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Basics of Visualization () ==
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Visualization is Not Just Rendering

Cell Derivati;fes
(with Glyph)
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The Big Iron Era (circa 1995) =




GPU Cluster Era (circa 2002)
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Distributed Memory Supercomputing QM
(circa last week)




Encapsulating Large-Scale N
Visualization in Production Tools

ParaV|¢w Vislt
http://paraview.org

http://visit.lInl.gov/
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100Mhz - 9Ghz Plane Wave
Electric Field Magnitude
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Post Hoc Vis

Full Mesh

Disk
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Visualization
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Image Credit: Jonathan Kos-Read



Extreme Scale is I
Threads, Threads Threads!

A clear trend in supercomputing is ever increasing parallelism

Clock increases are long gone
“The Free Lunch Is Over” (Herb Sutter)

Jaguar — XT5 Titan — XK7 Exascale*
Cores 224,256 299,008 and 1 billion
18,688 gpu

Concurrency 224,256 way 70 — 500 million way 10— 100 billion way
Memory 300 Terabytes 700 Terabytes 128 Petabytes

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.



My new computer's got the clocks, it rocks
But it was obsolete before | opened the box

- “Weird” Al Yankovic, It’s All About the Pentiums, circa 1999

Moore’s Law is dead.

— Gordon Moore, circa 2005
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AMD x86

Full x86 Core

+ Associated Cache
6 cores per die
MPI-Only feasible

1 x86
core

1 Kepler
“core”

— 1mm

NVIDIA GPU
2,880 cores collected in 15 SMX

Shared PC, Cache, Mem Fetches
Reduced control logic

MPI-Only not feasible



Inter-Node
Parallelism
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VTK-m: Basic Approach

= Functor mapping [Baker, et al. 2010]




Applied to Topologies




Applied to Topologies




Example Algorithm: Contours




Example Algorithm: Contours =
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Faceted Normals Smoothed Normals
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Faceted Normals Smoothed Normals Simplified Mesh
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Like a washbasin knocking on your door...
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How Many Architectures To Support? il

GPU (NVIDIA)

= Sub-architectures :
— Fermi, Kepler, Maxwell
= Multiple Memory Types:

— Global, shared, constant,
texture

= Memory Amount:
— Upto 12 GB
= 1000s of threads
— Grids, Blocks, and Warps

CPU/MIC

Multiple ISAs:
— Vector Unit Widths:
» 2,4,8/16
Single Memory Type

= Larger Memory Size (CPU)

Up to 20/60 threads
— No explicit organization

i,\\é Yo PV Loyess



Performance Portability QM

= Visualization developers faced with a decision:
Pick a target architecture
Add additional implementations of the same algorithm:

Architecture

Algorithm A B C D E F



Data Parallel Primitives CEN

* What are they?

Provide a level of abstraction based on Blelloch’s parallel primitive
operators

= Examples: Map, Reduce, Scan, Gather, Scatter, Sort
" Provides node-level parallelism
= Benefits
Portable performance
Future-proofed implementations
Higher productivity



Data Parallel Primitives Benefit CEN

= Backend: Implement fast parallel primitive operators for each new
architecture

" Frontend: Re-think current algorithms in terms of the primitives

Backend CPU GPU MIC ?7??

Algorithm A B C D E F
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VTK-m Framework
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Data Set
LT_350K

LT_372K

RM_350K

RM_650K

RM_970K

RM_1.7M

RM_3.2M

Seismic

Rendering

Algorithm Millions of Rays Per Second Data Set

OptiX Prime 357.6
EAVL 150.8
VTK-m 164.5
OptiX Prime 322.4
EAVL 124.7
VTK-m 140.8
OptiX Prime 436.5
EAVL 197.5
VTK-m 200.8
OptiX Prime 420.4
EAVL 172.9
VTK-m 166.0
OptiX Prime 347.1
EAVL 152.8
VTK-m 163.5
OptiX Prime 266.8
EAVL 136.6
VTK-m 148.8
OptiX Prime 264.5
EAVL 124.8
VTK-m 134.5
OptiX Prime 267.8
EAVL 106.3
VTK-m 119.4

LT_350K

LT_372K

RM_350K

RM_650K

RM_970K

RM_1.7M

RM_3.2M

Seismic

Algorithm Millions of Rays Per Second

Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m
Embree
EAVL
VTK-m

51.9
27.7
38.5
56.5
26.1
36.0
64.8
33.3
47.8
65.9
35.6
49.1
59.1
29.3
41.0
52.4
27.0
37.8
48.4
28.3
33.9
43.2
252
345




Surface Simplification

Algorithm Device 5123 10243

VTK Serial 3.65s 11.40 s

VTK-m Serial 2.73 s 2.93s 522s
VTK-m TBB 3sthreads 0.36 S 0.45s 0.72s
VTK-m TBB 72threads 0.41's 0.49s 0.74 s

VTK-m CUDA 0.18s 0.19s 0.20s



Algorithm Device Time

vtkMarchingCubes Serial 11.917 s
vtkMarchingCubes 32 MPI Ranks 1.352s
vikMarchingCubes 64 MPI Ranks 1.922s

PISTON Serial 19.895 s
PISTON CuUDA 0.514s
PISTON TBB 0.955s
VTK-m Serial 20.784 s
VTK-m CUDA 0.560 s

VTK-m TBB 1.161s




Summary =

Processing in HPC has rapidly evolved

Visualization (as with the rest of HPC computing) needs to adjust

There is lots of parallelism available for visualization

But taking advantage of it is not always straightforward

Updating algorithms is a lengthy process
There are lots of distinct algorithms (more than 400 in VTK)

Data parallel primitives simplify the implementation and provide
performance portability

VTK-m is collecting and implementing these algorithms

// / ./ / http://m.vtk.org
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