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Overview Numerical Method
Multi-valley effective mass theory (MV-EMT) is Domain decomposed into hexahedral elements
quantitatively accurate for 1-electron properties DelFHDNGR BF IR
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Element-local basis 005
-Chebyshev polynomials 01

- Tunnel coupling between phosphorus donors [1]

- Valley-splitting of quantum dots + disorder [2] plane waves i 15
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Multi-electron effects are necessary to study | £ 03
_ . Interior penalty (IP) 938 ¢
- Donor-dot hybrid systems [3] (see V. Srinivasa’s poster) methods used to glue O i = P : %
- Multi-electron quantum dots where spin-orbit [4], valleys, together high-order local ‘ r (nm) |
and disorder come into play (see R.M. Jock’s talk, N.T. solutions ]'}

Jacobson’s poster)
IP discretization of Shindo-Nara + Hartree-Fock
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High accuracy solutions of MV-EMT equations are
especially critical for multi-electron effects

Single-particle orbitals = envelope + Bloch functions
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n External potential + Hartree-Fock mean field
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Shindo-Nara equations describe interaction-free problem Mean field computed using IP Poisson solve
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vet{z,y,2) Resolution-of-identity + IP Poisson solve
For N>1 electrons, the interacting Hamiltonian is: facilitates perturbation theory
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Move through hierarchy of electronic structure methods o . v 'fjj | N |
-Slater exchange / semi-local DFT ' ' e 40 80 20 o 0 10
-Hartree-Fock | | | |
-Perturbation theory (Left) line plot of solutions with 0.01% errors in energy
-Configuration interaction (Right) stabilized high order solutions for envelope functions
Close-Up Interface States at Sufficient Penalty Interface States at Low Penalty
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A lot of “magic” that differentiates dots + donors |-
from conventional gquantum chemistry
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Numerical issues:
-Difficult to systematically improve basis sets for Uil
isolated donors, interfaces, and hybrids thereof " e 0s 0 2005 40 <0 20 0 0 10

-Symmetries that facilitate creation of good virtual o - " ()
orbitals for correlation can no longer be exploited (Left) numerical discontinuity rigorously controllable

-Quartic scaling costs amortized by small basis sets (Right) spurious solutions exist for small penalties
-Shindo-Nara requires non-standard matrix elements
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Physical issues: Remrences—
-Proper treatment of effective Coulomb interaction? 1] Gamble, Jacobson, et al., Phys. Rev. B 91 (2015)

-Image charges due to oxide
-Local field corrections for short-range physics
-Modifications to bulk central cell corrections?

Gamble, et al., App. Phys. Lett., 109, (2016)
Harvey-Collard, et al., arXiv:1512.01606
Jock, et al., arXiv:1707.04357
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