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Motivation

= |njection of CO2 into reservoir rocks is a strategy of
reducing greenhouse gas emissions

= Modeling CO2 migration and capillary trapping at
the pore scale is important in predicting the
permeability characteristics of reservoir rocks

= Hydrophobicity or hydrophilicity of the reservoir rock
can influence contact line dynamics

= Use computational fluid dynamics to model the
multi-phase flow through heterogeneous reservoir
rock pores

= Conformal decomposition finite-element method
(CDFEM)

= Dynamic contact line modeling

= Can be applied to other surface tension dominated
flows




Overview of contact line models

Two immiscible fluids in contact with a solid surface in equilibrium form a static
contact angle

When this equilibrium is disturbed, the contact angle becomes dynamic and
the contact line moves

Must model relationship between contact angle and contact line velocity as the
physics are poorly understood
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Hydrodynamic and molecular models
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= Three length scales near the contact line: = Two length scales: macroscopic and molecular

macroscopic, mesoscopic, and microscopic = Contact line motion is determined by the
= Changes in experimentally observed statistical dynamics of the molecules at the

macroscopic dynamic contact angle is molecular scale

attributed to viscous bending of the interface =  Driving force of contact line is proportional to

in the mesoscopic region the disturbed and equilibrium contact angles.
=  Microscopic angle is usually assumed as the = Blake, 1969

static angle and velocity independent
= Voinov, 1976; Cox, 1989; Huh & Scriven, 1971.




Conformal Decomposition Finite Element Method
(CDFEM)

= Simple Concept (Noble, et al. 2010)

= Use one or more level set fields to define materials or
phases

= Decompose non-conformal elements into conformal ones

= QObtain solutions on conformal elements

= Use single-valued fields for weak discontinuities and
double-valued fields for strong discontinuities

= Capablility Properties

= Supports wide variety of interfacial conditions (identical to
boundary fitted mesh)

= Avoids manual generation of boundary fitted mesh

= Supports general topological evolution (subject to mesh
resolution)

= Implementation Properties
= Similar to finite element adaptivity

= Uses standard finite element assembly including data

structures, interpolation, quadrature
I ———————————————————————————




XFEM - CDFEM Code Requirements

Comparison
XFEM CDFEM
Volume Assembly Conformal subelement Standard Volume
integration, specialized Integration
element loops to use
modified integration rules
Surface Flux ilgzzia”_fﬁg ggéqgeeﬂement Standard Surface
Wi 1aliz Integration
Assembly guadrature J
Phase Specific Different variables presentat | Block has homogenous
different nodes of the same '
DOFs and block dofs/equations
Equations
Dynamic DOFS and | Require reinitializing Require reinitializing
Equations linear system linear system
Various BC types Dirichlet BCs normally Standard Techniques
on Interface cannot be strongly available
enforced




CDFEM Applied to Multiphase Flows

= CDFEM used to provide dynamic %
discretization for multiphase flow
with interfaces that do not &
conform to static finite element : :
meshes

_ Weakly discontinuous velocity  Strongly discontinuous pressure
= Level set that advects with the

flow is used to define the
Interface locations

= Adds degrees of freedom
(velocity and pressure) by adding
nodes to mesh which lie on the
exact interface location

= Can apply boundary conditions
directly at interface

= Surface tension
= Wetting line models
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Computational model

= Utilize Galerkin triangular and tetrahedral finite elements to discretize
Navier-Stokes equation

= Solved using Sierra multi-physics suite at SNL?!

Navier-Stokes Equations
V-u=0

p(x) ((Z;; +(u-V) u) = —Vp+ V- (ux) (Vu+Vu'))

Level Set Equation

O B
E—FU-VQ—O

Interface Boundary Conditions
uja=0, xeTl (impermeability)
[—pI + p(x) (Vu + VuT)]A -n=—ykn, XxX€eT (surface tension)




Time-discretization scheme (2" Order)

Momentum Prediction Levelset Advection
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Conformal Decomposition

« Decompose mesh to
conform to updated level set
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Verification and validation (capillary wave decay)

= Perturb two-phase interface with sinusoidal disturbance

= Interface shape should decay with specific frequency and rate (Prosperetti,

1981) at small amplitudes

= Accurate prediction of capillary wave frequency and amplitude decay
= CDFEM discretization of interface accurately captures surface tension dynamics

= 2nd grder convergence in space and time

Interface Dynamics
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Moving contact line model

Wetting Line Force

=N

f=vi

t; = T, cos B + 7, sin 6
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Phase 1

Navier-Slip Condition

f = %(ﬁw - 17CL)

Flux = fﬁ . fpids

/ Wall velocity|
Contact Lin

-0.5 0 0.5 1
Distance

=  Assume microscopic (static) contact angle is a constant (6,) (hydrodynamic type method)
= For a given fluid pair, specify material properties, surface tension force (y), and static contact angle (6y)
=  Pull contact line with surface tension force at Young'’s equilibrium contact angle

=  Select the Navier-Slip length (B) to fit to experimental data



Verification and validation (capillary injection)
Interface Dynamics
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Injection of fluid into capillary changes dynamic contact angle
Demonstrate ability to capture dynamic contact angle dependency on capillary number

Once data is fitted to experiment (one point), specified slip length  becomes
independent of fluid type and capillary number




Verification and validation (capillary injection cont.)
Mesh Dependency

MESH DEPENDENT
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=  Solution exhibits mesh dependency (slip length must be adjusted to accommodate resolution changes)

= Mesh independency alleviated once ratio between grid resolution and slip length is held constant

= Allows the use of this model for other more complicated geometries where mesh size is not known a
priori after slip coefficient is fitted to simple experimental data.




2D Capillary Rise

Verification and validation (capillary rise)

3D Interface Shapes
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Flow through pore network

Flow Through a Pore Network

Imbibition Drainage




Flow through a scan of a real 3D fracture

 Micro-CT scan of real sandstone fracture
* Mesh generation using CDFEM
* Run multiphase flow on mesh




Conclusions

= CDFEM for Multiphase Flows

= Sharp interface method
= Captures interfacial discontinuities sharply
= Allows for sharp wetting line models

= CDFEM design encapsulates interface

motion/discretization and finite element
assembly/physics

= Enriched finite element without rewriting code

= Verified 2" order accurate predictor-corrector

.. . . . 3D micro CT scan of sandstone sample
semi-implicit algorithm

= Wetting line model

= Single parameter model captures physics over
range of static angles and capillary numbers

= Future work

= Flow in complex, reconstructed pore networks




Impact of Mesh Quality

Three Criteria for Linear Elements
Let /" be a function. @ f
Let g be a piecewise linear interpolant of N .
f over some triangulation. .. i /1
Criterion
Interpolation error Size very important.
| f— gl Shape only marginally
important.
Gradient interpolation error | Size important.
|V f—vgll. Large angles bad,;
small okay. A
Element stiffness matrix Small angles bad;
maximum eigenvalue large okay. @
)\max

Reprinted from “What is a Good Finite Element?” by Jonathan Richard Shewchuk




Static Interface CDFEM Verification

= Steady Potential Flow about a = Steady, Viscous Flow about a Periodic Array of
Sphere Spheres
Embedded curved boundaries Embedded curved boundaries
= Dirichlet BC on outer surface, = Dirichlet BC on sphere surface
Natural BC on inner surface »  Accurate results right up to close packing limit
= Optimal convergence rates for = Sum of nodal residuals provides
solution and gradient bOth on accurate/convergent measure of drag force
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Approach for Dynamic Discretizations: Moving
Mesh (MM)

= Uses Arbitrary Lagrangian Eulerian (ALE) technology for moving meshes
= Relates time derivative following a moving point to the time derivative fixed in space
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= Using the closest point projection
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= Recovers semi-Lagrangian in limit of x = u
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