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What is warm dense matter? National
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Creating WDM requires to transfer an enormous amount of energy to a
target material in a very short period of time.

Z Machine, Sandia National Laboratories. Target chamber, National Ignition Facility,
Lawrence Livermore National Laboratories.
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1. Converge thermalized DFT-MD simulations for a given atomic configuration.
2. Prepare initial state and add projectile.

3. Run TDDFT-Ehrenfest simulation and evaluate forces on the projectile.
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H=T+V,.+V

Electronic Hamiltonian

Fln] = min (¥|T + Vio|T)

W—n

Hohenberg-Kohn functional

E, = min {F[n] + /dr n(r) v(r)}

{—%2 + vs(r)} ¢i(r) = €igi(r)

Kohn-Sham scheme
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Electronic Hamiltonian

Runge-Gross theorem

TD Kohn-Sham equations

oU 0 Fxc

i on(r,t) i on(r,t)

Adiabatic approximation Uxc|n)(T, 1) = vxe [nO](r)|n0(r)—>n(r,t)
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iy 1
Full Hamiltonian + Z| = +Z .

Lagrangian ¢

Equations of motion

MR; = —VE[¢, R]

E[¢, R] = Tu[n] — /dr S (‘Rf(f)f_ r|) n(r, 1)

AV

+ Uln] + Exc[n] + ; R(t) — Ry(1)]

Energy in terms of KS quantities
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Ti.me taken for Period of electron orbit

light to cross in hydrogen (150 as)

1 mm (3 ps)

— Time step in Time step in Quark/gluon
Sw1tc'h1ng of molecular dynamics | | electronic dynamics time-scales (1 ys)
world's fastest simulations (~1 fs) | | simulations (~1 as)
transistor (1.2 ps)

Picosecond Femtosecond Attosecond Zeptosecond Yoctosecond
10**s 10" 108 s 10!s 10%*s

Rotational correlation Shortest laser pulse

time of water (1.7 ps) as of 2013 (67 as) Lifstime ofng angl Z
osons (0.3 ys

Period of optical
phonon in Si (64 fs)

Period of electromagnetic
> radiation at gamma-ray/
X-ray boundary (17 zs)

Fastest chemical
reactions (200 fs)

Time for light to cross
3 hydrogen atoms (1 as)

Courtesy of Kay Dewhurst, Max Planck Institute of Microstructure Physics (2015).

Computational background 10 acangi@sandia.gov



. . Sandia
Implementation details @ National

* Sandia implementation of TDDFT + Ehrenfest in VASP

(Andrew Baczewski)
 DFT-MD for thermodynamics
* Kubo-Greenwood for transport

* Dynamic structure factor

X-ray Thomson Scattering in Warm Dense Matter without the ackage
Chihara Decomposition

A.D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen, and R. J. Magyar
Phys. Rev. Lett. 116, 115004 — Published 18 March 2016

b-initio

imulation

 About 10k extra lines of Fortran

 Plane wave basis . |
. . Strong Scaling on Sequoia
e Projector-augmented wave (PAW) formalism 10000
- e - - 04 atome, 768 orbitals  ~
e (Crank-Nicholson time integration (unitary) jooo | e j4dalomsi7e0obials =
» Generalized minimal residual method - (a6 aoms, G0d0 bl
o Scales well on DOE’s machines g wop e e
| | B . 4,‘
e Qrders of magnitude more expensive 2l ff ...... . "e e
 Typically 100s of cores, a few hours = | R
* No “free” parameters (takes mass density, # of B e
electrons, and exchange-correlation oq ]
. 256 1024 4096 16384 65536
fUﬂCtlonal) Number of Cores
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Consider a channeling proton moving in solid Al at the Fermi velocity...
Born-Oppenheimer Ehrenfest

Proton velocity
9040] buiddolg

O stopping power Matches experimental
(unphysical) stopping power
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Proton stopping in hydrogen with large tluctuations in the force.
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Fluctuations average out when we ook at stopping work.
The slope corresponds to stopping power.
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Electronic stopping power by subtracting the ion-ion forces.
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Computational details:

(DFT-MD trajectories courtesy of Mike Desjarlais!); 1024 H atoms / supercell; 2800 eV

cutoff (4800 eV aug.); All-electron PAW; GGA (PBE); Baldereschi mean value point

Results
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Stopping power calculations help constrain lower level methods
(averaged-atom models).

* Predictive stopping power calculations over a wide range of material in
WDM regime

e mixtures
* |oNnic projectiles
* electron projectiles

Thanks for your attention :)
Questions?

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC., a wholly
owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-NA-0003525. Center for Computing Research

= %ﬁ U.S. DEPARTMENT OF ///

) ENERGY VA A4 acangi@sandia.gov
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 PAW is among the most accurate pseudization frameworks
« Variational DOFs are plane wave coefficients
« PAW maps plane wave DOFs to all-electron guantities
through linear transtorm’
 Frozen core approximation still used to reduce problem size

s, ) = [T+ D (165) = 185,)) (B, ]| [dmxlr, 1))

1,71,]2

» Use of reciprocal space projectors kills O(N) scaling of TDDFT
e Currently testing real space projectors for stopping
* Pulay-like terms need to be added to forces, TDKS solve

Projector-augmented wave method acangi@sandia.gov
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We use Crank-Nicolson for integration of the TDKS equations

5+ SSHH(E+ 80+ P+ A0} Wt + a0) = |8 = SHHD + PO} [nadt)

e -

Pulay—l&e term makes effective Hamiltonian non-Hermitian

Counterintuitively, this is necessary to conserve charge!
(but it also requires very small errors in iterative solve)

Using GMRES and 8 digit tolerance, we lose 9 microelectrons / fs
(out of 128 at Te=10 eV)

Time propagation acangi@sandia.gov



