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Abstract

This report considers plane wave coupling to a transmission line consisting of a wire above a conducting
ground. Comparisons are made for the two types of available source models, along with a discussion about

the decomposition of the line currents. Simple circuit models are constructed for the terminating
impedances at the ends of the line including radiation effects. Results from the transmission line with these

loads show good agreement with full wave simulations.

3



Intentionally Left Blank

4



Contents

1 INTRODUCTION 9

2 TRANSMISSION LINE MODEL 10

2.1 Transmission Line Mode - Antenna Mode Decomposition   12

2.2 Conventional Model And End Terminations   12

2.3 Dual Source Model  14

2.4 Limiting Cases of Two Wire Model Results  15

2.5 Ground Plane Case   16

3 SHORT CIRCUIT INDUCTIVE TERMINATION 17

4 OPEN CIRCUIT CAPACITIVE TERMINATION 18

5 COMPARISON OF CST SIMULATIONS WITH ATLOG  23

6 BASE PORT TERMINATION 23

6.1 Early Time Down-conductor Transmission Line   23

6.2 Open Circuit Lumped Capacitive Termination   26

7 GROUND ROD TERMINATION 27

7.1 Low Conductivity Ground   27

7.2 High Conductivity Ground  27

7.3 Disc Base Plate Termination   28

8 DIELECTRIC COATING 28

5



9 RADIATION LOSSES   29

9.1 Open-Open Case  30

9.2 Short-Short Case  32

9.3 Open-Short Case  35

9.4 End Reflection Method   38

10 COMPARISON OF CST SIMULATIONS WITH ATLOG INCLUDING
RADIATION 38

11 CONCLUSIONS  42

12 REFERENCES  42

6



Figures

1. Geometry of transmission line with image for PEC ground..   9

2. Comparison of full wave simulations (dashed curves) using CST Microwave Studio
with transmission line having idealized open circuits at each end (dotted curves)
and with a transmission line having terminating capacitors at each end (solid
curves). The line lengths are given on the left end of the graph. Note that an
arbitrary shift of ±0.1 A has been added to the 40 m and 80 m length results, and
an arbitrary shift of ±0.2 A has been added to the 20 m and 100 m curves, to
separate the different lengths and make the different curves readable.   24

3. Comparison of full wave simulations (dashed curves) using CST Microwave Studio
with transmission line having idealized short circuits at each end (dotted curves)
and with a transmission line having terminating inductances at each end (solid
curves). The line lengths are given on the left end of the graph. Note that an
arbitrary shift of ±0.1 A has been added to the 40 m and 80 m length results, and
an arbitrary shift of ±0.2 A has been added to the 20 m and 100 m curves, to
separate the different lengths and make the different curves readable.   25

4. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio
with the ATLOG transmission line calculations for a 20 m long section of line
having open circuits at both ends. The blue dotted curve has idealized open
circuits at each end, the black solid curve has terminating capacitors at each
end, and the green dash-dot curve has terminating capacitors and radiation
conductances at each end   39

5. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio
with the ATLOG transmission line calculations for a 20 m long section of line
having an open circuit at the left end and a short circuit at the right end. The
blue dotted curve has idealized open and short circuits at the two ends, the black
solid curve has a terminating capacitor and inductor at the respective ends, and
the green dash-dot curve has terminating capacitor-radiation conductance and
inductor-radiation resistance at the respective ends.   40

6. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio
with the ATLOG transmission line calculations for a 40 m long section of line
having short circuits at both ends. The blue dotted curve has idealized short
circuits at each end (and has no ringing at normal incidence), the black solid curve
has terminating inductors at each end and shows ringing, and the green dash-dot
curve has terminating inductors and radiation resistances at each end 41

7



Intentionally Left Blank

8



2 hl t 1
1 ►

,e
Figure 1. Geometry of transmission line with image for PEC ground..

1 INTRODUCTION

2a

Our interest here is to examine transmission line models for a wire above a conductive half space. In
particular, we are interested in lumped loads representing corrections to the distributed transmission line
elements in order to approximately account for the fringe field corrections at the ends of the line under
open circuit and short circuit terminations, as well as elements to account for radiation of the line.

We discuss and compare the two existing approaches for modeling plane wave field coupling to
transmission lines in order to sort out the relevant sources and the associated meaning of the voltage
and current solutions. We also discuss the different bases for the current decomposition (for example,
transmission line and antenna modes).

The lumped capacitance and air conductance elements for an open circuit termination will have
reasonably broad applicability since the distributed admittances of the transmission line model for dense
lower dielectric half spaces are typically dominated by the air region above the conductive half space. The
lumped inductance element for a short circuit termination will be somewhat approximate unless the skin
depth in the conductive half space is small compared to the line height above the ground since we will use
an image in the ground to describe the return current in this construction. Furthermore, the radiation
elements are derived for a line with a reasonably concentrated image current, and are thus also limited to
this small skin depth case. We note that for the large skin depth case, we expect the ground losses to
dominate over the radiation losses, and furthermore, the damping may spread out resonant behavior in
frequency to the point where the exact spectral position is less important. Nevertheless we include a short
section briefly discussing the alternative approach of using the Wiener-Hopf reflection coefficient to treat
both long lines and larger skin depths when the line end in an open circuit.

Figure 1 shows an example of a transmission line and its image in the conducting half space with
"open" and "short" circuit loads.

9



2 TRANSMISSION LINE MODEL

A one-dimensional transmission line model is used here [1], [2], [3]. The transverse dimension is modeled
in terms of cross sectional per unit length circuit parameters; we are primarily interested in the case of
a wire above a finitely conducting ground, but will also touch on the two wire transmission line without
ground (which can be an image in a perfectly conducting ground) in certain cases. The transmission line
equations for time dependence e—iwt, and appropriate per unit length immittances for a wire above a
finitely conducting ground, are now listed [4], [5], [6], [7][8], [9]. The voltage equation is

dV
= E" — ZI

dz
where the impedance per unit length is

Z = — ibiLe+ Z4
with external inductance per unit length

Le = L2 + Lo
and the wire dielectric coating inductance per unit length is

L 2 = 
27r 

ln (bla)

with air inductance per unit length above the ground plane

The current equation is

where the admittance per unit length is

with external admittance per unit length

Lo = 
27r 

Arccosh(hlb)

dI
= K" —YV

dz

1/Y = 1/K + 1/Y4

1/Ye = 1/ (Go — iwCo) + 1/ (—iwC2)
and wire dielectric coating capacitance per unit length

C2 =
ln (bla)

with air capacitance per unit length Co and conductance per unit length Go

27E,,

Co + iGo/a, =
Arccosh (h/b)

27rE

and the ground parameters are taken as

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)
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Z4 R:i —i( A. l liAl) (k4h) 1[27k4hH11) (k4h)] II° in (1 — ik4h)kJ h b (11),'''' , >
27r —ik4h

— ik4h

1—z 
Y4 ,--:,' —i27(cuE4-kia4)k4hIlV (k4h,

with ground propagation constant

)1Hc()1) (k4h) ,-.-z-_,. —i27 io-4)114 h> b (12)(bir4 + ) ,.
k4h

k4 = Vwito (wE4 + ia4) (13)
The external source terms are E"(z) and K"(z). For a plane wave at oblique incidence Bo with respect to
the z axis we take these to have dependence

where

Eoc = E(creikz cos Os

KSC = Kreikz cos 90

k = wi.,/

(14)

(15)

(16)

In this report we are focused on the case where the air conductivity is small enough that we can treat it
as a damping effect along the transmission line, but not so large that it causes the air skin depth to become
comparable to, or less than, the height of the transmission line above the ground; in the case where the air
conductivity is large, the terminating load effects discussed here are probably not important due to the
large line losses, and the fact that the line is significantly changed from the case where it is interacting with
the ground. The impedance per unit length of the wire at high frequencies is

where the surface impedance of the metal is

the surface resistance is

and the skin depth is

Zu, ,s, Zsl (27ra)

Zs = (1— i) R,

R, = 1/ (aS)

8 = V2/ (wita) (20)
where the metal magnetic permeability is it and the metal electric conductivity is Q. The complex
permittivity of the air is taken as

E = Ef + izi = El -kiaollA) (21)

Elimination of the voltage in the transmission line equations gives
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y Er) eikz cos 610
(-d2 14) I = K" — Y E" = (Krik cos Bo

dz2 dz
where the propagation constant along the line is

(22)

kL = \/—ZY (23)
and the characteristic impedance of the line is

ze = N/z/y
The homogeneous equation is

d2
k) I =

d,Z2 L

The general solution can be written as the sum of the particular solution and homogeneous solutions

(24)

(25)

I (z) = Ikeik z _e_ik z (z) (26)
where I± are constants and 1-1, (z) is a particular solution

() = (Kr cos ik Bo Y E8C)

IP 
z etkz cos Oc

k2 cos2 Bo

2.1 Transmission Line Mode - Antenna Mode Decomposition

(27)

If we consider a two wire line there are in general two distinct currents associated with the two wires.
We can group these currents in various ways (choice of bases). One way is to group these two currents
is in terms of a differential mode (two equal and oppositely directed currents) and a common mode (two
equal currents in the same direction). However, if the two wires are asymmetrical (for example, different
wire radii) there is coupling between these two modes [10]. Here we will instead choose to regard the
bases as a transmission line mode with no net current (two equal and oppositely directed currents) and an
antenna mode with zero voltage between wires [11]. In the perfectly conducting wire case the antenna mode
currents are chosen so that the inductive voltage drops along the line wires are the same and there is no net
voltage between wires along the line. If the two wires are not perfectly conducting, the internal impedance
(including resistance) per unit length can be brought into the total series impedances per unit length to
determine the antenna mode current in order to assure that there is no voltage difference between wires
along the line; even with this internal impedance (and resistance) there is still no coupling between these
modes and they can be treated independently. Consequently, we will focus on the independent transmission
line mode, with a voltage difference between wires, in this report. Note that discontinuities in impedance
along the line, which do not maintain the same voltages on the two wires (such as a lumped load in one
of the wires and not the other at some point along the line) will lead to coupling between modes at the
discontinuity.

2.2 Conventional Model And End Terminations

There are two distinct models for plane wave drives of transmission lines. The first is usually referred
to as the conventional model (although here we also add the drives at the loads on the ends of the line).
The conventional transmission line model uses the electric field component along the line conductors as a
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drive. To be complete we also require the transverse electric field drive along the transverse load directions
at both ends of the line. For the two-wire line along the z axis the distributed sources are a distributed
open circuit voltage source equal to the difference between the incident axial drive field at the centroids of
current (when driven in a differential mode) in the two conductors (the positive wire reference minus the
negative wire reference)

Eoc eikz COS eo = Eizne (he) E zinc ( he)

and no distributed short circuit current source
(28)

Ksc = Ksceikz cos 00 = O (29)
where for two circular wires of radius a and spacing 2h we note that he = h2 — a2. We note that the sign
of the distributed voltage source in the transmission line equation means that the we are actually imposing
a distributed electric field source in the line which opposes the incident field (scattered field).

For a finite line over 0 < z < Q with a load Z1 at z = 0 and Z2 at z = we impose the boundary
conditions

17 (0) = vo (0) — zlz (0) (30)

V (t) = Vo (t) + Z2/ (t) (31)
where the transverse sources are

Vo (z) = f Eine • di = 2Lte • Eine (32)
c he

the path Ch starts on the negative reference conductor and proceeds to the positive reference conductor
along the center of the load, and the vector 2he points from the negative to positive reference conductor
along the load. Note again that this end voltage source opposes the incident field (scattered field).

Taking the x axis to point from the negative to positive line conductors and an incident plane wave
with electric field and wavenumber in the x — z plane we can write the fields as

Then the drive field is

Hinc = Hoeikz cos Oo—ikx sin Oo = (E0/770) eikz cos Oo—ikx sin Oo

Eine =z 
1 a 

Hine = Eo sin 00 eikz cos 00—ikx sin eo
—L/6'0 Y

Einc a
= Hinc = Eo COS 90 

eikz cos 610—ikx sin Oo

iWEO Y

Elne (x = he) — Eizne (x = —he) lim [2h,—„,a EPC]
Igx

= lim [—i,k2h,E0 sin2 Ooeikz cos 190—ikx sin Oo] = —ik2h,Eo sin2 00 eikz COS 00
x->0

(33)

(34)

(35)

(36)
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At the loads

Vo (z) 214E0 cos Boeikz cos 00 = _v-tinc (z) (37)
where the actual voltage created across the line by the incident field is Vt, but we are imposing minus this
value (the scattered voltage). The solution for the current distribution in this problem is

kki, sin• 200 eikz cos OoZCI Ze eikLz

— k2 cos2 002heEo 2heEo \
and the voltage distribution is

(38)

k2 sin2 00V Ze eikz cos Bo  (I+ eikLz .i_ e—zkLz) + ki 
— k2 cos2 Bo 

cos 00 (39)
2heEo 2heEo

with line characteristic impedance and wavenumber (in this and the next two subsections we are limiting
the insulator around the wires to the lossless case but not necessarily free space)

where the two constants I± are

Zc = VL/c (40)

kL = coVY'' (41)

ZcI±±
2heE0

eike cos 00±iki,f1(k2i, — k2) [(Z, ± Z2) — (Z, Zi) eiki cos Op±ikLi] 7 a t 7   7 + t 7 -r 7 1 7Lic cos vo Z2)

\ 7- 4-'el-i4;Z.L,1 

kLk sin2 00

(k2L, — k2 cos2 80) pc ± zi) Z2) — (zc Z1) (Ze + Z2)
(42)

2.3 Dual Source Model

The second model for plane wave drives of transmission lines we refer to as the dual source model
[10]. The dual source model uses the transverse magnetic and electric field components between the line
conductors as drives. For the two-wire line the sources include the transverse scattered field so that the sum
of the two fields satisfies the wire surface boundary conditions [10] (this sum does not include the TEM
mode part of the field [10])

Eoc Ereikz cos 00 = iw J. (Binc Bscatt) • nde f (Binc Bscatt \ •) (di x fz)
Che Che

= iw (2he x Ez) • Einc = iwno (n • Hinc) 2he = _iwnoHoeikz cos 002he

Ksc = eikz cos 00 = Lice (finc fscatt) • cke
che

(43)
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= icoC2he • Ei" = iwC Ei" • (ez X n) 2he = itoC Eahe COS Ooeikz cos Bo

At the ends of the line we impose the boundary conditions
(44)

V (0) = —Z1/(0) (45)

V (e) = Z21 (f) (46)
Solution of the this problem is identical to the current in the conventional approach (38) with coefficients
(42), but the voltage is

eikz cos Os eikz cos 190V Z, k2 sin2 80
(I+eikLz — /_e_ikLz) +  

— k2 cos2 00 
cos 00 cos Bo

2heEo 2heEo  kL 
or

(47)

Vdual = 17conv 170 = Iiconv 
v-tinc (48)

Hence, the conventional approach (including end sources) provides the same current but only the scattered
part of the transverse voltage, whereas, the dual source approach provides the same current but the total
voltage (including the incident field transverse voltage).

2.4 Limiting Cases of Two Wire Model Results

Some limiting cases of the line voltage make this more clear (the line current for the two cases already
agree). For simplicity we take Z2 = Z1. First, taking ke cos 80 << 1 and ka << 1 we find

1-± (k2L k2) cos BO kLk sin2 Oo 

2heEo 2 (14 — k2 02.52 Oo )
(49)

Vconv ̂  2heE0 cos 0 o —Vtinc (50)

Vdual —> 0 (51)
The transmission line separation between conductors is assumed to be electrically small to begin with, so
the end loads Z1 short out the field. The dual source voltage limit shows this, whereas, the conventional
source voltage limit produces negative the incident transverse voltage (the scattered transverse voltage).
Secondly, if we first take Z1/Z, oo, and then assume that kt cos 0 << 1 and kife << 1

The voltage then becomes

ZcI ± k sin2 00 
2h,E0 — 2 (kL k cos 0o)

Vconv —> 0

(52)

(53)

Vdual ̂  —2heE0 cos 0 o Vtinc (54)
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In this case we have first eliminated the end loads in the limit ZUZ, oo, so we expect the electrically
short line to reproduce the incident transverse voltage. The dual source voltage limit shows this, whereas,
the conventional source voltage limit vanishes (the scattered transverse voltage).

Both methods are valid but they produce different results depending on whether the incident transverse
voltage is included or not. Note also that the conventional method boundary conditions (30) and (31) in
the special case of open circuit conditions Z1, Z2 oo imply that I (0) = 0 = I V), independent of the end
sources Vo (z); however, with the higher-order end load Ct discussed below, this source has some effect even
under nominal open circuit conditions!

2.5 Ground Plane Case

If we consider the case where a ground plane is inserted into the two wire transmission line of the
preceding subsections, the impedance (inductance) per unit length and the characteristic impedance Z, is
cut in half, the admittance (capacitance) per unit length doubles. The sources E", Ksc, —vo (and Vt) are
left unchanged because the path length is cut in half (2he is replaced by he), but the reflected plane wave
from the surface doubles the tangential magnetic and normal electric drive fields. Thus the voltage is left
unchanged but the current doubles.

For a finitely conducting ground half space there will be added contributions to the impedance and
to the admittance as well as modifications to the reflected part of the drive fields. Nevertheless, because
the line voltage is largely supported by the air region above the ground plane, we expect that in the
conventional method the incident (and reflected) transverse voltage must be added to the transmission line
voltage to obtain the total voltage. The incident plus reflected plane wave fields (with zero phase reference
on the plane interface at x = 0) can be written as

H;ef Ho (e—ikxsio0o HHeikx sin Bp) eikz cos Oo (E, :010) (e—ikx sin 00 + HHeikx sin 00) eikz cos Oo

(55)

1 0Ez•ef (Hine+ Li-ref) _ E0 sin 00 (e—ikx sin 00 JuliD
e 
ikx sin 0 0) eikz COS 00 (56)

—ibir0 0x

inc
Ex + Ex"/ = 

1 
(Hinc H"f) = E0 cos Oo (e—ikx sine, ICH e

ikx sin Oo eikz cos Oo (57)
iweo a Z

where the TM reflection coefficient is

(k4/k)2 sin Bo — (k4/k)2 — cos2 00
RH =  (58)

(k4/k)2 sin 00 + \/(k4/k)2 — c0s2 Oo
The distributed voltage source in the conventional method is then (note that the fields vanish deep in the
ground so the contribution to the source from this region vanishes)

E0c Etreikz cos O 0 = Ezinc (he) +
Ezef (he) = E0 sin 00 

(e—ikhe sin Oo HHeikhe sin 0o) eikz cos Oo = Aoeikz cos 60

(59)
with no distributed short circuit current source, but end transverse sources
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Vo (z) he [Er' (he) + E7f (he)] R--% 2heE0 cos Oo 
(e-ikhe sin Os RHeikhe sin Os) eikz cos 00 =

Vt (z) (60)

3 SHORT CIRCUIT INDUCTIVE TERMINATION

The procedure [12] is to use a formula for the static inductance of a rectangular loop. One half this
value is differenced by subtraction of the inductance per unit length of a two wire transmission line times
the length. This difference forms the estimate for the terminating inductance of the "shorte& end of the
resonator. Using Grover [13] for the inductance of a rectangular loop of perfectly conducting wire with
small radius a and dimensions 2t and 2h

Lloop =

/X) [2h ln (4h/a) + 2t ln (4t/a) + 2 N/4h2 + 4f2 - 2hArcsinh (-h) - 2tArcsinh - 2 (2h + 2f)] , 2t, 2h >> a

(61)
We approximate with 2t >> 2h

L1001, - —Ito [2h ln (4h/a) + 2t ln (2h/a) - 4h] , 2t >> 2h >> a (62)

Taking one half this inductance for the half loop and subtracting the transmission line inductance per unit
length (note that L^ Le since an insulation coating on the wire usually has the permeability of free space)

times t

L = —111) Arccosh (-h) ln (2h/a) , 2h » 2a
a 7r

1 T

P 27r
Lt = -1,100 - iL 2h [ln (4h/a) - 2]

2 

(63)

(64)

In our case it may be more consistent (and slightly more accurate) to replace h by he in these formulas.
Now for the wire above a PEC plane we take one half this value for the end load inductance of the short
circuits

h 12°r [ln (4h/a) - 2] (65)

LGP = 
27r 
/-13 Arccosh (-h) /-1) 

27r 
ln (2h/a) , 2h » 2a

a 
When the down conductor has loss the terminating impedance is

(66)

VP = Zeit - iwLGP (67)
For a finitely conducting half space this will also hold for small skin depth compared to the line height,
provided we add a terminating load at the interface, which is discussed below.
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4 OPEN CIRCUIT CAPACITIVE TERMINATION

The procedure [12] is to estimate the static capacitance of a long or semi-infinite two wire line charged
to a potential difference. In this section we take the permittivity of the air E to be real; if it is complex we
can either replace e by the real part e or use the complex permittivity E = El + kJ' = El + icrolw but replace
the capacitance C by the combination C + iG 1w; we also ignore the presence of an insulation layer and
replace b by a in this section. The iterative procedure is a static version of that used to solve the problem
of a thin cylindrical antenna [14]. The two conductor capacitance per unit length, times the length, is
subtracted to yield the terminating capacitance of the "open" end of the resonator. The potential is (we
use the thin wire kernel here)

where

1 f 'e  1  1 
lq (z') dz'

° = 47rs o  I fir?E + (z — Z 1 )2 \ I p2 + (z — z')2
(68)

p± = \ I (x f h)2 + y2 (69)
The integral equation for the charge density is then found by setting cb = ±V/2 on the wire surface. We let
i —> 00

f0

oe 
1 

27E1/ =
[ Va2 + (z — zt)2

Now to develop an approximate solution we first write

1

V4h2 + (z — z')2l q (z') dz' (70)

2 
00

7E1/ = q (z) fo
1 1

l dz'v 
a2 + (z — z02 \ 14h2 + (z — z)2

1 1

+ f:
[q (z') — q (z)] dz' (71)

[ Va2 + (z — z1)2 V4h2 + (z — z92
Using

re dz'
= Arcsinh (

t —a z
) +Arcsinh (— 

z )
(72)

Va2 + (z — z1)2Jo a

gives

27E1/. = q (z) [ln (2h1 a) — Arcsinh (z/ (2h)) + Arcsinh (z 1 a)]

f0

a° 
1 

+
[ Va2 + (z _ 24)2

For small a we can write this as

1

V4h2 + (z — z')2
[q (z1) — q (z)] dz' (73)
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27reV fig (z) — q (z) [In {z/ (2h) + N/z2/ (2h)2 + 1} — ln (z 1 
h)J

1 1   
1 [q 

(z) - q (z)] dz' (7 4)

1 1 l NI4h2 (z 2

where we define

= 2 ln (2h/a) (75)
An iterative solution is obtained by assuming C't is large

q (z) ,-- 27E. [1+ 
SZ 

ln (z/ (2h) + 'Vz2/ (2h)2 + 1) — ln (z/h)}

+ {In (z/ (2h) + Vz21 (2h)2 + 1) — ln (z1h)}2

z// (2h) + (2h)2 + 1ln \lz/21

)
ln (z7z) dzi

o \ 4h2 (z — z/ )2} z (2h) + z2 1 (2h)2 + 1

+ (76)
The leading term is the transmission line capacitance per unit length

qo/V = C (77)
where

ITE ITE
  2h >> 2a (78)c 

Arccosh (hl a) ln (2h/a)
The next term can be integrated to give the leading terminating capacitance

Letting

oo

ct
Ire 
f ln (z/ (2h) + 'Vz2/ (2h)2 + 1) — ln (z1h)} dzfp 0

47hE fo.
1-22 0 {In + Vu2 + 1) — ln (2u)} du (79)

u + \/u2 + 1 = s (80)

(s — 1/s) = u (81)
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gives

c,
Using

47hE
c22

lim
u—,00

1
du = —

2 
(1 + 1/s2) ds

[1 TU+

2 J1

(82)

ln (s) (1 + 11 s2) ds — U {ln (2U) — 1}1 (83)

ln (s) (1 + 1/s2) ds =

(U + U2 + 1) {ln (U + VU2 + 1) — 1} + 1 — (U + U2 + 1) 
1 
{ln (U + U2 + 1) + 1} + 1 (84)

gives

To include the next term we write it as

where

or

47rhE
Ct (85)

47rhe
Ct — (1 + Ci/C2) (86)

hC1 f
oo

ln (z/ (2h) + \,/z2/ (2h)2 1) — ln (z/h)}
2 

dz

1 1
ln 

z'/ (2h) + Ve2/ (2h)2 + 1)
ln (zl/z) dz'dz (87)

Jo Jo lz — 2'11 /4h2 (z — z92 z/ (2h) + '\/z2/ (2h)2 + 1

.1
f" 

f
oo 2

ln + Vu2 + 1) — ln (2u) du

1

+ (u — u02

Carrying the first of these out using integration by parts

ln (u'+ \/:2+12+11) ln (ul/u)} dulduu +v 

{ln + Vu2 + 1) — ln (2u)}
2 

du = ln (U + / U2 + 1) — ln (2U)}
2

 U

(88)
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U—2 f {ln + Vu2 + 1) — ln (2u) ( 
VU2 +

1) du
0 

2

= {ln (U + 012 + 1) — ln (2U)} U

—2 {ln (U + U 2 + 1) — ln (2U) (VU2 + 1 — U — 1)

U
+2 fo 612 + 1 ul (Vu2 + 1 — u — 1) du,

2

= {ln (u \/U2 — ln (2U)} U

—2 {In (U + V U2 + 1) — ln (2U) (-VU2 + 1 — U — 1)

+2
f 

U 2u 1 1 
l

c, 
2— ,i/F 7F u 7‘,/F + u } du

= {ln (U + U2 + 1) — ln (2U) 12 U

—2 fln (U + U2 + 1) — ln (2U) (VU2 + 1 — U — 1)

+2 {2U — 2VU2 + 1 — Arcsinh (U) + ln (1 + VU2 + 1) + 2 — In 21

In the limit U —> oo

Using the symmetry
L

(89)

oo 2

{ln + 0/2 + 1) — ln (2u) du = 4 (1 — ln 2) (90)

1 1 }\ /v2 + (u — u92 N/1 + (u — u02

f0o° 

1 

0 fv2 ) u/' 2 \/1 (2L 21,92

and noting that

ln (u' + Vu12 + 1) — ln (2u') du/du

ln + Vu2 + 1) — ln (2u) du'du (91)

fu 1  1  
du'

Jo 1 \ I v2 + (u _ 02 \I + — 
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—
= Arcsinh ( 

U 

v 

u 
) + Arcsinh (—

v 

u
) — Arcsinh (U — u) + Arcsinh (u)

f 00 1 1
  du' = — ln v + Arcsinh CI) + Arcsinh (u)

Jo Vv2 + (u _ ur) 2 V1 + (21 - 2//)2 
V

(92)

— 21n (2u/v) , u —> oo (93)
we see that the integrals are convergent. The difference of the two sides shows that the second integral
vanishes. Note that the limit v —> 0, after the difference of the two sides is taken, produces the required
absolute value. Thus

and finally
Ci = 4 (1 — ln 2) (94)

1
Ct — 2hC —ci [1 + 4 (1 — ln 2) /SI] (95)

C ,, 27E/12 (96)

S2 = 21n (2h/a) (97)
A numerical calculation with i = 5 m, 2h = 0.3 m, a = 0.03 m gives Ct = E (0.110 m) whereas the formula
gives Ct = E (0.11257 m). This is an error of only 2.3%. Larger aspect ratios hl a are expected to be even
more accurate. In our case it may be more consistent (and slightly more accurate) to replace h by he in
these formulas.

For the case of the wire above a PEC ground plane (since the air region typically dominates the
admittance elements for a finitely conducting, but electrically dense conductive half space, these will also
approximately hold for the finitely conducting half space )

C P ,--, 2hCGP Til [1 + 4 (1 — ln 2) /S2] (98)

CGP ,s, 47e/12 (99)

S2 = 21n (2h/a) (100)
The case where a = 0.5 in and h = 10 m gives CGP = E (0.853475) and C P = E (1.25596 m). The case
where a = 0.37 in and h = 1.5 m gives CGP = e (1.08972) and Ct = E (0.3136666 m).

Now inserting the complex permittivity the terminating admittance can be taken as

47re
YtGP = G?P — ic,,C P ,--, —i,w2h

2 
[1 + 4 (1 — ln 2) /SZ]

with admittance per unit length

(101)
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yGP GGP iwGGP —iw476/c2

5 COMPARISON OF CST SIMULATIONS WITH ATLOG

(102)

This section compares full wave simulations of transmission lines above a perfectly conducting ground
using CST Microwave Studio software, with calculations using the transmission line equations labeled as
ATLOG (Analytic Transmission Line Over Ground) [9]. All these comparisons are for the case of normal
incidence and use a simple unit electric field amplitude sine-squared pulse of 200 ns duration. The line has
height h = 5 m and a radius of a = 1 cm (there is no insulation coating and the wire is a perfect conductor).
Line lengths of 20 m, 40 m, 60 m, 80 m, and 100 m are shown. Both cases with open circuits at both ends
of the line, as well as cases with down conductors (having the same radius as the line conductor) forming
near short circuits at both ends of the line, are considered here.

Figure 2 shows simulations of a section of line with open circuits at both ends of the line. The dotted
curves have idealized open circuits at the ends of the transmission line, whereas the solid curves have the
preceding terminating capacitive loads. Notice that the phase shift caused by the terminating capacitive
loads results in alignment of the curves in phase with the full wave simulations given by the dashed curves.
Radiation damping is present in the full wave simulations as illustrated by the slight decay shown in the
long dashed curve for the 20 m length.

Figure 3 shows simulations of a section of line with short circuits at both ends of the line. The dotted
curves have idealized short circuits at the ends of the transmission line, whereas the solid curves have the
preceding terminating inductive loads. Notice that the transmission line with idealized terminating short
circuits shows no ringing and tracks the incident pulse used in these simulations. When the terminating
inductances are added the response current rings due to the length of the line in agreement with the full
wave simulations given by the dashed curves.

6 BASE PORT TERMINATION

We sometimes run into a case where the port is formed at the base of the transmission line near the
ground plane. In such a case the "open circuit" capacitive load is modified by the down conductor.

6.1 Early Time Down-conductor Transmission Line

At early times the down conductor behaves as a transmission line. Using a biconical transmission line
model with varying angle we can write these elements as approximately [1]

(y) = arccot (y/a) (103)

LGP (y) 12°r ln [cot {0 (y) /2}] — 12°r ln (2y/a) (104)

Z,/ (27ra) (105)
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Figure 2. Comparison of full wave simulations (dashed curves) using CST Microwave Studio with trans-
mission line having idealized open circuits at each end (dotted curves) and with a transmission line having
terminating capacitors at each end (solid curves). The line lengths are given on the left end of the graph.
Note that an arbitrary shift of ±0.1 A has been added to the 40 m and 80 m length results, and an arbitrary
shift of ±0.2 A has been added to the 20 m and 100 m curves, to separate the different lengths and make
the different curves readable.
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Figure 3. Comparison of full wave simulations (dashed curves) using CST Microwave Studio with trans-
mission line having idealized short circuits at each end (dotted curves) and with a transmission line having
terminating inductances at each end (solid curves). The line lengths are given on the left end of the graph.
Note that an arbitrary shift of ±0.1 A has been added to the 40 m and 80 m length results, and an arbitrary
shift of ±0.2 A has been added to the 20 m and 100 m curves, to separate the different lengths and make
the different curves readable.
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CGP (y) = 27re/ ln [cot {0 (y) /2}] — 27re/ ln (2y/a) (106)

GGP (y) 27rao/ ln [cot {0 (y) /2}] 27rcro/ ln (2y/a) (107)

6.2 Open Circuit Lumped Capacitive Termination

The terminating element at later times for this case is

ytGP =GGP — 2WCGP +11 (Zit — iw-Lr)

where the impedance elements for this near open circuit condition are

h

Zit 
1 
f Zidy 3Zi(h — hp)
3 hp

Lt 
3 

GP —1 fh LGP (y) dy — 
3 27r 

 [(12 — 2) /2 + ln (hlhp) 1 (h1hp — 1)] (h — hp)
hp 

Replacing the exact integration

fhp dy 2h/aa du a

ln u 
= 
2 

[li (2h/a) — (2hp/a)]
jh ln (2y/a) 2 f2hp/a

in the admittance elements by the average approximation

where

fh dy a f 2h/a du a 2h/a[ 

jhp ln (2y/a) 2 Lhp/a lnu 2 (lnu) j2hp/a 
du =

h — hp

(ln u)

2h/a 2h/a
(ln u) = ln udul f du = [(2h/a) {ln (2h/a) — 1} — (2hp/a) {ln (2hp/a) — 1}] a/2

2hp/a 2hp/a h — hp

= ln (2h/a) + 
ln (h1hp)

1 = (52 — 2) /2 + ln (h1hp) / (h1hp — 1)
hlhp — 1

we write these admittance circuit elements as

27E1
CPP h CGP (y)dy  (h — hp)

(52 — 2) /2 + ln (h1 hp) 1 (hl hp —1)hp

(108)

(109)

(110)

(112)

(113)

(114)

fh GGP (y) dy 
27rcro 

(h — hp) (115)
hp (52 — 2) /2 + ln (h1 hp) / (h1hp — 1)

In the case where the base height hp approaches zero (order of radius a) these average results approach a
finite limit since ln (h1hp) 1 (h1hp — 1) —> O. However, a correction is required for the base gap region when
the gap dimension g = O(a) [15]. For a solid cylinder of radius a and gap g to the ground plane we can
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write these corrections to be added to the prior terminating capacitance and conductance elements as [15]

CfP —> CfP + AC?P (116)

Gr —> Gr + AGr (117)

AC P/ (4ari) ,,,--, ln (Z) + 1 —1, — 2/15 + "Z (118)

AGr/ (4ao-o) P.-_-; ln (-
7ra
) + 1 — -y — 2/15 + —

7ra
(119)

2g 2g
where •-y •-----' 0.5772 is Euler's constant.

7 GROUND ROD TERMINATION

A ground rod termination into the conductive half space is often used in the "shorted" case. This
implies that there is a series term that must be added to the perfectly conducting ground plane termination
impedance ZPP

VP —> VP + Zr (120)
Two cases are illustrated for the ground rod termination.

7.1 Low Conductivity Ground

If the ground conductivity is low, where the propagation decay length (or skin depth) is much larger
than the ground rod length It, , it is convenient to regard this term as a series admittance (we are ignoring
the inductance and resistance of the ground rod here)

. 47rh,
1/Z, Yr (121)= = —i (wr4 + 2o-4)

S2, = Qr. — 2 (1 + ln 2) (122)

St, = 21n (21-tr/ar) (123)

7.2 High Conductivity Ground

In the case where the ground conductivity is high, such that the decay length is shorter than the ground
rod length, we do not see the end of the ground rod, which is then treated as an antenna in the ground.

Z4 = —Li/10W) (k4a) / [27rk4aII 1) (k4a)] (124)
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Y4 = —i27r (We4 io-4) 
(1) 

(k4a) /H,:()1) (k4a) (125)

1/ Y, = zr = Z04 = \/Z4/Y4 = \44-to/ (WE4 ia4)1--e (k4a) / [27rk4aHP) (k4a)] (126)

7.3 Disc Base Plate Termination

For a quasi-static elliptical disc base plate termination, when the ground conductivity is low, we write

VP + Zd = VP + l/Yd
With semi-axes ad > bd, the admittance to infinity in the half space is [16]

where
Yd = 27rad (0-4 — ibie4) K (v) (127)

v = —1)3/4 (128)

and the complete elliptic integral of the first kind is

7,12
K (v) = f dO1.6 — v2 sin2

For a quasi-static circular disc base plate termination of radius ad = bd
infinity in the half space is [16]

  Yd = 4ad (0-4 — iwe4)

Note that using K (v) ln (4/V1 — v2) , v 1 we find

(129)

with K (0) = 7r/2 the admittance to

(130)

Yd 27rad (0-4 — iwe4) ln (4ad/bd) , bd << ad (131)

8 DIELECTRIC COATING

Now if there is a thin layer of radius b surrounding the wire, for which the medium is ew, the effect can
be included by modifying the capacitance per unit length of the transmission line [8], [12]

1 1C 
Arccosh (h/b) ln (b 1 a) ln (2h/b) ln (b I a)

,
71E' 7rEw 76.1 7rEw

To include the air losses we use the admittance per unit length by

(132)

1/Y 
Arccosh (h/b) ln (b/a) ln (2h/b) ln (bla) 

(133),    = + — + 
—Lure —2CAJITEw —UJITE —244/71Ew

We ignore this coating at the "shorted7 end since the voltage and electric field are small in this region. At
the "open" circuit end the electric field is large and we modify the terminating capacitance to
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or in terms of the admittance

2h
Ct - C—ce [1 + 4 (1 - ln 2) AY] (134)

SY = 2 [ln (2h/b) + ln (b 1 a)] (135)
E„

Yt - Ye-
2h 

[1 + 4 (1 - ln 2) /S21]
ST

9 RADIATION LOSSES

(136)

We first restrict attention to simple open and short end conditions with a high conductivity ground and
negligible plasma conduction losses in the air. Later we mention the reflection method which can be used
to generalize these results to longer lines and to large skin depths.

The radiation losses are estimated by first finding the magnetic vector potential from the current
distribution [17]

eik1L—ri 1
A (7.) = p,0 f 1 (L')  Vd '

v 47 IL' - L'I
Here we neglect the small loss part of the air permittivity and take

(137)

k ,--:-_,' w it oEl (138)
We note that collision losses are included in the transmission line admittance per unit length (as well as the
"open" terminating admittance) in Ell. If the imaginary part of the permittivity becomes sizable compared
to the real part we would expect the collisional losses to dominate over the radiation. On the other hand, if
collisional losses and radiation losses are both small perturbational effects, we would expect that the two
loss contributions can be added separately.

Thus there are in general two components of the vector potential

eik-Ox—he)2+y2+(z—z9 e2 ik-V(x+he)2+y2+(z—z')2
Az (x,y, z) = 1-7r' It I (z')[    ldz' (139)

\I (x -1112)2 + y2 + (z - zi)2 V(x+h/2)2 +y2 + (z - e)2

ihe eik,V(x-x92-ky2+z2 he ea \ / (x —x1)2 +y2 +(z- f)2
Ax (x, y, z) = /-)./- (0)  dx' P° I (f) f  dx' (140)

47r 47r
—h—he \ I (x — x1)2 + y2 + z2 e \ I (x — xi)2 + y2 + (z - f)2

where we have approximated the currents at the ends as constant and taken the load current / (0) to be x
directed and I(t) to be -x directed.

The far zone fields are found from
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n = 
1 
—V X.1-1",i—er XA (141)
Po Po

ws—
where At denotes transverse to r components. The Poynting vector is

E = x H — 1±er x H x er x A = iwAt
we

and in the far zone

S = 
1 
—E x H*

— 2— —

1
Sr rs, coke • [At X (e x An] = 1 2 1 

= —wk (1A61 12 + lAs012)
2P0 — 2Po  2Po

where we use the unit vector relations

(142)

(143)

(144)

ez = er cos 0 — ee sin 0 (145)

ex = er sin 0 cos co + fo cos 0 cos cp — ev sin cp (146)
to convert from Cartesian coordinates. The power radiated is then found by integration over the sphere at
infinity

f2rr firp  
2 
s 

in 0c104
Jo Jo

= wk
f2rr

1A012 r2 sin 0d0c/cp + —wk 1.44,12 r2 sin 0d0chp
/27r r

2Tio Jo 2ito Jo Jo
9.1 Open-Open Case

(147)

Now we will approximate the current distribution along the transmission line to be the half wave form
for open circuits

I(z) /0 sin (knz) = /0 sin (-7rnZ n = 1,2,3, ...

We are interested in the far zone field

(148)

\/(x he)2 + y2 + (z — z')2 r he sin cos cp — z' cos 0 (149)
and thus we approximate the potential as

[eik(r—he sin cos yo—z' cos 0) eik(r+h, sin cos cp—zi cos 0)] dz,

47rr 0 
fAz ,,•• 11° Io sin (knzt) 

.Poe 
ikr

r /0 sin (kite sin 0 cos (p) f sin (knzi) e—ikz' cos ° dz'
27rr
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eikrrsd /0 sin (khe sin cos (P) f
i-tO [ei (k, k cos 0) e—i(kn+k cos 6) z'] dz,
47r

ikr k cos BY e—i(kr,+k cos 0).e
—110e /0 sin (khe sin cos co)  
47r (km — k cos 8) (kn k cos 8)

• 

eikr 

Iokhe 9cos co
—k cos 0)t 1 e—i(kn+k cos 19)t 1

(150)sin
47r (kn — k cos 0) (km k cos 0)

The spherical form of the potential (ignoring Ar)is thus

ikr cos 0)2 _ 1 e—i(kn-Fk cos BY 11
Ao /0 khe cos cp (151)sin2

47r

[ei(k,—k

(kn — k cos 0) (kn k cos 0)
The power radiated is

P
27r 7r

f f 1A012 r2 sin OdOdco=
21,10 o 0

27r
colio /0 12 3 2 k he

7r

f 0
ei(kn —k cos 0)t 1 e—i(k,-,+k cos O)e — 1 2

sin5 OdOf cos2 (p&p= 3272
(kn — k cos 0) + (kn k cos 0)

W1-10
ei(kn—ku)t — 1 e—i(kn-Fku)t 2

k3h€2
(1 — 2/2)2 du (152)11012

327 (kn — ku) + (km + ku)
Now taking kn = 7rnIt —> k

1 2

P c.3211,7r° 1/0 12 kl4 f
—1

(1 
+ u) 
{eike(i—u) (1 — u) le—ike(1+u)

111 du
=

= Cf: 11012 khe2 (kt) + iu sin (ke)} e—iktu ir du

= 110 Vol2 kh2 f 
1
Rcos (kt) cos (Wu) + u sin (kt) sin (Wu) — 1}2 + fu sin (kt) cos (ktu) — cos (kt) sin (ktu)}2] du

87r e — 

WPO 2
i

= khe
2
f [1 + cos2 (kt) + u2 sin2 (kt) — 2 cos (kt) cos (keu) — 2u sin (ke) sin (Wu)] du

= 4° 11012 kq 1+ cos2 (Id) + 3 sin2 (kt) 
(kt)2 

sin2 (kt)

WPO IT 12 L L 2 /

— —27 li01 ", 7 Id —> Tor

where we used

(153)
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f u sin (ktu) du = --
u 

cos (kt 
1 

u) + 2 sin (ktu) (154)
kt (kt)

Suppose we set this equal to

P= 2 Grad I V(o)12 2
Grad I V(t)12

where

dI 

dz 

= 
iwCV knIo cos (knz) = knI0 cos (7)

and thus

or

Then we find

(155)

(156)

V (o) = kn iwClo = —iZe/o (157)

kn
V (t) = 

iwC
Io (-1)n = —iZ (-1)n (158)

P = Z,2Grad1-1012 (159)

Wit0 2 
2 

(khe)2 
(The /a)27r Z 

/71
Grad = khe = —> W71

using the characteristic impedance

= ln (2he/a) , = N/110 /El

With the ground plane we find half this result (for radiation only into the upper half space)

(160)

(161)

P
7r (kh )2 in

GG = W110 kh2 = ke —> n7r (162)rad 47r Z P2 e 1n2 (2he/a)
where the characteristic impedance is also cut in half (since the voltage is only the contribution above the
ground plane)

ZGP = 47.r ln (2he/a) (163)

9.2 Short-Short Case

Now we will approximate the current distribution along the transmission line to be the half wave form
for short circuits
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/ (z) / (0) cos (knz) = I (0) cos (711-2 , n = 1, 2, 3, ... (164)

Using the far zone approximations

we find

- x02 + y2 + z2 r — x' sin 0 cos co (165)

- x02 + y2 + (z — i)2 r — x sin cos co — cos

Az I (0) f cos (knz') [eik(r—he sin cos cp—z' cos 0) eik (r +he sin 0 cos cp—z' cos 0)] dzi

47rr

[ei(k„—k cos 0)z' e—i(k„-kk cos 0) z1 dzi
r, Z (0) sin (khe sin cos co) It

47rr

[ ei(kn—k cos 0)t 1 e—i(k„-kk cos 0)t 11/113eikr 

I (0) sin (kite sin 0 cos co)  
47rr (km — k cos 0) (km + k cos 0)

„0 eikr [ ei(k,—k cos 0))2 1 e
—i(k„±k cos 0).e 1]

P
LI7rr
 / (0) kite sin 0 cos co  

(km — k cos 0) (km + k cos 0)

he

As I (0) eik(r—x' sin cos cp)dx/ 4/17rorIm iheeik(r—x' sin 0 cos co—e cos 0) dxl

47rr f

he 

he 

(t) e—ikt cos 01 sin (khe sin 0 cos co)
,,„ kr

1-2u7rkr [1- (0) sin 0 cos co

/to e
ikr—ik (e12) cos 0

I (0) [eik(i12) cos 0 ( ir e—ikV12) cos O]

27r kr

sin (khe sin 0 cos co)

sin 0 cos co

skr — zk(t / 2) cos e 
{ 

cos [k (t12) cos 0] 
sin [k (t/2) cos 0]

1 7rkr sin 0 cos co 
Poe  

/ (0) sin [khe sin 0 cos co] ,

sin [k (02) cos 0] 1
1-4)ei

kr—ik(e12) cos
 I (0) he {

1 7rr cos [k (t/2) cos 0]
The spherical form of the potential (ignoring Ar) is then

ikr

Ao Ii0e I (0) he cos co
7rr

{ n even

n odd

n even

n odd

}
}

(166)

(167)

(168)

k {ei(kn —k cos 19)f 1 e—i(kn+k cos 0)t 1 I

11:2 
p—ik(t/2) cos 0 { sin (k (t12) COS 0)

cos (k (0) cos 0) } 
cos 61

(km — k cos 0) (km k cos 0)  ± 1 1 e
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.Poe
ikr—ik(f12) cos 61

j I (0) he cos co
irr

— k cos 0) t12) p_ikwe/2 sin ((kr, + k cos 0) t 12)1 { 1 { sin (k (i12) cos 9)
k sin2 0 feant/2 sin ((kn cos 61
2 (kn — k cos 0) (kn k cos 0) cos (k (el 2) cos 0)

(169)

Aca 
{

{ i yioeikr—ik(e/2) cos 19 I (0) he sin (p

7rr
The power radiated is then

sin (k (t/2) cos 9) } f n even
cos (k (t 12) cos 0) 1 n odd

(170)

f 
2120 

, rir 
2 2r2 sin 9d9dco +

o o 
lil‘p 1 r (171)

2Po .10 0
p = wk ir 

sin 0 dB dco

or

P/ I[ilkr c.,.th (0)12]

= firo
1 . 2 ant/2 sin ((kn — k cos 0) t 12) 'lc f/2 sin ((kn k cos 0) £12)1
sm 0 e e—i{ 

(kn — k cos 0) (kn + k cos 0)

pl=

Ji

1 1 f sin (k (t 1 2) cos 0) 
cos

f 1 cos (k (t1 2) cos 0)

2
sin Od0 + fir f 

sin2 (k (t12) cos 0)
I sin 0 dO

0 1 cos2 (k (t/2) cos 9)

k (1 
— u2) { e iknel2 sin ((kn — ku) 02) + e—tiknel2 sin ((kn ku) t 12)1 +  1 1 f sin (k (t12) u) 

u
2 (k„ — ku) (kr„ + ku) { —i f 1 cos (k (e 12) u)
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Thus

Now setting

we find

or for the half space
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9.3 Open-Short Case

(173)

(174)

(175)

Rrad = 2 (khe)2 kt n7r (176)

2Gp (khe)

Rrad = ke n7r47r

Now we will approximate the current distribution along the transmission line to be

(177)

sin (knz) = (t)
R_2, (i) (_1) (n-1)/2 n = 1,3,5, ...I (z) (178)1)(n-1)/2 sin 7rnz'

2e
We are interested in the far zone field
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where we have assumed that khe << 1 and the final form is that associated with a small dipole. The far
field spherical form of the potential (ignoring Ar) is

itoei 
k(r—t cos 0)

A0 I (0 k cos B cos cp
27rr

ikr eike(1—cos 0) e—iki(l+cos 0)
,e) ( 1)(n-1)/2

he sin2 0 cos yo  
7rr (1 — cos 0) (1 + cos 0)4 

poe
ik(r—f cos 0)

I (F) he cos 0 cos co
27rr

)/(_z _1_) n 12• Nei
kr 

i T _\ e e (1— cos 0) ike(1+cos 0) (1he cos lp ik 
(1 + cos 0) + e— cos 0) — 2}

47rr

poe
ik(r—i cos 0) ik(r—e cos 0)

(O he cos 0 cos (p—ilhe 
27rr 

(t) (_1)(n— 1)/2 he cos co {cos (kt) + i sin (kt) cos 0 — eike cos o
27rr 

}

eik(r—t cos 0)
 hello-1 (t) [1-1 + (-1)

(n-1) / 2 s
in (kt)} cos — i (-1)(n-1) / 2 cos (kt) 

(_1)(n-1)/2 eike cos 0] cos (19

27rr
(182)

Poe
ik(r—t cos 61)

Aso 
27rr 

I(t) he sin co

The power radiated is now found by integrating over the sphere at infinity
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Letting ke = n7r/2 , n = 1, 3, 5, ...

If we take

P = wiuok II (t)I2 he

1 1
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2
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(186)

(187)

37



kn,
V (0) = ic,. .1- (t) = —iZ,I (e) (188)

Grad4 + Rrad = 71 
7r 

(Icha)2 (189)

We could place this perturbing radiation term exclusively at the shorted end, or exclusively at the open
end, by setting the other term to zero. Note from the open-open and the short-short cases above we had

Grad4 = 77(khe)2/ (27) = Rrad (190)
which adds up to this same result, and hence it is better to add these radiation loads on each end of the
open-short setup. One half these values correspond to the ground plane case

GrGcrdzcGP2 
= 71 (khe)2 1 (47r) = .17,GaPd

(kh )2G rGaPdzCGP2 ± RrGaP:i 97

27r 6

9.4 End Reflection Method

(191)

(192)

To treat radiation from longer lines ending in open circuits, particularly with large skin depths, it is
more convenient to change to the description of a reflection from the line end by means of the Wiener-Hopf
method as was done for the long antenna [19]. This has been examined both for the semi-infinite wire above
a perfectly conducting ground [20], [21], [22], which yields the same radiation result (changing from Rrad to
Grad for kh << 1) as obtained above in the open-open case (162). The semi-infinite and finite wire above a
finite conductivity ground has also been treated [23], [24].

10 COMPARISON OF CST SIMULATIONS WITH ATLOG

INCLUDING RADIATION

We now compare simulations of transmission lines with various terminations when both terminating
reactive loads in addition to radiation resistive loads are included. Again, full wave simulations of
transmission lines above a perfectly conducting ground using CST Microwave Studio software, are compared
with calculations using the transmission line equations labeled as ATLOG (Analytic Transmission Line
Over Ground). All these comparisons are for the case of normal incidence and use a simple unit electric
field amplitude sine-squared pulse of 200 ns duration. The line has height h = 5 m and a radius of a = 1
cm (there is no insulation coating and the wire is a perfect conductor).

Figure 4 shows a comparison of simulations when the ends of a 20 m long section of line are open
circuited. The red dashed curve is the full wave simulation, the blue dotted curve is ATLOG with idealized
open circuits at the ends, the black solid curve is ATLOG with capacitive loads at the ends, and the green
dash-dot curve is ATLOG with capacitive and radiation conductance loads at the ends of the line. Notice
that the green dash-dot and red dashed curves are showing reasonable agreement at the later times and are
illustrating decay in amplitude due to radiation (there is no other loss in the problem being modeled).

Figure 5 shows a comparison of simulations when the ends of a 20 m long section of line are open
circuited on the left and short circuited on the right. The red dashed curve is the full wave simulation,
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Figure 4. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 20 m long section of line having open circuits at both ends. The
blue dotted curve has idealized open circuits at each end, the black solid curve has terminating capacitors at
each end, and the green dash-dot curve has terminating capacitors and radiation conductances at each end.

the blue dotted curve is ATLOG with idealized open and short circuits at the two ends, the black solid
curve is ATLOG with a capacitive load on the left end and an inductive load on the right end, and
the green dash-dot curve is ATLOG with capacitive-radiation conductance load on the left end and an
inductive-radiation resistance load on the right end. Notice that the blue dotted curve is dominated by a
single ringing frequency (phase shifted from the other curves) whereas the black solid curve is exhibiting
two ringing frequencies and phase alignment with the red dashed and green dash-dot curves. The radiation
damping (proportional to the square of the wavenumber and line height) reduces the amplitude of the
higher frequency and results in much better agreement between the ATLOG green dash-dot curve and the
full wave simulation.

Figure 6 shows a comparison of simulations when the ends of a 40 m long section of line are short
circuited. The red dashed curve is the full wave simulation, the blue dotted curve is ATLOG with idealized
short circuits at the ends, the black solid curve is ATLOG with inductive loads at the ends, and the green
dash-dot curve is ATLOG with inductive and radiation resistance loads at the ends of the line. Notice
that the green dash-dot and red dashed curves are showing reasonable agreement at later times and are
illustrating decay in amplitude due to radiation (there is no other loss in the problem being modeled).
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Figure 5. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 20 m long section of line having an open circuit at the left end
and a short circuit at the right end. The blue dotted curve has idealized open and short circuits at the
two ends, the black solid curve has a terminating capacitor and inductor at the respective ends, and the
green dash-dot curve has terminating capacitor-radiation conductance and inductor-radiation resistance at
the respective ends.
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Figure 6. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 40 m long section of line having short circuits at both ends.
The blue dotted curve has idealized short circuits at each end (and has no ringing at normal incidence), the
black solid curve has terminating inductors at each end and shows ringing, and the green dash-dot curve has
terminating inductors and radiation resistances at each end.

41



11 CONCLUSIONS

This report constructs circuit models for the end loads used in a transmission line model of a wire
above the earth driven by an electromagnetic field. The cases where the ends of the line are left open, as
well as the case where they are connected to the ground, are both treated. In the open case the effective
capacitance (and conductance if the air is lossy) is estimated to represent the charge build up near the end
of the line. In the shorted case the inductance, in addition to the ground rod or pad impedance, are both
estimated. The radiation damping is also discussed for various types of basic terminations. Good agreement
is shown versus full wave simulations of lines with open or short terminations.

To sort out the sources in these transmission line models we also compare two different types of model
for the plane coupling to these lines and the corresponding meaning of the voltage and current solutions.
Finally, we briefly discuss the decomposition of the currents along the line into antenna and transmission
line modes.
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