑎, 𝑏|𝐷) = 𝑝(𝐷|𝑎, 𝑏)𝜋(𝑎, 𝑏)
𝑝(𝐷)

∝ 𝑝(𝐷|𝑎, 𝑏)𝜋(𝑎, 𝑏)
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Line fitting example – cont’d

The posterior on (𝑎, 𝑏) is the two-dimensional Multivariate Normal
(MVN) distribution

𝑝(𝑎, 𝑏|𝐷) ∝ (2𝜋𝜎2)−𝑁/2
𝑁

∏
𝑖=1

exp (−(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2

2𝜎2 )

∝ (2𝜋𝜎2)−𝑁/2 exp (−
𝑁

∑
𝑖=1

(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2

2𝜎2 )

Linear model, Gaussian noise, 𝜎-given, and a Gaussian or
constant-uninformative prior.
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Line fitting example – Effect of data size on 𝑝(𝑎, 𝑏|𝐷)
Low data noise: 𝜎 = 0.25

 0 2 4 6 8 10 12 14 16 18 20

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 20

 0 50 100 150 200 250 300

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 200

More data ⇒ more accurate parameter estimates
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Line fitting example – Effect of data size on 𝑝(𝑎, 𝑏|𝐷)
Medium data noise: 𝜎 = 0.5

 0 1 2 3 4 5 6

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 20

 0 10 20 30 40 50 60 70

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 200

More data ⇒ more accurate parameter estimates
Higher noise amplitude ⇒ higher uncertainty
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Line fitting example – Effect of data size on 𝑝(𝑎, 𝑏|𝐷)
High data noise: 𝜎 = 1.0

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 20

 0 2 4 6 8 10 12 14 16 18

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑁 = 200

More data ⇒ more accurate parameter estimates
Higher noise amplitude ⇒ higher uncertainty
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Line fitting example – Effect of data range on 𝑝(𝑎, 𝑏|𝐷)
Medium data noise: 𝜎 = 0.5

 0 1 2 3 4 5 6

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑥 ∈ [−2, 0]

 0 1 2 3 4 5 6

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

𝑥 ∈ [0, 2]

Posterior correlation structure depends on subjective details of the
experiment
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Line fitting – Effect of data realization on 𝑝(𝑎, 𝑏|𝐷)
Medium data noise: 𝜎 = 0.5

 0 1 2 3 4 5 6

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5  0 1 2 3 4 5 6

 0.5  1  1.5  2  2.5  3

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5
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Two data sets, each with 𝑁 = 20
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Line fitting example – prior vs. data-size
20 data points
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Line fitting example – prior vs. data-size
80 data points
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Line fitting example – prior vs. data-size
200 data points
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Line fitting example – prior vs. data-size
2000 data points
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Bayesian inference illustration: noise↑ ⇒ uncertainty↑

data: 𝑦 = 2𝑥2 − 3𝑥 + 5 + 𝜖
𝜖 ∼ 𝒩(0, 𝜎2), 𝜎 = {0.1, 0.5, 1.0}
Fit model 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

Marginal posterior density 𝑝(𝑎, 𝑐):

SNL Najm Bayes 39 / 73



Inv statinv MCMC ABC Model Closure Bayes Ex BRS

Illustration: Data range ⇒ correlation structure

data: 𝑦 = 2𝑥2 − 3𝑥 + 5 + 𝜖
𝜖 ∼ 𝒩(0, 0.04)
ranges: 𝑥 ∈ {[−2, 0], [−1, 1], [0, 2]}
Fit model 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

Marginal posterior density 𝑝(𝑏, 𝑐):
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Bayesian illustration: Data realization ⇒ posterior

data: 𝑦 = 2𝑥2 − 3𝑥 + 5 + 𝜖
𝜖 ∼ 𝒩(0, 1)

3 different random seeds
Fit model 𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐

Marginal posterior density 𝑝(𝑏, 𝑐):
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Bayesian Regression

Bayes formula
𝑝(𝒄|𝐷) ∝ 𝑝(𝐷|𝒄)𝜋(𝒄)

Bayesian regression: prior as a regularizer, e.g.
Log Likelihood ⇔ ‖𝒚 − 𝑨𝒄‖2

2
Log Prior ⇔ ‖𝒄‖𝑝

𝑝

Laplace sparsity priors 𝜋(𝑐𝑘|𝛼) = 1
2𝛼 𝑒−|𝑐𝑘|/𝛼

LASSO (Tibshirani 1996) ... formally:

min {‖𝒚 − 𝑨𝒄‖2
2 + 𝜆‖𝒄‖1}

Solution ∼ the posterior mode of 𝒄 in the Bayesian model

𝑦 ∼ 𝒩(𝑨𝒄, 𝐼𝑁), 𝑐𝑘 ∼ 1
2𝛼

𝑒−|𝑐𝑘|/𝛼

Bayesian LASSO (Park & Casella 2008)
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Bayesian Compressive Sensing (BCS)

BCS (Ji 2008; Babacan 2010)— hierarchical priors:
Gaussian priors 𝒩(0, 𝜎2

𝑘) on the 𝑐𝑘
Gamma priors on the 𝜎2

𝑘
⇒ Laplace sparsity priors on the 𝑐𝑘

Evidence maximization establishes ML estimates of the 𝜎𝑘
many of which are found ≈ 0 ⇒ 𝑐𝑘 ≈ 0
iteratively include terms that lead to the largest increase in the
evidence

iterative BCS (iBCS) (Sargsyan 2012):
adaptive iterative order growth
BCS on order-𝑝 Legendre-Uniform PC
repeat with order-𝑝 + 1 terms added to surviving 𝑝-th order
terms
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CS and BCS
Corner-peak Genz function

𝑓(𝑥) = (1 + ∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖)−(𝑛+1); 𝑎𝑖 ∝ 1/𝑖2

Legendre-Uniform PC, 10𝑡ℎ-order/5d; 5𝑡ℎ-order/10d
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CS and BCS

Oscillatory Genz function
𝑓(𝑥) = cos(2𝜋𝑟 + ∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖); 𝑎𝑖 ∝ 1/𝑖2; 𝑟 = 0
Legendre-Uniform PC, 10𝑡ℎ-order/5d; (5, 6)𝑡ℎ-order/10d

100 200 300 400 500
Number of measurements

0.001

0.01

0.1

L
2
  

er
ro

r

Bayesian CS

l
1
 minimization

5d
100 200 300 400 500

Number of measurements

0.01

0.1

1

L
2
  

e
rr

o
r

BCS 5
th

 order

CS    5
th

 order

BCS 6
th

 order

10d

SNL Najm Bayes 45 / 73



Inv statinv MCMC ABC Model Closure Bayes Ex BRS

Oscillatory function – BCS number of terms
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ℓ1 norm fitting – Robustness to outliers
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Using ℓ1-norm fitting, or Laplace likelihood, provides significant
robustness to outliers
The ℓ1-norm effectively minimizes the number of significant error
terms

Neglects occasional outlier with large error
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Exploring the Posterior – MCMC

Given any sample 𝜆, the un-normalized posterior probability can be
easily computed

𝑝(𝜆|𝑦) ∝ 𝑝(𝑦|𝜆)𝑝(𝜆)

Explore posterior w/ Markov Chain Monte Carlo (MCMC)
– Metropolis-Hastings algorithm:

Random walk with proposal PDF & rejection rules
– Computationally intensive, 𝒪(105) samples
– Each sample: evaluation of the forward model

Surrogate models

Evaluate moments/marginals from the MCMC statistics
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Metropolis-Hastings MCMC sampling of density 𝜋(𝑥)

Algorithm:
Given a starting point 𝑥0 and proposal density 𝑝(𝑦|𝑥𝑛)
Draw a proposed sample 𝑦 from proposal density
Calculate acceptance ratio

𝛼(𝑥𝑛, 𝑦) = min {1, 𝜋(𝑦)𝑞(𝑥𝑛|𝑦)
𝜋(𝑥𝑛)𝑞(𝑦|𝑥𝑛)

}

Put
𝑥𝑛+1 = { 𝑦, with probability 𝛼(𝑥𝑛, 𝑦)

𝑥𝑛, with probability 1 − 𝛼(𝑥𝑛, 𝑦)

Note:
If 𝑞(𝑦|𝑥𝑛) ∝ 𝜋(𝑦) then 𝛼 = 1
𝑞 does not have to be symmetric.
𝜋 need be evaluated only up to a multiplicative constant
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Adaptive Metropolis

Idea: learn a better proposal 𝑞(𝑦|𝑥) from past samples.
Learn an appropriate proposal scale.
Learn an appropriate proposal orientation and anisotropy; this
is essential in problems with strong correlation in 𝜋

Adaptive Metropolis scheme of [Haario et al. 2001]:
Covariance matrix at step 𝑛

𝐶∗
𝑛 = 𝑠𝑑Cov (𝑥0, … , 𝑥𝑛) + 𝑠𝑑𝜖𝐼𝑑

where 𝜖 > 0, 𝑑 is the dimension of the state, and 𝑠𝑑 = 2.42/𝑑
(scaling rule-of-thumb).
Proposals are Gaussians centered at 𝑥𝑛.
Use fixed covariance 𝐶0 for the first 𝑛0 steps, then use 𝐶∗

𝑛.
Chain is not Markov.
Nonetheless, one can prove that the chain converges to 𝜋

Other adaptive MCMC ideas have been developed
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Line fitting example – MCMC – (𝑎, 𝑏, ln 𝜎) samples
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Initial transient “Burn-in” period, ≈ 100 steps
Problem and initial condition dependent
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Line fitting example – MCMC – (𝑎, 𝑏, ln 𝜎) samples
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Visual inspection reveals “good mixing”
No significant long-term correlation or periodicity

SNL Najm Bayes 52 / 73



Inv statinv MCMC ABC Model Closure Alg MCMCEx

Line fitting example – MCMC – acceptance probability
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An average acceptance probability of ∼ 0.2 is “good”
A typical compromise between accepting most samples

not moving much, strong correlation
and rejecting most samples

moving too far off, wasted CPU time in rejections
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Line fitting example – MCMC – posterior density
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Chain finds high posterior density (HPD) region
stays there generating many random samples
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MCMC practicalities

Effective use of MCMC still requires some (problem-specific) experience.
Some useful rules of thumb:

Adaptive schemes are not a panacea.
Whenever possible, parameterize the problem in order to minimize
posterior correlations.
What to do, if anything, about “burn-in?”
Visual inspection of chain components is often the first and best
convergence diagnostic.
Also look at:

– autocorrelation plots
– multivariate potential scale reduction factor (MPSRF,

Gelman & Brooks)
– and other diagnostics.

Optimal acceptance rates? Maybe ... ∼0.2
– But in practice it’s best to explore chain diagnostics
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Chemical Rate Parameter Estimation example

Synthetic ignition data generated using a detailed model+noise

Ignition using GRImech3.0
methane-air chemistry
Ignition time versus Initial
Temperature
Multiplicative noise error
model
11 data points:

𝜏𝑑
𝑖 = 𝜏GRI(𝑇 𝑜

𝑖 ) (1 + 𝜎𝜖𝑖)
𝜖 ∼ 𝑁(0, 1)

1000 1100 1200 1300
Initial Temperature (K)

0.01

0.1

1

Ig
n

it
io

n
 t

im
e

 (
s
e

c
) GRI

GRI+noise

SNL Najm Bayes 56 / 73



Inv statinv MCMC ABC Model Closure Alg MCMCEx

Fitting with a simple chemical model

Fit a global single-step
irreversible chemical model

CH4 + 2O2 → CO2 + 2H2O
ℜ = [CH4][O2]𝑘𝑓

𝑘𝑓 = 𝐴 exp(−𝐸/𝑅𝑜𝑇 )

Infer 3-D parameter vector
(ln 𝐴, ln 𝐸, ln 𝜎)
Good mixing with adaptive
MCMC when start at MLE
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Marginal Posteriors on ln 𝐴 and ln 𝐸
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ln 𝐴 = 32.15 ± 3 × 0.61 ln 𝐸 = 10.73 ± 3 × 0.032
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Bayesian Inference Posterior and Nominal Prediction
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Marginal joint posterior on
(ln 𝐴, ln 𝐸) exhibits strong cor-
relation

Nominal fit model is consistent
with the true model
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Approximate Bayesian Computation (ABC)

Data model: 𝑦 = 𝑓(𝑥, 𝜆) + 𝜖d, 𝜖d ∼ 𝑁(0, 𝜎2) and 𝛼 ≡ (𝜆, 𝜎)

Full Likelihood: 𝐿(𝛼) = 𝑝(𝐷|𝛼) = 𝑝(𝑦d|𝛼)

Often, the likelihood cannot be formulated or is too costly to
compute, e.g.

𝐿(𝛼) ∶= 𝐿∗(𝛼)𝑍(𝛼) where 𝑍(𝛼) is unknown

𝐿(𝛼) ∶= ∫ 𝐿∗(𝛼, 𝑢)d𝑢 where 𝑢 is high dimensional

Resolution:
Bypass computation of Likelihood
Generate replicate data samples 𝑧 from the data model
Employ a pseudo-likelihood based on a kernel density that enforces
select constraints on the predictions 𝑧

Constraint employs some distance measure between 𝑦𝑑 and 𝑧
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ABC Likelihood

With 𝜌(𝒮) being a metric of the statistic 𝒮, use the kernel function as an
ABC likelihood:

𝐿ABC(𝛼) = 1
𝜖

𝐾 (𝜌(𝒮)
𝜖

)

where 𝜖 controls the severity of the consistency control

Example, enforce the mean data prediction

𝒮(𝑦) = E(𝑦) = 𝜇𝑦

with 𝑧 = 𝑧(𝛼), and
𝜌(𝒮) ∶= 𝜇𝑧(𝛼) − 𝜇𝑦𝑑

Propose the Gaussian kernel density:

𝐿𝜖(𝛼) = 1
𝜖
√

2𝜋
exp (−

(𝜇𝑧(𝛼) − 𝜇𝑦𝑑
)2

2𝜖2 )
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Model UQ

No model of a physical system is strictly true
The probability of a model being strictly true is zero
Given limited information, some models may be relied upon for
describing the system

Let ℳ = {𝑀1, 𝑀2, …} be the set of all models
𝑝(𝑀𝑘|𝐼) is the probability that 𝑀𝑘 is the model behind the available
information

Model Plausibility
Parameter estimation from data is conditioned on the model

𝑝(𝜃|𝐷, 𝑀𝑘) = 𝑝(𝐷|𝜃, 𝑀𝑘)𝜋(𝜃|𝑀𝑘)
𝑝(𝐷|𝑀𝑘)
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Bayesian Model Comparison

Evidence (marginal likelihood) for 𝑀𝑘:

𝑝(𝐷|𝑀𝑘) = ∫ 𝑝(𝐷|𝜃, 𝑀𝑘)𝜋(𝜃|𝑀𝑘)d𝜃

Bayes Factor 𝐵𝑖𝑗:

𝐵𝑖𝑗 = 𝑝(𝐷|𝑀𝑖)
𝑝(𝐷|𝑀𝑗)

Plausibility of 𝑀𝑘:

𝑝(𝑀𝑘|𝐷, ℳ) = 𝑝(𝐷|𝑀𝑘) 𝜋(𝑀𝑘|ℳ)
∑𝑠 𝑝(𝐷|𝑀𝑠)𝜋(𝑀𝑠|ℳ)

𝑘 = 1, …

Posterior odds:
𝑝(𝑀𝑖|𝐷, ℳ)
𝑝(𝑀𝑗|𝐷, ℳ)

= 𝐵𝑖𝑗
𝜋(𝑀𝑖|ℳ)
𝜋(𝑀𝑗|ℳ)
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Marginal Likelihood example

Consider Fitting with data from a truth model

𝑦𝑡 = 𝑥3 + 𝑥2 − 6

Gaussian iid additive noise model with fixed variance 𝑠
Bayesian regression with a Gaussian Likelihood, iid and given 𝑠
Consider a set of Legendre Polynomial expansion models, order 1-10

𝑦𝑚 =
𝑃

∑
𝑘=0

𝑐𝑘𝜓𝑘(𝑥)

Uniform priors [−𝐷, 𝐷] on all coefficients
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Too much model complexity leads to overfitting

Order = 1
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Too much model complexity leads to overfitting

Order = 2
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Too much model complexity leads to overfitting

Order = 3
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Too much model complexity leads to overfitting

Order = 4
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Too much model complexity leads to overfitting

Order = 5
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Too much model complexity leads to overfitting

Order = 6
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Too much model complexity leads to overfitting

Order = 7
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Too much model complexity leads to overfitting

Order = 8
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Too much model complexity leads to overfitting

Order = 9
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Too much model complexity leads to overfitting

Order = 10
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Evidence and Validation Error

Log Evidence:

ln 𝑝(𝐷|𝑀𝑘)
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Validation error – ℓ2 error for a random set of 1000 points
– Minimal at 3rd-order

Log evidence: sum of two scores, balances complexity & fit Muto & Beck 2008
– Peaks at 3rd order
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Evidence – Discrimination among Models
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Data variance = 0.1

Data variance = 0.01

Data variance = 0.001

Discrimination among models is more clear-cut with higher amount
of data 𝐷 and/or less data noise
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Prediction

Consider that a model
𝑦𝑚 = 𝑓(𝑥, 𝜆)

was fitted according to

𝑦 = 𝑓(𝑥, 𝜆) + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2),

providing:
The posterior 𝑝(𝜆, 𝜎|𝐷)
The marginal posterior 𝑝(𝜆|𝐷)

Define:
Pushed forward posterior (PFP) distribution : 𝑝(𝑦𝑚|𝑥, 𝐷)
Posterior predictive (PP) distribution : 𝑝(𝑦|𝑥, 𝐷)
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Pushed forward posterior (PFP)

PFP distribution 𝑝(𝑦𝑚|𝑥, 𝐷)

Push-forward of the marginal posterior measure on 𝜆 through 𝑓(𝑥, 𝜆)

PFP random process

𝑌𝑚(𝑥, 𝜔) = 𝑓(𝑥, 𝜆(𝜔))
∼ 𝑝(𝑦𝑚|𝑥, 𝐷)

The PFP provides the uncertain prediction by the calibrated model
– Forward UQ
– Mean prediction 𝐸[𝑌𝑚]
– Predictive variance 𝑉 [𝑌𝑚]
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Posterior Predictive (PP)

Posterior Predictive distribution 𝑝(𝑦|𝑥, 𝐷)
With 𝛼 ≡ (𝜆, 𝜎),

𝑝(𝑦|𝑥, 𝐷) = ∫ 𝑝(𝑦|𝑥, 𝛼, 𝐷)𝑝(𝛼|𝐷)d𝛼

PP random process

𝑌 𝑃𝑃(𝑥, 𝜔) = E𝛼[𝑌 (𝑥, 𝜔)]
∼ 𝑝(𝑦|𝑥, 𝐷)

provides the marginal prediction of the data. Where

𝑌 (𝑥, 𝜔) = 𝑓(𝑥, 𝜆) + 𝜖(𝜔, 𝜎)

is the PP data predictor
Posterior predictive check – evaluate distance between the PP and
the actual/empirical distribution of the data

SNL Najm Bayes 70 / 73



Inv statinv MCMC ABC Model Closure

Validation

Validity is a statement of model utility for predicting a given
observable under given conditions
Inspection of model utility requires accounting for uncertainty
Statistical tool-chest for model validation

– Cross-validation
– Bayes Factor
– Model Plausibility
– Posterior Odds
– Posterior predictive:

𝑝(𝐷̃|𝐷, 𝑀𝑘) = ∫ 𝑝(𝐷̃|𝜃, 𝑀𝑘)𝑝(𝜃|𝐷, 𝑀𝑘)𝑑𝜃
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Model Averaging

When multiple models are acceptable, and no model is a clear
winner, model averaging can be used to provide a prediction of
interest

If prediction errors among models are uncorrelated, then averaging is
expected to reduce prediction errors

Not likely if models are dependent, or if they have comparable
large bias errors in a given observable of interest

Bayesian Model Averaging

𝑝(𝜙|𝐷, ℳ) =
𝑁

∑
𝑘=1

𝑝(𝜙|𝐷, 𝑀𝑘)𝑝(𝑀𝑘|𝐷, ℳ)

where
ℳ = {𝑀1, … , 𝑀𝑁}
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Closure

Inverse problems are ubiquitous in science and engineering

Where possible, employing the Bayesian framework provides for more
robust, reliable and informed solutions

Bayesian inversion facilitates subsequent prediction with uncertainty

Bayesian model selection strategies are relevant to the identification
of parsimonious models that explain empirical data
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