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SCE for High-Performance Computing 
Presents a Significant Challenge to State-

of-the-Art SCE Yield 

•  Scaling of both logic and memory requires high yield 
fabrication and processing 

•  High yield requires uniform device characteristics 

•  Device characteristics depend upon properties of 
nanometer-scale thin films 

•  Microanalysis (structure, morphology, chemical 
composition) at these length scales can provide 
guidance to fabrication and processing 

•  Scanning transmission electron-beam microscopy 
(STEM) combined with energy dispersive x-ray 
spectroscopy (EDS) allows characterization of these 
parameters at the required length scales 

Presence of contaminants in active area 
of Nb/Al-AlOx/Nb JJs correlate with 

electrical properties – compare “control 
to “outlier” JJ 
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F observed in active JJ area correlates to low R for outlier JJs 
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STEM/EDS reduced F process– no outliers on this wafer  

No F observed in active JJ area or at interface with anodized sidewall 

Template for Cryogenic Spin Transfer 
MRAM devices influences performance 
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STEM/EDS : smooth, continuous, crystalline, nm-scale layers grow 
on Al-AlOx template with minimal interdiffusion between layers 

BUT: Thin AlOx adds problematic series resistance  

STEM/EDS: Absence of AlOx layer and alternative layer stack results in 
some Al interdiffusion and subsequent layer roughness   

Series resistance likely due to residual oxide at upper metallization layer  
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Device Concept

ASC 2016, Denver, Colorado

Collinear OST device

Damping

APP

m

reference layer

free layer
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Hdemag= -Msmz

Collinear spin-valve
• No initial spin-transfer torque
• Requires initial deviation from pure parallel

or antiparallel state (thermal fluctuation)

OST spin-valve
• Large initial torque from polarizer
• Out-of-plane precessional switching

1. Magnetization is tilted out-of-plane by the
perpendicular polarizer

2. Precesses around its own demagnetizing
field

3. As the current is switched of, the
magnetization relaxes towards the desired
state

Spin torque � I m × (m × p) 
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Measurement Procedure above Tc

ASC 2016, Denver, Colorado

R(0 kG) = 28.7 Ω

• Nanopillar: Ellipses 100 nm x 60 nm 
• Field applied along easy axis of nanopillar
• Centered free layer reversal indicates compensated SAF moments
• Iswitch �10 times lower as previously observed in OST

T = 10 K
H = 0.02 kG
R (0 mA) = 28.7 Ω

Free layer hysteresis loop Current induced switching 
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Device Concept 
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Template for Cryogenic Spin Hall 
Effect devices impacts layer roughness 

STEM/EDS : smooth, continuous, crystalline, nm-scale layers grow with 
minimal interdiffusion between layers, some preferential side-wall etching 

STEM/EDS : alternative W template introduces additional roughness to 
subsequent layers 
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•  Three-terminal device: current-switchable ‘free 
layer’, whose state is read by using TMR across 
the ‘reference layer’ 

•  Switching is caused by the spin current incident 
on the free layer due to the spin-Hall effect in the 
bottom channel 

•  Read-out across the MTJ is enabled by third ‘top 
lead’ 
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Conclusion: FIB/STEM/EDS analysis of morphology, 
structure, chemical constituents can provide insight into 
variation in properties among specific devices and guide 

changes in fabrication and processing 
  

Jc = 0.54x1011 A/m2  

DC spin torque switching curve for 
W based CSHE device 

Ramp Rate Measurement 

Ic ≈ 40 µA expected for optimized channel 
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