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What is warm dense matter?

Motivation 2

Basic Research Needs for HEDLP, Report of the Workshop 
on HEDLP Research Needs, DOE (2008).

Coulomb coupling parameter:

� =
V

T
=

Z e2

rS kB ⌧

Electron degeneracy parameter:

⇥ =
kB ⌧

EF

Warm dense matter regime:

� ⇡ 1 , ⇥ ⇡ 1

n ⇡ 1022 . . . 1024cm�3

⌧ ⇡ 1 . . . 100eV
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What is warm dense matter?

Motivation 3

Z Machine, Sandia National Laboratories. Target chamber, National Ignition Facility,  
Lawrence Livermore National Laboratories.

Creating WDM requires to transfer an enormous amount of energy to a 
target material in a very short period of time.
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What is stopping power?

Motivation 4

Zylstra et al., Phys. Rev. Lett. 114, 215002 (2015).

S(x) =
dE

dx
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General set up

Theoretical background 5

1. Converge thermalized DFT-MD simulations for a given atomic configuration.  

2. Prepare initial state and add projectile.  

3. Run TDDFT-Ehrenfest simulation and evaluate forces on the projectile.
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Density functional theory

Theoretical background 6

Ĥ = T̂ + V̂ee + V̂

Electronic Hamiltonian

F [n] = min
 ̂!n

h |T̂ + V̂ee| i

Hohenberg-Kohn functional

Ev = min
n

⇢
F [n] +

Z
dr n(r) v(r)

�

⇢
�r2

2
+ vS(r)

�
�i(r) = ✏i�i(r)

n(r) =
NX

i

�⇤
i (r)�i(r)

F [n] = TS[n] + U [n] + EXC[n]

Kohn-Sham scheme

vS(r) = v(r) +
�U [n]

�n(r)
+

�EXC[n]

�n(r)
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Thermal density functional theory

Theoretical background 7

Ĥ = T̂ + V̂ee + V̂

Electronic Hamiltonian

F [n] = min
 ̂!n

h |T̂ + V̂ee| i

Hohenberg-Kohn functional

Ev = min
n

⇢
F [n] +

Z
dr n(r) v(r)

�

⇢
�r2

2
+ vS(r)

�
�i(r) = ✏i�i(r)

n(r) =
NX

i

�⇤
i (r)�i(r)

F [n] = TS[n] + U [n] + EXC[n]

Kohn-Sham scheme

vS(r) = v(r) +
�U [n]

�n(r)
+

�EXC[n]

�n(r)

Ĥ = T̂ + V̂ee + V̂

Electronic Hamiltonian
�̂ =

X

N,i

wN,i | N,ii h N,i|

Grand potential ⌦̂ = Ĥ + ⌧ Ŝ + µN̂

F ⌧ [n] = min
�̂!n

n

T [�̂] + Vee[�̂]� ⌧S[�̂]
o

Mermin generalization

⌦⌧
v�µ = min

n

⇢

F ⌧ [n] +

Z

dr n(r) (v(r)� µ)

�

⇢

�r2

2
+ v⌧S (r)

�

�i(r) = ✏⌧i �i(r)

n(r) =
N
X

i

f⌧
i �

⇤
i (r)�i(r) , f⌧

i : FD

F ⌧ [n] = T ⌧
S [n]� ⌧S⌧ [n] + U⌧ [n] + E⌧

XC[n]

Kohn-Sham scheme

v⌧S (r) = v(r) +
�U⌧ [n]

�n(r)
+

�E⌧
XC[n]

�n(r)
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Time-dependent density functional theory

Theoretical background 8

Electronic Hamiltonian Ĥ = T̂ + V̂ee + V̂

Runge-Gross theorem v(r, t)
 0 ! n(r, t)

i
@

@t
�i(r, t) =

⇢
�r

2

2
+ vS(r, t)

�
�i(r, t)

TD Kohn-Sham equations

vS(r, t) = v(r, t) +
�U

�n(r, t)
+

�EXC

�n(r, t)

Adiabatic approximation vXC[n](r, t) = vXC[n0](r)|n0(r)!n(r,t)
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TDDFT with Ehrenfest dynamics

Theoretical background 9

Full Hamiltonian

Ĥ = �
X

I

1

2MI
r2

I �
X

i

1

2
r2

i

+
X

I<J

ZIZJ

|RI �RJ |
+

X

i<j

1

|ri � rj |

�
X

I,i

ZI

|RJ � ri|

Lagrangian

L[�, �̇, R, Ṙ] = � i

2

X

i

Z

dr
n

�⇤
i (r, t)�̇i(r, t)� �̇⇤

i (r, t)�i(r, t)
o

+
X
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MI
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ṘI(t) · ṘI(t)� E[�, R]

i
@

@t
�i(r, t) =

⇢

�r2

2
+ vS(r, t)

�

�i(r, t)

Equations of motion

MIR̈I = �rIE[�, R]

Energy in terms of KS quantities

E[�, R] = TS[n]�
Z

dr
X

I

✓

ZI

|RI(t)� r|

◆

n(r, t)

+ U [n] + EXC[n] +
X

I<J

ZIZJ

|RI(t)�RJ(t)|
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Time scales

Computational background 10

Time for light to cross
3 hydrogen atoms (1 as)

Picosecond
10-12 s

Femtosecond
10-15 s 

Attosecond
10-18 s

Yoctosecond
10-24 s

Zeptosecond
10-21 s

Period of optical
phonon in Si (64 fs)

Period of electron orbit
in hydrogen (150 as)

Quark/gluon
time-scales (1 ys)Switching of

world's fastest
transistor (1.2 ps)

Time taken for
light to cross
1 mm (3 ps)

Fastest chemical
reactions (200 fs)

Time step in
molecular dynamics
simulations (~1 fs)

Lifetime of W and Z
bosons (0.3 ys)

Period of electromagnetic
radiation at gamma-ray/
X-ray boundary (17 zs)

Rotational correlation
time of water (1.7 ps)

Time step in
electronic dynamics
simulations (~1 as)

Shortest laser pulse
as of 2013 (67 as)

Courtesy of Kay Dewhurst, Max Planck Institute of Microstructure Physics (2015).
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Implementation details

Computational background 11

• Sandia implementation of TDDFT + Ehrenfest in VASP 
(Andrew Baczewski) 
• DFT-MD for thermodynamics
• Kubo-Greenwood for transport
• Dynamic structure factor

• About 10k extra lines of Fortran 
• Plane wave basis  
• Projector-augmented wave (PAW) formalism 
• Crank-Nicholson time integration (unitary) 
• Generalized minimal residual method 

• Scales well on DOE’s machines 
• Orders of magnitude more expensive 

• Typically 100s of cores, a few hours 
• No “free” parameters (takes mass density, # of 

electrons, and exchange-correlation 
functional)
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Demonstration

Computational background 12

Consider a channeling proton moving in solid Al at the Fermi velocity…
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Stopping force

0 stopping power 
(unphysical)

Matches experimental 
stopping power

Born-Oppenheimer Ehrenfest
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Computational background 12
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Forces on projectile

Results 13

Proton stopping in hydrogen with large fluctuations in the force.
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Forces on projectile

Results 14

Fluctuations average out when we look at stopping work.  
The slope corresponds to stopping power.
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Forces on projectile

Results 15

Electronic stopping power by subtracting the ion-ion forces.
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Stopping power

Results 16

Muze H32 
SCAALP H32 
New TDDFT H32 
Old TDDFT H32  
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Computational details:
(DFT-MD trajectories courtesy of Mike Desjarlais!); 1024 H atoms / supercell; 2800 eV 
cutoff (4800 eV aug.); All-electron PAW; GGA (PBE); Baldereschi mean value point
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Sandia National Laboratories is a multimission laboratory managed and operated 
by National Technology and Engineering Solutions of Sandia, LLC., a wholly 
owned subsidiary of Honeywell International, Inc., for the U.S. Department of 
Energy’s National Nuclear Security Administration under contract DE-NA-0003525.

Thanks for your attention :) 
Questions?

Conclusion

• Stopping power calculations help constrain lower level methods 
(averaged-atom models).  

• Predictive stopping power calculations over a wide range of material in 
WDM regime 
• mixtures 
• ionic projectiles 
• electron projectiles
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Supplemental material

Projector-augmented wave method 18

• PAW is among the most accurate pseudization frameworks 
• Variational DOFs are plane wave coefficients 
• PAW maps plane wave DOFs to all-electron quantities 

through linear transform1 
• Frozen core approximation still used to reduce problem size

| n,k(r, t)i =

2

41 +
X

i,j1,j2

⇣
|�ij1i � |�̃ij1i

⌘
hp̃ij2 |

3

5 | ̃n,k(r, t)i

• Use of reciprocal space projectors kills O(N) scaling of TDDFT 
• Currently testing real space projectors for stopping 
• Pulay-like terms need to be added to forces, TDKS solve
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Supplemental material

Time propagation 19

We use Crank-Nicolson for integration of the TDKS equations


S +

i�t

2
{H(t+�t) + P (t+�t)}

�
| n,k(t+�t)i =


S � i�t

2
{H(t) + P (t)}

�
| n,k(t)i

Pulay-like term makes effective Hamiltonian non-Hermitian

Counterintuitively, this is necessary to conserve charge!
(but it also requires very small errors in iterative solve)

Using GMRES and 8 digit tolerance, we lose 9 microelectrons / fs  
(out of 128 at Te=10 eV) 


