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| The Sensor Placement Problem

Issue: Contamination released in a

municipal water network

Goal: develop early warning system

- Protect human populations
- Limit network remediation

costs
Place sensors on

- Utility-owned infrastructure

- Schools
- hospitals
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Accidental contamination is harmful too

e Outbreak of Cryptosporidium

- Milwaukee, WI, 1993
« Undetected equipment failure
» 403,000 (est) infected
e > 4400 hospitalized, 69 deaths
e $31.7M in medical costs
e $64.6M lost productivity). htips:/jpublic. health.oregon.gov/Laboratory
. $9OM new water-treatment System, Services/imageLibrary/Pages/crypto2.aspx

Cryptosporidium odcysts

MacKenzie, et. al. 1994. A massive outbreak in Milwaukee of cryptosporidium infection transmitted
through the public water supply. New England J. Medicine 331 161—167.

Corso, P S. et. al. 2003. Cost of illness in the 1993 waterborne Cryptosporidium outbreak, Milwaukee,
Wisconsin. Emerging Infectious Diseases 9 426—431.
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' Modeling Assumptions - Sensors

e Sensors are expensive: Cost to buy and install
e Limited number of sensors (sensor budget)

- Initially assume they are perfect
e Sensors raise a general alarm

- Wireless communication (e.g. Internet)
- Can model a response delay

Transmit Data
ao Contro Room
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Just General Water Quality Sensors

« Measure things like pH, chlorine, electrical conductivity, oxygen-
reduction potential, total organic carbon ...

—Basehne Chanqe SUdden' On-Line TOC Water Quality Measurements —OUtlIer Slgnlﬂcant
pers|stent Change N mean Distribution Water : Anywhere USA deV|at|0n from

of water quality signal background that is not
(often due to operational long enough to
changes) warrant an alarm

From: Water Quality Event
Detection Systems for Drinking
Water Contaminant Detection

Systems. Development, Testing,

and Application of CANARY,
EPA/600/R-010/036,May 2010
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CANARY Event Detection System

e Learns ”normal” value
« Shifting time window

Baseline Change: Sudden,
persistent change in mean
of water quality signal
(often due to operational

On-Line TOC Water Quality Measurements
Distribution Water : Anywhere USA

Qutlier. significant
deviation from
background that is not
long enough to

warrant an alarm
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-4 Contaminant Transport Modeling

Water movement (direction, velocity in each pipe) determined by
e Demand (consumption)
e Pumps

e Gravity

e Valves

e Sources/tanks

Contamination plume depends on
 Location of injection

« What is injected

« How long it is injected
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Contaminant Transport Modeling

 Demand for water drives water movement
o Assume we know sets of demand patterns for “typical” day

- Seasonal variations
- Special events
- Weekday/weekend

Consider many scenarios at once:
Stochastic program

Current (most trusted) simulator

« EPANET code computes hydraulic equations to determine flows
e Discrete-event simulation for contaminant movement
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41 Modeling Events

« Given: Set of events = (location, time) pairs
e Simulate the evolution of a contaminant plume
e For each event determine

- Where/when event can be observed
- Amount of damage prior to that observation

e Measures of damage/impact:

- Population exposed

# deaths

Volume of contaminant release

Total pipe length contaminated

Time to detection NEx
# failed detections
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Simulating contamination transport and Impact

e Total impact: 0

« Nodes can
represent
neighborhoods
(granularity)

HCCR () o

Center for Computing Research Lahol’am[ies



&
H ﬂv"/

~ Simulating contamination transport and Impact

e Total impact: 3

Injection happens
over time:

e Contaminant

e Strength

e Volume/rate

e Duration
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a ’Simulating contamination transport and Impact

e Total impact: 105

» Speed varies by pipe
e Speed and direction
can change over time
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| Simulating contamination transport and Impact

e Total impact: 224

Injection has stopped

#CCR @i,

Center for Computing Research Lahm’atm"es



A
' Simulating contamination transport and Impact

e Total impact: 291

Direction reversal on
shown with blue
arrows
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‘/ﬁpact at Sensor Detection, No Delay

e Total impact: 3

Sensor at: impact
D 3
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| Impact at Sensor Detection, No Delay

e Total impact: 105

Sensor at:
D

E

impact
3
105
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Impact at Sensor Detection, No Delay

e Total impact: 224

Sensor at: impact

D 3
E 105
G 224
H 224
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mnessing an Event

Simulator gives ordered list of nodes where a sensor
could witness contamination

Witnesses:
" JoYo] o [¢]e] o [®
This example has two (green) sensors.

Perfect sensor model: first sensor in list
detects the event.
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= Evaluating a Sensor Placement

e Impact in red
Q = dummy node (represents failure to detect)

10 50 100 300 800

Eventi: @ @ @ @ /o\
10 150 400 1500

Event2: ‘ @ ‘ &
10 10 200

Event 3: @ @

>
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" “Evaluating a Sensor Placement

e Impact in red
Q = dummy node (represents failure to detect)

Impact:
100
Event1: ‘ - - @ Q >
400 1500
Event2: ‘ @ - Q 0

200

10 10
Event 3: @ @ & 200

Choose sensors 2 and 3 (black)
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” Examples of Risk Measures

0.6

0.5

|
i VaR(x,y) - the tail has probability y

0.4 -

I TCE(x,y) - the expectation of this tail

Frequency

©
[N

0.1 4

o
w
|

The worst impact

Impact

(ED S74

S K

. A
o] 7,
F4 (5}
% < ] e
% S

& &S

2L protES

Mean impact

#CCR

Center for Computing Research

)

Sandia
National
Laboratories



=
“Facility Location: p-median

Sensor placement
(average impact) as a
p-median problem:

#
« Sensors = Facilities P
o Network locations = '
potential facility
locations
- Events = Customers onlino oot shidosgolt
to be “served” @ - consumer (client) ko
(withessed) @D - possible location of supplier (server)
» “Distance= impact. ﬂ’ - supplier (server), e.g. supermarket, bakery, laundry, etc.

 Pick p locations and assign each customer to an open location to
minimize the total distance.
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Integer Programming

e An expressive, practical type of optimization
» Optimize a linear objective subject to linear
constraints

» Variables can take integer values
- 0 or 1 corresponds to yes/no

« Solve (optimally or within bounds) with

intelligent enumeration with commercial or
free solvers.

IIIIIIIIII

Number of Legacy Weapons, Over Time

w1 w2 w3 wa  mws we  mwz w8 mwg wio  =wi w12 w13 w1
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I'nteger Programming

For example:

Vi =

1 if we place a sensor at location i € £,
0 Otherwise

yl_|_y2‘|‘_|_yn Sp

enforces sensor budget limit

Other constraints:
e Pick a witness for each scenario
 Allow a location to witnhess only if it has a sensor

Objective is total impact based on chosen witnesses

HCCR () o
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Heuristic sensor placement

 Pick starting locations 1 by 1 randomly with greedy weighting
e Hill climbing

- Move one sensor to a sensor-free location that gives the best
reduction in impact
- Until no move improves

- Simplified form of GRASP = Greedy Randomized Local Search

Procedure
i —q@D
é?@»@—gk
O 00
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41 Real Networks for Experiments

e 6 Networks

e Heuristic runtime depends mostly on # nodes

Name # nodes | # contamination | #impacts | impact file size
events (varies)
Net2Morph 3358 1621 1.2M 22M
Netl 6809 6671 4.7TM 82M
BWSN 12527 10552 8.2M 156 M
NetE 13634 8679 5TM 1G
NetB 42698 28675 36M 744M
NetN 48164 9162 38M 772M
Jstice 27 #CCR
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nimize mean circa 2005

fair, but large problems typically do fail for memory.

25 sensors, minimizing population exposed

« System was a bit overloaded, so memory failure may not be

Network heuristic | heuristic IP IP
Name value | runtime value (opt) | runtime
Net2Morph | 205.1808 24.44s 205.1808 116s
Netl 33.3841 179s 33.3841 3000s
BWSN 64.0051 | 531.32s | memory failure N/A
NetE 41.1494 | 545.13 | memory failure N/A
NetB 216.3516 | 5407.97 | memory failure N/A
NetN 969.3954 | 2235.29 | memory failure N/A
(& )stice 28 #CCR
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Application to 9 Large Water Utilities
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Reduced Ezonomic Rsk (billions §)

From Edelman competition

» Median reduction in fatalities is 48% (4-87%)
« Median reduction in economic costs due to lost lives is $19 billion ($3-172B)
« Median reduction in decontamination and recovery costs of $29 million ($5-340M)

29 @i,



‘/ﬁ/stery

GRASP (greedy heuristic) dominates integer programming for
minimizing mean impact

o Almost always gets the optimal solution

« 10x faster

e Lower space

There is no structural reason

It’s easy to forget that there is no theory to support optimal results
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I'mperfect Sensors

« Sensor at location i detects with fixed probability p;

- Assume independence (well spaced geographically)
e In practice, base on water quality zones

‘ Detects contamination with probability p,

@ Detects contamination with probability (1 - p;) p,

‘ Detects contamination with probability (1 - p,) (1 - p,) p;

Assuming there is a sensor in each location

Slide 31 *CCR @ Natowl
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% Imperfect Sensors

« Sensor at location i detects with fixed probability p;

- Assume independence (well spaced geographically)
e In practice, base on water quality zones

®@ @6 @ L

10 50 100 300 800 Impact
1 3 25 5 1 Raw success probability p
1 27 16 24 23 Witness probability if

All 4 locations have sensors

« Witness an event if all sensors that see it first fail, and you succeed
e This becomes a nonlinear optimization

Slide 32 *CCR @ Natowal
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‘/ﬁe-lmperfect Witness Approximation

» Sensor a location i detects with fixed probability p;
e Only consider the best sensor for each event

- No “back up”
e Adjusted impact: d’;; — pd,; + (1 - p;)D,,
where D, = dummy impact for event a

®@ @6 @ L

10 50 100 300 800 Impact

y 3 25 5 1 Raw success probability p;

721 575 625 550 800 One-imperfect-witness impact d’
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Some methods for solving w/imperfect sensors

e Ignore imperfection

« Exact linear integer program based on zones
e Nonlinear solver (fractional)

 Local search with imperfect-sensor objective
« Random Sampling

e One-imperfect witness

114H grasp perfect as imperfect +

o imperfect heuristic X

o '°r perfect IP as imperfect X

= random sampling O

g ' one-imperfect witness, grasp H

11.575 nodes M st one-imperfect-witness IP O
9705 events O

c
40 sensors Qo + X
é;? 1.02
| ©)

1 X

0.98

L 1 L
1 10 100 1000 10000 100000

Runtime (in seconds)
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‘\/{ Discrete Tuning Model for Sensors

Water quality variability depends on the sensor location
Coarse sensor classes
Characterize junction variability as high/medium/low

Allow for three sensor tuning levels for each variability type
Determines both failure probabilities and conditional delay

- * LOVV
> .
: “-_ = Medium
[
n A ngh ROC Curves
1. ; . ,
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L et oW Vet |
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i i i i i i i i i
0.1 02 03 0.4 05 0.6 0.7 08 0.9 10
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‘\/{ Discrete Tuning Model for Sensors

e Can modify the one-imperfect witness formulation to allow tuning

« Solve with an integer program to enforce false positive limit

e Results: When the false alarm tolerance is too low (say, 0.5/week)
we cannot usually use even 10 or 20 sensors
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New Objective: Minimize Worst-Case Impact

Can use GRASP with a different objective

But now there’s a better wa:

Find minimum number of sensors to achieve worst case impact W
« For each scenario, remove all witnesses with impact > W

100 300 800
® 20 B K

- If none left, W infeasible for any # sensors

? @ Vi Sandia
3 g ' 2
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©  Minimize Worst Case

Find minimum number of sensors to achieve worst case impact W
« For each scenario, remove all witnesses with impact > W

10 50 100 30 800
@ @ @

- If none left, W infeasible for any # sensors
e Ignore impact value on remaining locations, just a set

Set Cover:

e A set of sensor locations covers a scenario if at least one feasible
location selected

e Find the smallest covering set using IP

PINT o2 CC R Sandia
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Results - minimizing worst case

Heuristic | Heuristic Binary Binary % Error
Value Runtime search Search
value Runtime
(opt)
Net2Morph, 861 1131s 852 61s 1
Net2Morph,, 1166 778s 1059 62s 10
Net1 (best) 897 16,072s 890 355s 0.8
Net1 (worst) 570 5731s 518 330s 12
BWSN (best) 1037 33,040s 1037 844s 0
BWSN (worst) 1092 26,339s 980 816s 11
NetE 1070 47,792s 1025 2508s 4.4
NetB 8472 666,622s 8320 8600s 1.8
NetN 7286 358,697s 6851 41865 6.3

Best(b)/worst(w): out of various impact objectives (toxicities)

B BINT CCR Sandia
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Major Issue: Water Utilities Resources

» Very small computing resources
- Runin small space (before the cloud)

e One method: Lagrangian Solver
- Move event coverage to a penalty term
- Linear space
- Gives fractional solution -> round
- Excellent lower bounds (95-99%)

PINT o2 CC R Sandia
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Skeletonized Networks

Original Network:
BWSN Network 2
~13000 nodes

» Skeletonization reduces space

- Doesn’t match hydraulics
- Picks supernodes instead of real nodes

£

%ﬁ
Skeletonized

Network (based
on 16 inch pipe
threshold)
~3000 nodes

Sandia

o National _
oy Laboratories
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‘/S,pace Issues

» Two-tiered process

e Use hydraulics from full model

Tier 1 sensor placement

Tier 2 sensor placement

-
l 42] [ 3 4 5
6 7]l 8
.
(1o 10
—
Method and Solver Memory Mean
Footprint | Impac | MIRE
(GB) t
Two- GRASP/ 0
tiered GRASP 2 Sl | Sk
sensor :
placement Li%;Z%En 2.4 83.5 | 9.4%

9Slide 42

e Network2, 10
sensors, high toxicity
 Skeletonization only

had relative error of
200%
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Some Final Thoughts

e Model requires only a list of withesses and impacts for each event
e Model is stable as simulator (EPANET) improves

e Same basic model works in other settings
- Detecting airborne contaminants
- Placing gas detectors in chemical plants
- Blog watching

« Codes are openly available

- TEVA-SPOT: Threat-Ensemble Vulnerability Analysis-Sensor
Placement Toolkit, now part of Water Security Toolkit (WST)

- CANARY

e More recent work has been on response to contamination
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‘/ﬁ)re Final Thoughts

o Battle of the Water Sensor Networks

- Showed that (for p-median model), codes do better than
experts

- No declared winner. Multiple interpretations
- Lesson: design such things carefully: GRAPH500, benchmarks

o The ASCE/EWRI/water community is very welcoming of new ideas

- Our entre to this area was designed by/for computer scientists
- It took years to deprecate it

0.16

Contaminated
Water 0.42
Consumed |
1

0.85
Time to
Detection 0.88
1

Fraction of Impacts for Experts’ Solutions
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