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Basics of Visualization



Visualization is Not Just Rendering



A Brief History of Time



The Big Iron Era (circa 1995)



GPU Cluster Era (circa 2002)











Distributed Memory Supercomputing
(circa last week)



Encapsulating Large-Scale 
Visualization in Production Tools

ParaView
http://paraview.org

VisIt
http://visit.llnl.gov/
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Lorendeau, 
Fournier, and 
Ribes. “In-Situ 
visualization in fluid 
mechanics using 
Catalyst: a case 
study for 
Code_Saturne.”
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Loring, Majumdar, and Geveci. 
“In-Situ Visualization for Global 
Hybrid Systems.”
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Extreme Scale is
Threads, Threads Threads!
 A clear trend in supercomputing is ever increasing parallelism

 Clock increases are long gone
 “The Free Lunch Is Over” (Herb Sutter)

*Source: Scientific Discovery at the Exascale, Ahern, Shoshani, Ma, et al.

Jaguar – XT5 Titan – XK7 Exascale*

Cores 224,256 299,008 and
18,688 gpu

1 billion

Concurrency 224,256 way 70 – 500 million way 10 – 100 billion way

Memory 300 Terabytes 700 Terabytes 128 Petabytes



My new computer's got the clocks, it rocks
But it was obsolete before I opened the box

− “Weird” Al Yankovic, It’s All About the Pentiums, circa 1999

Moore’s Law is dead.
− Gordon Moore, circa 2005



AMD x86

NVIDIA GPU

Full x86 Core
+ Associated Cache
6 cores per die
MPI-Only feasible

2,880 cores collected in 15 SMX
Shared PC, Cache, Mem Fetches
Reduced control logic
MPI-Only not feasible

1mm

1 x86
core

1 Kepler
“core”
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Parallelism
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Memory
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http://m.vtk.org



VTK-m: Basic Approach

 Functor mapping [Baker, et al. 2010]

functor()



Applied to Topologies

functor()



Applied to Topologies

functor()



Example Algorithm: Contours



Example Algorithm: Contours
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Faceted Normals Smoothed Normals
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Faceted Normals Smoothed Normals Simplified Mesh









Like a washbasin knocking on your door…

we’re gonna let that sink in.

Knock, knock



How Many Architectures To Support? 

 GPU (NVIDIA)
 Sub-architectures :

– Fermi, Kepler, Maxwell

 Multiple Memory Types:

– Global, shared, constant,  
texture

 Memory Amount:

– Up to 12 GB

 1000s of threads

– Grids, Blocks, and Warps 

 CPU/MIC
 Multiple ISAs:

– Vector Unit Widths: 

» 2,4,8 / 16

 Single Memory Type

 Larger Memory Size (CPU)

 Up to 20/60 threads

– No explicit organization



Performance Portability

 Visualization developers faced with a decision:
 Pick a target architecture

 Add additional implementations of the same algorithm:

A B C D E FAlgorithm

Architecture



Data Parallel Primitives

 What are they?
 Provide a level of abstraction based on Blelloch’s parallel primitive 

operators

 Examples: Map, Reduce, Scan, Gather, Scatter, Sort

 Provides node-level parallelism

 Benefits 
 Portable performance 

 Future-proofed implementations

 Higher productivity



Data Parallel Primitives Benefit

 Backend: Implement fast parallel primitive operators for each new 
architecture

 Frontend: Re-think current algorithms in terms of the primitives

A B C D E FAlgorithm

Backend

VTK-m





VTK-m Framework

Execution 
Environment

Cell Operations
Field Operations

Basic Math
Make Cells

Control 
Environment

Grid Topology
Array Handle
Invoke

Device 
Adapter

Allocate
Transfer
Schedule

Sort
…

W
o

rklet



CUDA SDK
561 Lines

PISTON
505 Lines

VTK-m
283 Lines



Rendering



Surface Simplification





Summary

 Processing in HPC has rapidly evolved
 Visualization (as with the rest of HPC computing) needs to adjust

 There is lots of parallelism available for visualization
 But taking advantage of it is not always straightforward

 Updating algorithms is a lengthy process
 There are lots of distinct algorithms (more than 400 in VTK)

 Data parallel primitives simplify the implementation and provide 
performance portability

 VTK-m is collecting and implementing these algorithms

http://m.vtk.org
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