SANDIA REPORT
SAND2018-8736

Unlimited Release

Printed August 2018

Formulas For Plane Wave Coupling To A
Transmission Line Above Ground With
Terminating Loads

Larry K. Warne and Salvatore Campione

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

@ Sandia National Laboratories




Issued by Sandia National Laboratories, operated for the United States Department of Energy by
National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of
their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors. The
views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods/




SAND2018-8736
Unlimited Release
Printed August 2018

Formulas For Plane Wave Coupling To A Transmission Line Above
Ground With Terminating Loads

Larry K. Warne and Salvatore Campione
Electromagnetic Theory Dept.

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185-1152

Abstract

This report considers plane wave coupling to a transmission line consisting of a wire above a conducting
ground. Comparisons are made for the two types of available source models, along with a discussion about
the decomposition of the line currents. Simple circuit models are constructed for the terminating
impedances at the ends of the line including radiation effects. Results from the transmission line with these
loads show good agreement with full wave simulations.
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Figure 1. Geometry of transmission line with image for PEC ground..

1 INTRODUCTION

Our interest here is to examine transmission line models for a wire above a conductive half space. In
particular, we are interested in lumped loads representing corrections to the distributed transmission line
elements in order to approximately account for the fringe field corrections at the ends of the line under
open circuit and short circuit terminations, as well as elements to account for radiation of the line.

We discuss and compare the two existing approaches for modeling plane wave field coupling to
transmission lines in order to sort out the relevant sources and the associated meaning of the voltage
and current solutions. We also discuss the different bases for the current decomposition (for example,
transmission line and antenna modes).

The lumped capacitance and air conductance elements for an open circuit termination will have
reasonably broad applicability since the distributed admittances of the transmission line model for dense
lower dielectric half spaces are typically dominated by the air region above the conductive half space. The
lumped inductance element for a short circuit termination will be somewhat approximate unless the skin
depth in the conductive half space is small compared to the line height above the ground since we will use
an image in the ground to describe the return current in this construction. Furthermore, the radiation
elements are derived for a line with a reasonably concentrated image current, and are thus also limited to
this small skin depth case. We note that for the large skin depth case, we expect the ground losses to
dominate over the radiation losses, and furthermore, the damping may spread out resonant behavior in
frequency to the point where the exact spectral position is less important. Nevertheless we include a short
section briefly discussing the alternative approach of using the Wiener-Hopf reflection coefficient to treat
both long lines and larger skin depths when the line end in an open circuit.

Figure 1 shows an example of a transmission line and its image in the conducting half space with
"open" and "short" circuit loads.



2 TRANSMISSION LINE MODEL

A one-dimensional transmission line model is used here [1], [2], [3]. The transverse dimension is modeled
in terms of cross sectional per unit length circuit parameters; we are primarily interested in the case of
a wire above a finitely conducting ground, but will also touch on the two wire transmission line without
ground (which can be an image in a perfectly conducting ground) in certain cases. The transmission line
equations for time dependence e~*!, and appropriate per unit length immittances for a wire above a
finitely conducting ground, are now listed [4], [5], [6], [7][8], [9]. The voltage equation is

cfZ_V =FE°—-ZI (1)
z
where the impedance per unit length is
Z=Zy—1twLle+ Zy (2)
with external inductance per unit length
L.=Ls+ Ly (3)

and the wire dielectric coating inductance per unit length is

oy, = g_o In (b/a) (4)
i
with air inductance per unit length above the ground plane

Ly = %Arccosh (h/b) (5)
m
The current equation is
dl o
— =K*-YV (6)
where the admittance per unit length is
1Y =1/Y. +1/Y; (7)
with external admittance per unit length
1/Ye =1/ (Go — iwCp) + 1/ (—iwCs) (8)

and wire dielectric coating capacitance per unit length

27E
Cy = In (b/a) 9)

with air capacitance per unit length Cy and conductance per unit length Gy

2me

G gl =~ e T

and the ground parameters are taken as
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1 — iksh
Zy ~ —iwpgHSY (ksh) | [2mkah HOY (k4h)} ~ —iwg—; In (#) ,h>b (11)

1—4
Yy = —i27 (wey + i0y) k4hH1(1) (kah) /Hél) (kyh) = —i27 (weq +i04) /1In <Tzl€2h> , h>b (12)
—tky

with ground propagation constant

kq = Jwpg (weq +ioy) (13)
The external source terms are E°° (z) and K*¢(z). For a plane wave at oblique incidence 6 with respect to
the z axis we take these to have dependence

Eo¢ — Egceikz cos fg (14)
K5¢ — Kgceikz cos g (15)

where
k = wy/11o€ (16)

In this report we are focused on the case where the air conductivity is small enough that we can treat it
as a damping effect along the transmission line, but not so large that it causes the air skin depth to become
comparable to, or less than, the height of the transmission line above the ground; in the case where the air
conductivity is large, the terminating load effects discussed here are probably not important due to the
large line losses, and the fact that the line is significantly changed from the case where it is interacting with
the ground. The impedance per unit length of the wire at high frequencies is

Zw ~ Zs/ (27a) (17)
where the surface impedance of the metal is
Z,=(1-9)R, (18)
the surface resistance is
R, =1/ (09) (19)

and the skin depth is

6 =+/2/ (wpo) (20)
where the metal magnetic permeability is u and the metal electric conductivity is ¢. The complex
permittivity of the air is taken as

e=¢e +ie" =€ +ioo/w (21)

Elimination of the voltage in the transmission line equations gives

11



d? d ; j
T Tk ) I = K% —YE* = (K{‘ikcos 6y — Y E§°) o0 (22)

where the propagation constant along the line is

kp =V—ZY (23)

and the characteristic impedance of the line is

Z.=\/Z]Y (24)

The homogeneous equation is

d2
=t k%) I=0 (25)

The general solution can be written as the sum of the particular solution and homogeneous solutions

I(2) = Ipetrz [ e~z 4 [ (2) (26)
where I are constants and I, (z) is a particular solution

Ki¢kcosfy —YE§\ ;
Ip (Z) — < Ok% — k_z COSQ 00 0 ) e kzcosfg (27)

2.1 Transmission Line Mode - Antenna Mode Decomposition

If we consider a two wire line there are in general two distinct currents associated with the two wires.
We can group these currents in various ways (choice of bases). One way is to group these two currents
is in terms of a differential mode (two equal and oppositely directed currents) and a common mode (two
equal currents in the same direction). However, if the two wires are asymmetrical (for example, different
wire radii) there is coupling between these two modes [10]. Here we will instead choose to regard the
bases as a transmission line mode with no net current (two equal and oppositely directed currents) and an
antenna mode with zero voltage between wires [11]. In the perfectly conducting wire case the antenna mode
currents are chosen so that the inductive voltage drops along the line wires are the same and there is no net
voltage between wires along the line. If the two wires are not perfectly conducting, the internal impedance
(including resistance) per unit length can be brought into the total series impedances per unit length to
determine the antenna mode current in order to assure that there is no voltage difference between wires
along the line; even with this internal impedance (and resistance) there is still no coupling between these
modes and they can be treated independently. Consequently, we will focus on the independent transmission
line mode, with a voltage difference between wires, in this report. Note that discontinuities in impedance
along the line, which do not maintain the same voltages on the two wires (such as a lumped load in one
of the wires and not the other at some point along the line) will lead to coupling between modes at the
discontinuity.

2.2 Conventional Model And End Terminations

There are two distinct models for plane wave drives of transmission lines. The first is usually referred
to as the conventional model (although here we also add the drives at the loads on the ends of the line).
The conventional transmission line model uses the electric field component along the line conductors as a
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drive. To be complete we also require the transverse electric field drive along the transverse load directions
at both ends of the line. For the two-wire line along the z axis the distributed sources are a distributed
open circuit voltage source equal to the difference between the incident axial drive field at the centroids of
current (when driven in a differential mode) in the two conductors (the positive wire reference minus the
negative wire reference)

Eo¢ — Egceikz cos fg = E;nc (he) _ E;nc (_he) (28)
and no distributed short circuit current source

K¢ = Kgcez'kz cos g =0 (29)
where for two circular wires of radius a and spacing 2h we note that h, = v/h? — a?. We note that the sign
of the distributed voltage source in the transmission line equation means that the we are actually imposing
a distributed electric field source in the line which opposes the incident field (scattered field).

For a finite line over 0 < z < ¢ with a load Z; at z = 0 and Z5 at z = ¢ we impose the boundary
conditions

V(0) = Vo (0) — Z11(0) (30)
V(€)=Vo(0) + 221 (0) (31)
where the transverse sources are
% (z) - / Einc ﬂ — 2ﬁ€ Emc (32)
JCn,

the path Cf,, starts on the negative reference conductor and proceeds to the positive reference conductor
along the center of the load, and the vector 2h, points from the negative to positive reference conductor
along the load. Note again that this end voltage source opposes the incident field (scattered field).

Taking the z axis to point from the negative to positive line conductors and an incident plane wave
with electric field and wavenumber in the z — z plane we can write the fields as

Hénc — Hoeikz cos 0p—ikx sin O _ (EO/UO) 6ikz cos fp—ikx sin Og (33)
| 19 s
E;nc — : _H;nc — EO sin goezkz cos §g—ikx sin g (34)
—tweg O
1 9

e EH;M = FEycosbpe
0

inc

ikz cos g —ikax sin 6
> 0 ° (35)

Then the drive field is

. _ g .
EZTLC = e) — EI’LTLC = —h, ~ 1' 2 5 El’nC
2@ = he) — B (z = —he) zli%[h_amz}

= lim [—itheEg ghil” fgeee cesfo—kesin 90] = —ik2h.E sin? et s bo (36)

x—0
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At the loads

Vo (2) = 2hoEy cos fpe*=cosbo — _yine (3) (37)
where the actual voltage created across the line by the incident field is V;, but we are imposing minus this
value (the scattered voltage). The solution for the current distribution in this problem is

k‘kL SiIl2 00
k% — k2 cos?

zZJl  Z
2heEy  2h.Fy
and the voltage distribution is

(IJreikLz—l—I,e_ikLz) - eisz0890 (38)

Vv o Z R2sin®fy o ikcost
2hoEo  2h.Fy k2 — k2 cos? 0 ¢
with line characteristic impedance and wavenumber (in this and the next two subsections we are limiting
the insulator around the wires to the lossless case but not necessarily free space)

(I e% — [_emike) 1 (39)

Z.=+/L]C (40)

kr =wVILC (41)

where the two constants I are

ZCI:I: _
2h.Ey

(k% _ k2) [(Zc 4 Zg) _ (Zc = Zl) eikﬁcosaoiikLZ] Z. cos 90 _ [(Zc + ZQ) 71+ (Zc = Zl) ZQ€ik£coséoiikL€] kLkSiIIQ 90
(k2 — k2082 00) [(Ze £ Z1) (Ze £ Z2) — (Ze F Z1) (Ze F Z2) eXi2k1l]

(42)

2.3 Dual Source Model

The second model for plane wave drives of transmission lines we refer to as the dual source model
[10]. The dual source model uses the transverse magnetic and electric field components between the line
conductors as drives. For the two-wire line the sources include the transverse scattered field so that the sum
of the two fields satisfies the wire surface boundary conditions [10] (this sum does not include the TEM
mode part of the field [10])

Eo¢ — Egcezkz cos fg = ZUJ/

(ﬁinc +§scatt) ﬂdﬂ — ’LW/ (Eznc +§scatt) X (ﬂ % Qz)
Che

Che

=iw (2h, X e,) . B — W (@ . ﬂinc) 2h, = —iw,uoHoe““ZCOS %02p, (43)

K¢ — Kosceikz cos g = iwC (Eznc +Escatt) . ﬂ
Gre
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= wC2h, . B¢ = jwCE™° . (e, x n)2h. = iwCEy2h, cos fyeihiaaonto (44)
At the ends of the line we impose the boundary conditions

V (0) = —Z,1(0) (45)

V(6) = Z3I(¢) (46)
Solution of the this problem is identical to the current in the conventional approach (38) with coeflicients
(42), but the voltage is

|14 Ze i i k? sin” 0y s cos N
QheEO = m (I+€ krz I e kLZ) + m C08906 kzcosfg 008906 kz cos 0g (47)

or
Vdual = cho’rw - VO = VvConv + V'tinc (48)

Hence, the conventional approach (including end sources) provides the same current but only the scattered
part of the transverse voltage, whereas, the dual source approach provides the same current but the total
voltage (including the incident field transverse voltage).

2.4 Limiting Cases of Two Wire Model Results

Some limiting cases of the line voltage make this more clear (the line current for the two cases already
agree). For simplicity we take Zy = Z;. First, taking kfcosfy << 1 and kp¢ << 1 we find

Z It (k% — k:z) cos 0 F kpksin® 0

: N 49
2heE0 2 (k;% _ k? C052 90) ( )
‘/vCO’I’L'U 3l 2heE0 CcOS 90 ~ _V;inc (50)
Vdual —0 (51)

The transmission line separation between conductors is assumed to be electrically small to begin with, so
the end loads Z; short out the field. The dual source voltage limit shows this, whereas, the conventional
source voltage limit produces negative the incident transverse voltage (the scattered transverse voltage).
Secondly, if we first take Z;/Z. — oo, and then assume that k€cosf << 1 and k¢ << 1

chi o~ k Sin2 90 (52)
2h.Ey 2 (kr, F kcosfy)
The voltage then becomes
‘/conv - 0 (53)
Vauat ~ —2heEq cos 00 o~ ‘/;inc (54)
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In this case we have first eliminated the end loads in the limit Z;/Z. — oo, so we expect the electrically
short line to reproduce the incident transverse voltage. The dual source voltage limit shows this, whereas,
the conventional source voltage limit vanishes (the scattered transverse voltage).

Both methods are valid but they produce different results depending on whether the incident transverse
voltage is included or not. Note also that the conventional method boundary conditions (30) and (31) in
the special case of open circuit conditions Zy, Zs — oo imply that I (0) = 0 = I (¢), independent of the end
sources Vp (z); however, with the higher-order end load C; discussed below, this source has some effect even
under nominal open circuit conditions!

2.5 Ground Plane Case

If we consider the case where a ground plane is inserted into the two wire transmission line of the
preceding subsections, the impedance (inductance) per unit length and the characteristic impedance Z, is
cut in half, the admittance (capacitance) per unit length doubles. The sources E°¢, K*¢, V; (and V;) are
left unchanged because the path length is cut in half (2h, is replaced by h.), but the reflected plane wave
from the surface doubles the tangential magnetic and normal electric drive fields. Thus the voltage is left
unchanged but the current doubles.

For a finitely conducting ground half space there will be added contributions to the impedance and
to the admittance as well as modifications to the reflected part of the drive fields. Nevertheless, because
the line voltage is largely supported by the air region above the ground plane, we expect that in the
conventional method the incident (and reflected) transverse voltage must be added to the transmission line
voltage to obtain the total voltage. The incident plus reflected plane wave fields (with zero phase reference
on the plane interface at © = 0) can be written as

Hinc _|_Href _ HO (efikz sin Og _|_RHeik::n sinGo) eikz cos g — (EO/WO) (e~ik:c sin fg + RHeik:Esineo) eikz cos g
Y Y

(55)
inc ef __ in ref\ _ . —ikxsinfg tkx sin 6, i1kz cos 0.
B+ B = s (H]" + H*) = Eysinfy (e 0 — Ryeihrsinto) iz cosbo (56)
i 1 90 inc —ikx sin 6 ik sin 6 ik 0
E;nc + E;ef — ro— _(92’ (H;nc + H;ef) = Fycosby (6 e 0O+ Rye'®s 0) gvF costo (57)

where the TM reflection coefficient is

(ka /) sin B — / (ka /k)? — cos? b
(ka /) sin o + / (ka /k)? — cos? 6o

The distributed voltage source in the conventional method is then (note that the fields vanish deep in the
ground so the contribution to the source from this region vanishes)

(58)

H =

Eo°¢ — Egceikz cos g _ Einc (he) + E;ef (he) — EO sin 90 (e—ikhe sinfg __ RHeikhe sin 90) e?ﬁkz cos 0 — Aoeikz cos g
(59)
with no distributed short circuit current source, but end transverse sources
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Vb (Z) ~ he [E;nc (he) + E;ef (he)] ~ QhEEO oS 90 (efikhe sin fg + RHeikhe sineo) eikzcoseo _ _V'tinc (Z) (60)

3 SHORT CIRCUIT INDUCTIVE TERMINATION

The procedure [12] is to use a formula for the static inductance of a rectangular loop. One half this
value is differenced by subtraction of the inductance per unit length of a two wire transmission line times
the length. This difference forms the estimate for the terminating inductance of the “shorted” end of the
resonator. Using Grover [13] for the inductance of a rectangular loop of perfectly conducting wire with
small radius @ and dimensions 2¢ and 2h

Lloop =

Ho lopn (4h/a) 4+ 2¢1n (4¢/a) 4+ 2/ 4h? + 462 — 2hArcsinh <%) — 2¢Arcsinh (¢/h) — 2 (2h + 20)| , 2¢,2h >> a
T

(61)
We approximate with 2¢ >> 2h

Lioop ~ 22 [2h1n (4h/a) + 2¢1n (2h/a) — 4h] , 20 >> 2h >>a (62)

iy
Taking one half this inductance for the half loop and subtracting the transmission line inductance per unit
length (note that L a L. since an insulation coating on the wire usually has the permeability of free space)

L = @Arccogh <ﬁ) ~ @ In (2h/a) " 2h >> 2a (63)
™ a ™

times £

1
Ls = 5Lioop — tL ~ th—o In (4h/a) — 2] (64)
T
In our case it may be more consistent (and slightly more accurate) to replace h by h. in these formulas.

Now for the wire above a PEC plane we take one half this value for the end load inductance of the short
circuits

LGP ~ hEY In (4h/a) — 2] (65)
2w
h W
LGP = O pvccosh (2 ) ~ K210 (2 2 2
5, ICCos <a> o n(2h/a) , 2h >> 2a (66)

When the down conductor has loss the terminating impedance is

ZEF = B h— kST (67)
For a finitely conducting half space this will also hold for small skin depth compared to the line height,
provided we add a terminating load at the interface, which is discussed below.
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4 OPEN CIRCUIT CAPACITIVE TERMINATION

The procedure [12] is to estimate the static capacitance of a long or semi-infinite two wire line charged
to a potential difference. In this section we take the permittivity of the air ¢ to be real; if it is complex we
can either replace € by the real part €’ or use the complex permittivity € = &’ +1ie” = &’ +io(/w but replace
the capacitance C' by the combination C + iG/w; we also ignore the presence of an insulation layer and
replace b by a in this section. The iterative procedure is a static version of that used to solve the problem
of a thin cylindrical antenna [14]. The two conductor capacitance per unit length, times the length, is
subtracted to yield the terminating capacitance of the “open” end of the resonator. The potential is (we
use the thin wire kernel here)

1

/f 1 1
R RV R R RV s

b= q(2)d7 (68)

where

pr =1\ (@Fh)"+y? (69)
The integral equation for the charge density is then found by setting ¢ = £V/2 on the wire surface. We let
{ — o0

2neV = / q(2')d (70)
(z —2') \/4h2 (z—2")

Now to develop an approximate solutlon we ﬁrst write

8 1
2meV =¢q (z)/ dz’
0 \/a2 (z—2') \/4h2 (z—2")
o0 1 1 / /
+ [q(2) — q(2)] d= (71)
0 \/&2 (z—2") \/4h2 (z—2")
Using
4 /
/ d—z = Arcsinh (6 ) + Arcsinh ( ) (72)
0 (/a2 4 (z—2)° “
gives

21eV = q(2) [In (2h/a) — Arcsinh (z/ (2h)) + Arcsinh (z/a))

o5 1 1

+f - la(=) — a(2)) a2 (73)
0 \/a2+(z—z’) \/4h2+(z—z’)2

For small ¢ we can write this as

18



2meV ~ Qq (2) — ¢ (2) [m {z/ (2R) + 1/ 22/ (2R)* + 1} —1In (z/h)}

+/O°°[ L ! ][q<z'>—q<z>1dz’ (74)

where we define

Q =21In(2h/a) (75)
An iterative solution is obtained by assuming €Q is large

2me

a(2) [V ~ [1 + é {m (z/ (2h) +1/22/ (2h)* + 1) = ln(z/h)}
+é {m <z/ (2h) 4+ 1/ 22/ (2h)* + 1) —1In (z/h)}2

el | 2/ (2h) + 122/ (2h)2 + 1
. — — In —In(2'/z) p d7
92/0 {'Z‘Z| 4h2+(z~z’)2}{ (z/(2h)+ zz/(Qh)2+1) }Z

+ -] (76)
The leading term is the transmission line capacitance per unit length

q@/V =C (77)
where

C— e e
~ Arccosh (h/a)  In(2h/a)
The next term can be integrated to give the leading terminating capacitance

, 2h >> 2a (78)

2re [

Ce~ o i {m (z/ (2h) + 1/ 22/ (2h)* + 1) —ln(z/h)}dz

drhe [
~Y 2 F—
o /O {ln <u+ W+ 1) 1n(2u)}du (79)
Letting
ut+vVuit+l=s (80)
1
5(3—1/5):u (81)
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1
| du =3 (141/s%)ds (82)
gives
U+VTP
G v THE 1/ In(s) (1 + 1/?) ds — U {In (2U) — 1} (83)
QZ U—oo | 2 1
Using

U+VUZ+1
/ In(s) (1+1/s*)ds =

1

(v+VoE+1) {n (U + VO HT) =1} 41— (U+ VTR HT) {1n<U+\/U2—+1)+1}+1 (84)

gives

To include the next term we write it as
4mh
Ci~ 5 (1 +C1/Q) (86)

where

hCy ~ /OOO {m <z/ (2h) + z2/(2h)2+1> —In (z/h)}gdz
_/°° /Oo{ 1 _ ! }{ ( 7/ (h) 4y 72/ OB + ) —ln(z’/z)}dz'dz (87)
o Jo |lz=7 4h2+( z/ (2h) + zQ/(Qh)
Clw/ooo{ln<u—|— u2+1)—ln(2u)}2du

h - 1 1 u,+m / !/
_/0 /0 {|u—u’|_ 1+(u7u,)2}{ln<u+—\/u2—+1>—ln(U/u)}dudu (88)

Carrying the first of these out using integration by parts

or

/OU{ln(u+ u2+1)—1n(2u)} {ln(U+\/U2 ) In ( 2U}U
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—Q/OU{ln(u+ u2+1)—ln(2u)}(\/ﬁ—l>du
{ln(U+\/U2_> 1n2U}U
{ln(U+\/U2—) anU}(\/U2—H~U71>

L 1 1
+2/ <—~—)(\/u2+1—u~l)du
0 uz+1 u

:{ln<U+\/U2 ) 1n2U}U
—Q{In(U—i—\/U? ) 1n2U}( U2+1—U—1)

*2/: {2_ T et i}d“
(v +vTTFT) -mem) v
(U VT -} (VT -0 1)
+2 {20~ 2/UT 1 — Arcsinh (U) +In (1 + V2 +1) +2 - In2} (89)

In the limit U — oo

/OOO fin (u+ Va2 +1) —ln(2u)}2du:4(1—1n2) (90)

Using the symmetry

/ / { \/1—|—u o) }{ln(“'+ w?+1) —In(2) } d'du
/‘/{ VHU u}@“w'“+0‘m%%wm o)

and noting that
U
/ 1 _ 1 du
o |V r@—w)? 14 @—w)?
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U-—-u

= Arcsinh ( ) + Arcsinh (2) — Arcsinh (U — u) + Arcsinh (u) (92)
v

du' = —Inv + Arcsinh (E) + Arcsinh (u)
v

/Oo 1 _ 1
0 \/u2+(u—u’)2 \/1+(u—u’)2

~2In(2u/v) , u — c© (93)
we see that the integrals are convergent. The difference of the two sides shows that the second integral
vanishes. Note that the limit v — 0, after the difference of the two sides is taken, produces the required
absolute value. Thus

C1=4(1-1n2) (94)
and finally
)~ 2h0% l+4(1—1n2) /9] (95)
C ~ 2/ (96)
Q = 21n (2h/a) (97)

A numerical calculation with £ =5 m, 2h = 0.3 m, a = 0.03 m gives C; = £ (0.110 m) whereas the formula
gives C; = £(0.11257 m). This is an error of only 2.3%. Larger aspect ratios h/a are expected to be even
more accurate. In our case it may be more consistent (and slightly more accurate) to replace h by h. in
these formulas.

For the case of the wire above a PEC ground plane (since the air region typically dominates the

admittance elements for a finitely conducting, but electrically dense conductive half space, these will also
approximately hold for the finitely conducting half space )

1

CEF 2hCGP5 [1+4(1-1n2)/Q (98)
CP ~ 47e/Q (99)
Q=2In(2h/a) (100)

The case where a = 0.5 in and h = 10 m gives C“F = £(0.853475) and CFF = £(1.25596 m). The case
where @ = 0.37 in and h = 1.5 m gives C%" = £ (1.08972) and C; = ¢ (0.3136666 m).

Now inserting the complex permittivity the terminating admittance can be taken as

; . 4me
YEF =G5 — gwOFF ~ —iw2h-—oz [1+4(1-n2) /9] (101)
with admittance per unit length
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YCOFP = GF — iwCCF ~ —iwdne/Q (102)

5 COMPARISON OF CST SIMULATIONS WITH ATLOG

This section compares full wave simulations of transmission lines above a perfectly conducting ground
using CST Microwave Studio software, with calculations using the transmission line equations labeled as
ATLOG (Analytic Transmission Line Over Ground) [9]. All these comparisons are for the case of normal
incidence and use a simple unit electric field amplitude sine-squared pulse of 200 ns duration. The line has
height h = 5 m and a radius of @ = 1 cm (there is no insulation coating and the wire is a perfect conductor).
Line lengths of 20 m, 40 m, 60 m, 80 m, and 100 m are shown. Both cases with open circuits at both ends
of the line, as well as cases with down conductors (having the same radius as the line conductor) forming
near short circuits at both ends of the line, are considered here.

Figure 2 shows simulations of a section of line with open circuits at both ends of the line. The dotted
curves have idealized open circuits at the ends of the transmission line, whereas the solid curves have the
preceding terminating capacitive loads. Notice that the phase shift caused by the terminating capacitive
loads results in alignment of the curves in phase with the full wave simulations given by the dashed curves.
Radiation damping is present in the full wave simulations as illustrated by the slight decay shown in the
long dashed curve for the 20 m length.

Figure 3 shows simulations of a section of line with short circuits at both ends of the line. The dotted
curves have idealized short circuits at the ends of the transmission line, whereas the solid curves have the
preceding terminating inductive loads. Notice that the transmission line with idealized terminating short
circuits shows no ringing and tracks the incident pulse used in these simulations. When the terminating
inductances are added the response current rings due to the length of the line in agreement with the full
wave simulations given by the dashed curves.

6 BASE PORT TERMINATION

We sometimes run into a case where the port is formed at the base of the transmission line near the
ground plane. In such a case the "open circuit" capacitive load is modified by the down conductor.

6.1 Early Time Down-conductor Transmission Line

At early times the down conductor behaves as a transmission line. Using a biconical transmission line
model with varying angle we can write these elements as approximately [1]

Y (y) = arccot (y/a) (103)
L9 (y) ~ B0 feot {9 () /2)] ~ B2 10 (29/a) (104)
Z;~ Zs/ (2ma) (105)
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Figure 2. Comparison of full wave simulations (dashed curves) using CST Microwave Studio with trans-
mission line having idealized open circuits at each end (dotted curves) and with a transmission line having
terminating capacitors at each end (solid curves). The line lengths are given on the left end of the graph.
Note that an arbitrary shift of £0.1 A has been added to the 40 m and 80 m length results, and an arbitrary
shift of 0.2 A has been added to the 20 m and 100 m curves, to separate the different lengths and make

the different curves readable.
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Figure 3. Comparison of full wave simulations (dashed curves) using CST Microwave Studio with trans-
mission line having idealized short circuits at each end (dotted curves) and with a transmission line having
terminating inductances at each end (solid curves). The line lengths are given on the left end of the graph.
Note that an arbitrary shift of £0.1 A has been added to the 40 m and 80 m length results, and an arbitrary
shift of 0.2 A has been added to the 20 m and 100 m curves, to separate the different lengths and make
the different curves readable.
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CYT (y) = 27me’/ In[cot {4 (y) /2}] ~ 27€’/In (2y/a) (106)

GO (y) ~ 2moo/ In [cot {3 (y) /2}] ~ 2mo0/In (2y/a) (107)

6.2 Open Circuit Lumped Capacitive Termination

The terminating element at later times for this case is

VP = GFP —iwCET + 1/ (Ziyy — iwL§") (108)
where the impedance elements for this near open circuit condition are

h
3 Jn, 3
I 1
L87 ~ 3 [ 197 G)dy~ 352 (@ =2) /240 (h/hy) /1y = 1)) (= ) (110)
Replacing the exact integra%ion
h 2h/a
dy a/ du  a .. .
— == — = —[li(2h/a) —1i(2h,/a 111
L e =5 L, e = 5 ) 20 ) (111)
in the admittance elements by the average approximation
h 2h/a 2h/a _
/L:E/ du _ @ / du = "= (112)
h, 10 (2y/a) 2 ohyja DU 2 (Inu) 2h,/a (Inu)

where

2h/a 2h/a (L/2
(Inwu) = /2 In udu/ du = [(2h/a) {In (2h/a) — 1} — (2hp/a) {In (2h,/a) — 1}]

hp/a 2hp/a h— hp
— In (2h/a) + % 1= (Q=2)/2+n(h/hy) | (h/hy — 1) (113)

we write these admittance circuit elements as

OGP hCGP du =~ 2me’ _— 1

* N/hp W)y~ ) s /i) [ iy — 1) 1) (114)
" N 2o

GFF N/h GF (y) dy ~ @=2) 2+ (h/h) ] (ol =) (h — hyp) (115)

In the case where the base height h, approaches zero (order of radius a) these average results approach a
finite limit since In (h/h,) / (h/h, — 1) — 0. However, a correction is required for the base gap region when
the gap dimension g = O (a) [15]. For a solid cylinder of radius a and gap g to the ground plane we can
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write these corrections to be added to the prior terminating capacitance and conductance elements as [15]

OFF — FF 4 ACSF (116)
G&F — GEF 4 AGET (117)
ACSP [ (dae") min [ Z2) 41— —2/15+ 22 11
Cy" ] (4ag’) n(2g -+ vy /5+2g (118)
AGSP [ (daco) ~In [ Z2) 41—y —2/15+ 22 11
GF"  thazy) win (52 ) +1 -7~ 2/15 + 3 (119

where v ~ 0.5772 is Euler’s constant.

7 GROUND ROD TERMINATION

A ground rod termination into the conductive half space is often used in the "shorted" case. This
implies that there is a series term that must be added to the perfectly conducting ground plane termination
impedance Z&F

Z5F s 257 + 7, (120)
Two cases are illustrated for the ground rod termination.

7.1 Low Conductivity Ground
If the ground conductivity is low, where the propagation decay length (or skin depth) is much larger

than the ground rod length h,, it is convenient to regard this term as a series admittance (we are ignoring
the inductance and resistance of the ground rod here)

Arh,
1/Z, = Yy = —i (wea + i0a) g (121)
Q=0 —2(1+n2) (122)
Q, =2In(2h,/a,) (123)

7.2 High Conductivity Ground

In the case where the ground conductivity is high, such that the decay length is shorter than the ground
rod length, we do not see the end of the ground rod, which is then treated as an antenna in the ground.

Zy = —iwpgH (ksa) / |2nksaH®Y (kya) (124)
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Yy = —i2n (wey + i04) kaaHY (kga) JHS (kya) (125)

1Y, = Z, = Zos = \/Za) Y1 = \/wpg/ (wea + i02) HSY (ksa) / [27rk4aH{1> (m)} (126)

7.3 Disc Base Plate Termination

For a quasi-static elliptical disc base plate termination, when the ground conductivity is low, we write

Z8F L 78F + 7, = ZCF + 1)V,
With semi-axes ag > bg, the admittance to infinity in the half space is [16]

Y, = 2maq (04 — iwey) /K (V) (127)
where

v=4/1—0b2/a2 (128)
and the complete elliptic integral of the first kind is

™

K (v) :/ " do/\/1 —v2sin?6 (129)

0
For a quasi-static circular disc base plate termination of radius aq = by with K (0) = 7/2 the admittance to
infinity in the half space is [16]

Yy = 4aq (04 —iwey) (130)
Note that using K (v) ~In (4/v1—1v2) , v — 1 we find

Y ~ 2maq (04 —iwey) /1In (4dag/bg) , bg << aq (131)
8 DIELECTRIC COATING

Now if there is a thin layer of radius b surrounding the wire, for which the medium is €,,, the effect can
be included by modifying the capacitance per unit length of the transmission line (8], [12]

Arccosh (h/b In(b/a In(2h/b) In(b/a

10, ~ Arecoh (4/0) | In(bja) _ In(2h/b) | In (bfa) o
mEe TE mEe TEw

To include the air losses we use the admittance per unit length by

1Y, = Arcco.sh(h/b) 1 ln.(b/a) ~ In (2h/b) i ln'(b/a) (133)
—iwme —WTTE —iwme —IWTTEy

We ignore this coating at the “shorted” end since the voltage and electric field are small in this region. At

the “open” circuit end the electric field is large and we modify the terminating capacitance to
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2h

CtNCW [1+4(1-1n2)/Q] (134)
!
Q' =2 |In (2h/b) + E‘E— In (b/a) (135)
or in terms of the admittance "
2h ,
YtNYeﬁ[l—k—Ml—an)/Q] (136)

9 RADIATION LOSSES

We first restrict attention to simple open and short end conditions with a high conductivity ground and
negligible plasma conduction losses in the air. Later we mention the reflection method which can be used
to generalize these results to longer lines and to large skin depths.

The radiation losses are estimated by first finding the magnetic vector potential from the current
distribution [17]

ik|r—r'|

A(r) :uo/vi(z’) L (137)

A7 |r — 1|
Here we neglect the small loss part of the air permittivity and take

k ~ w+/poe’ (138)
We note that collision losses are included in the transmission line admittance per unit length (as well as the
“open” terminating admittance) in £”. If the imaginary part of the permittivity becomes sizable compared
to the real part we would expect the collisional losses to dominate over the radiation. On the other hand, if
collisional losses and radiation losses are both small perturbational effects, we would expect that the two
loss contributions can be added separately.

Thus there are in general two components of the vector potential

1 £ 6ik\/(9c—he)2+y2+(z—z’)2 eik\/(ac+he)2+y2+(z—z’)2
Ay =42 [ 1() - dz' (139)
™ Jo \/(ac—h/2)2+y2+(z—z’)2 \/(w+h/2)2+y2+(z—z’)2

dz’  (140)

,LL lk} (z— L/) +y2+22 zk\/ (z—x’ +y2+(z—€)2
Ay (z,y, 2 o I / x’ I / -
\/ \/ 2+ +(2-0)

where we have approximated the currents at the ends as constant and taken the load current I (0) to be x
directed and I (¢) to be —x directed.

4y +z2

The far zone fields are found from
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Helogdnitie xd (141)
Ho Ho

i k
E=—VxH~——¢ xH~—iwe, Xe, x A=1iwA, (142)
we wEe
where A, denotes transverse to r components. The Poynting vector is

1
S=3ExH' (143)
and in the far zone
1 v 1 2 1 2 2
Sr ~ 5 —whe, - [4, X (e x AD)] = 5wk |4,[* = =—wk (|4s* + |4,/ (144)
2 2419 210

where we use the unit vector relations

e, =e,cosf —eysinf (145)

e, =e,sinfcosp + egcosfcosp —g,sing (146)
to convert from Cartesian coordinates. The power radiated is then found by integration over the sphere at

infinit
infinity N
P:/ / 5,2 sin Odfdy
0 0

1 2 T 1 2 T
= —wk / / |Ag|? r? sin dfdp + —wk / / | A, | r2 sin 0dOdyp (147)
21 0 0 20 0 0

9.1 Open-Open Case

Now we will approximate the current distribution along the transmission line to be the half wave form
for open circuits

I(2) =~ Iysin (knz) = Io sin (”772) n=1,23,.. (148)

We are interested in the far zone field

\/(9: The)’ +y2+(2—2) ~ 7 F hesinfcos p — 2 cos b (149)
and thus we approximate the potential as

¢

y r— <1 3 s ! 3 y 1 3 i ’

Az ~ 4:”‘0 IO/ sin (knz’) |:ezk:(7 he sin @ cos p—2z cos@) o e7,k('r+hE sin 6 cos p—=z cos@)] dZ/
mr 0

L eikr i o
—i ; Iy sin (kh, sin 6 cos ) / sin (k,z') etk c0s0,/
r A
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uoe”"

74
Iysin (khe sin @ cos 90) / {ei(knfk cos @)z’ 67i(kn+k cos Q)Z'] ds
wr 0

L eikr
~ i~ I sin (kh, sin 0 cos @) {
4mr

ei(kn—kcos 0)e __ 1 N e—i(k"—i-k cos )l __ 1
(kn — k cos ) (kn, + Kk cos0)

MoeikT ei(kn—k cos0)l __ 1 e—i(kn—‘rkcos 0)¢ _ 1:|

drr (kn — kcos0) + (kn + kcos0)
The spherical form of the potential (ignoring A,.) is thus

~ g Ipkh sin 6 cos ¢ [ (150)

I eikr
Ag ~ —i29 Iykh, sin® 0 cos p [
A7y

(151)

ei(knfk cos )l __ 1 efi(knij: cos )l __ 1:|

. —kasl) | (n hoosl)
The power radiated is

1 2 T
Pi= —wk/ / | Ag|? r? sin 8dOd
241 0 0

2

i(kn—kcos0)l __ 1 —i(kn+kcos0)f _ 1
- - sin® 00

(kn — kcos) T (kn + kcos9)

27 T
_ Who I 2,3 2/ 2
= ol“k°hZ cos” pdp

32772 0 0

2

i(kn—ku)l _ 1 —i(kn+ku)l _ 1
= ‘ (1—u?)? du (152)

T L T

1
Who 27,372
= —|Ih|" k°h

3271' ‘ 0| € /_1
Now taking k, = mn/l — k

1

WY |+ 12 142
P=—1Iy)|" kh
327T|U‘ e/

B ’(1 +u) {eikz(l_“) - 1} +(1—wu) {e_ike(l‘m) — 1}’2 du

1
= 201l k2 / [{cos (ke) + dusin (k€)} =™ — 1" du
™ 1

1
=— [ cos cos (kfu) + usin sin (kfu) — 1}° 4+ {usin cos (kfu) — cos sin (kfu U
°‘é"° Io|? kh? k) cos (k¢ k) sin (k¢ 2 k) cos (k¢ k) sin (ku)}?| d
Q -1
1
= CZ—MO |Io|? kh? / [1+ cos® (k€) + u® sin® (k£) — 2 cos (k) cos (kfu) — 2usin (k) sin (klu)] du
7t 0

1+ cos? (kf) + 1 sin? (k¢) — LQ sin? (k¢)

Who 2 2
47 | 0| ‘ 3 (k0)

= ”2—‘;0 |2 kh2 , k€ — nr (153)

where we used

31



: _u L.
/usm (klu) du = — 77 O (klu) + _(ké)z sin (kfu) (154)

Suppose we set this equal to

1 1
P = =Graa |V () + 5Graa |V (O) (155)
where
ar . ™mz
o= wCV = k1 cos (kpz) = kylocos (T) (156)
and thus
V(0)= P Iy = —iZ.1, (157)
T wC =
V() = 2L (<) = —iZuTp (—1)" (158)
~ iwC =Thesy
or
P = Z2Graa|Io|* (159)
Then we find
2
Grad = b0 kh2 = M Ry —— (160)
22 21n* (2h./a)
using the characteristic impedance
Ze=L1(2he/a) , 1= /1tg/e (161)

™

With the ground plane we find half this result (for radiation only into the upper half space)

khe)® /n

QOP — _Who yp2 T (khe kel 162
rad 4772((:3‘1:’2 e 1n2 (2he/a) ) — nm ( )
where the characteristic impedance is also cut in half (since the voltage is only the contribution above the
ground plane)

Z6P = % In (2h, /a) (163)

9.2 Short-Short Case

Now we will approximate the current distribution along the transmission line to be the half wave form
for short circuits
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I(2) = I(0)cos (knz) = I (0) cos (%) ,n=1,23,.. (164)

Using the far zone approximations

\/($—$’)2+y2+22Nrfx’sin9cos<p (165)

\/(:U—w’)2+y2+(z—€)2Nr—x'sinecosgo—écosﬁ (166)
we find

¥
Al ~ ﬂl (0) cos (k Zl) [eik(r—he sin 6 cos p—2’ cos@) _ 6ik(¢+h€ sin 6 cos p—2’ 0059):| dist
z 47‘[‘7" o n

M eik’?" £ P ’ . ’
—i—z " 1(0)sin (kh, sin 6 cos cp)/ [ez(k”_kcos B . g Entiousstes } dz'
T 0

g eikr
o
4mr

i(kn—kcos0)l _ 1 —i(kn+kcos0)l _ 1
I(0)sin (khe sin 6 cos @) {e < ]

(kp —kcos®)  (ky+ kcos®)

Iuoeikr

477

(167)

i(kn—kcos0)l __ 1 —i(kn+kcos0)l __ 1
1(0) khe sin 6 cos ¢ {e £ ]

(kn —kcos@)  (kn+ kcosb)

he

he
A:z: .y ﬂ] (O) / eik(r—x’ sin @ cos Lp) de’ — ﬂ[ (é) / ez’k’(r—z’ sin 6 cos p—£ cos O)dw/
4dmr —h. dmr —he

ikr . .
Fo€ _ —ikl cos 97 S (khe sin @ cos (p)
2rkr [I ©)-I(e ]

sin 6 cos @

Oeikrfik(f/Q) cos 6

2kr

oyt

I (0) {eik(2/2) cosf (—l)n efik(Z/Q) cos 0} sin (khe sin 6 cos QO)
sin 6 cos ¢

, ikr—ik(€/2) cos @ :
i | Mot sin [k (¢/2) cos 0] . . n even
{ 1 } wkr sin 6 cos ¢ I{0) { cos [k (£/2) cos 0] sin [fei st Bewsp] n odd

~

i ) pgethr—#ie/2) cost sin [k (¢/2) cos 0] n even
1 r T(0) he cos [k (¢/2)cosf] [’ n odd (168)
The spherical form of the potential (ignoring A, ) is then

ikr
Ag ~ Ho® I(0) hecosep
o
1 .2 ei(k'n—k'cos )¢ _ 1 e—i(kn-l—kcosG)Z -1 7 —ik(£/2) cos 6 sin (k’ (6/2) COS 0)
{stm 9{ (kn —kcosf) — (kn + kcos0) e cos (K (€/2) cos 0) o0
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ikr—ik(€/2) cos 6
o~ 205 I1(0)hecosy
r

F Lein? 0 {eiknmsm((kn —kcos0)€/2) | ik,eppsin((kn + K cost) 5/2)} . { 1 } { sin (k (£/2) cos 0) }COS 9}

(kn, — kcos0) (kn + k cos ) —1 cos (k (£/2) cos 0)
(169)
. ikr—ik(€/2) cos 6 o ,
i | M€ . sin (k (£/2) cos 0) n even
Ap ™~ = 1 r L(0) hesing { cos (k (£/2) cos®) [’ n odd (L0}
The power radiated is then
1 2 pm B . 1 2 pm 2 o .
P=—uwk |Ag|” 7° sin 0dOdyp + —wk |Ay|” v sin 0dOdy (171)
240 o Jo 2410 o Jo
or
poh? 2
——wk |l
Py | Bk 1 0)
1L, ikney2Sin (kn —kcos0) £/2) . 4/osin ((kn + kcosb) /2)
_/0 5 sin 9{6 (o —kcost) | ° (kn + Fcos0)

—1

2 e -2
sin0d9+/ { i’ (k (¢/2) cosd) }sin@d@

1 sin (k (£/2) cos 6) ]
+{ ' }{ cos (k (£/2) cos ) }CO"G |\ cos? (k (€/2) cos6)

2

L[ ik 07280 (k. — ku) £/2) ik 0/25i0 ((kn + ku) £/2) 1 sin (k (£/2) u)
:/_1 5’“(1_“2){6H/2 (o —Fu) € o (b + k1) }+{ —i}{cos<k(z/z)u) }“ du
Y sin? (K (0/2) u)
R et/ jan (172)

Now taking k,, = nrw/l — k

Py [ kir o]
;

sin (k (¢/2) u du

{2 (1 4wy sin (1= w) kE/2) + e~ (1= w)sin (1 -+ w) ke/2) } + { ! } { cos (k (£/2) u

1
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sin (k (£/2) u) }
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Thus

S
P/ “g—;wku(oﬂ =1,k —nr , { iy }

Now setting

1 1
P = §Rrad ‘I (0)‘2 + §Rrad |I (£)|2 = Rrad ‘I (O)IQ
we find

By = Qi (khe)? | kl — nr
T
or for the half space

9.3 Open-Short Case

Now we will approximate the current distribution along the transmission line to be

4

20

I(z) ~I(0)(~1)" Y %sin (ky2) = I (€) (—1)" Y %sin <””Z > ,n=1,3,5,..

We are interested in the far zone field

0
My a &I (0) (_1)(n—1)/2/ sin. (knz') {eik(r—hesinGcosgp—z'cose) _ eik(r+he sin@cosw—z'cose)] dz’

47 0
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ikr
Hot
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- HoC
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ei(k"—k cos0)l __ 1 e—i(kn—i-kcos 0)e _ 1
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Now taking k,, = nrw/(20) — k

(ky, — kcos0) * (kn, + kcos0)

(173)

(174)

(175)

(176)

(177)

(178)

(179)
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Similarly
M he 5 /.
143j ~ ——OI (6)/ ezk(r—x sin 6 cos p—£ cos O)dm/
4dnr —he
_‘uoeik(r—ecos 8 I (Z) /hC e—ikx’ sin 6 cos e da’
4777' —he
ik(r—£cos0) in{kh. sin @ ik(r—£cos0)
Kot 0 sin {khe sin cosnp}N_uoe [(0)he (181)

2mr ksin @ cos ¢ 2mr
where we have assumed that kh. << 1 and the final form is that associated with a small dipole. The far

field spherical form of the potential (ignoring A,.) is
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2rr

The power radiated is now found by integrating over the sphere at infinity

2 27
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0
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Letting k¢ = nw/2 , n=1,3,5, ...
1
P = —wpoh |1 (0)f b2 (185)
If we take
1 1
P = 5Graa |V (0)]° + 5 Braa [ (O] (186)
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V(o) = wC

1(0) = —iZ.I(¢) (188)

GraaZ? + Ryga = g (khe)? (189)
We could place this perturbing radiation term exclusively at the shorted end, or exclusively at the open
end, by setting the other term to zero. Note from the open-open and the short-short cases above we had

GraaZ? =1 (khe)? ] (27) = Rrad (190)
which adds up to this same result, and hence it is better to add these radiation loads on each end of the
open-short setup. One half these values correspond to the ground plane case

GraaZdP? = (khe)* / (4m) = R (191)
GERZET + R = oL (khe)® (192)

9.4 End Reflection Method

To treat radiation from longer lines ending in open circuits, particularly with large skin depths, it is
more convenient to change to the description of a reflection from the line end by means of the Wiener-Hopf
method as was done for the long antenna [19]. This has been examined both for the semi-infinite wire above
a perfectly conducting ground [20], [21], [22], which yields the same radiation result (changing from R,..4 to
Graq for kh << 1) as obtained above in the open-open case (162). The semi-infinite and finite wire above a
finite conductivity ground has also been treated [23], [24].

10 COMPARISON OF CST SIMULATIONS WITH ATLOG
INCLUDING RADIATION

We now compare simulations of transmission lines with various terminations when both terminating
reactive loads in addition to radiation resistive loads are included. Again, full wave simulations of
transmission lines above a perfectly conducting ground using CST Microwave Studio software, are compared
with calculations using the transmission line equations labeled as ATLOG (Analytic Transmission Line
Over Ground). All these comparisons are for the case of normal incidence and use a simple unit electric
field amplitude sine-squared pulse of 200 ns duration. The line has height h = 5 m and a radius of a = 1
cm (there is no insulation coating and the wire is a perfect conductor).

Figure 4 shows a comparison of simulations when the ends of a 20 m long section of line are open
circuited. The red dashed curve is the full wave simulation, the blue dotted curve is ATLOG with idealized
open circuits at the ends, the black solid curve is ATLOG with capacitive loads at the ends, and the green
dash-dot curve is ATLOG with capacitive and radiation conductance loads at the ends of the line. Notice
that the green dash-dot and red dashed curves are showing reasonable agreement at the later times and are
illustrating decay in amplitude due to radiation (there is no other loss in the problem being modeled).

Figure 5 shows a comparison of simulations when the ends of a 20 m long section of line are open
circuited on the left and short circuited on the right. The red dashed curve is the full wave simulation,
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Figure 4. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 20 m long section of line having open circuits at both ends. The
blue dotted curve has idealized open circuits at each end, the black solid curve has terminating capacitors at
each end, and the green dash-dot curve has terminating capacitors and radiation conductances at each end.

the blue dotted curve is ATLOG with idealized open and short circuits at the two ends, the black solid
curve is ATLOG with a capacitive load on the left end and an inductive load on the right end, and

the green dash-dot curve is ATLOG with capacitive-radiation conductance load on the left end and an
inductive-radiation resistance load on the right end. Notice that the blue dotted curve is dominated by a
single ringing frequency (phase shifted from the other curves) whereas the black solid curve is exhibiting
two ringing frequencies and phase alignment with the red dashed and green dash-dot curves. The radiation
damping (proportional to the square of the wavenumber and line height) reduces the amplitude of the
higher frequency and results in much better agreement between the ATLOG green dash-dot curve and the
full wave simulation.

Figure 6 shows a comparison of simulations when the ends of a 40 m long section of line are short
circuited. The red dashed curve is the full wave simulation, the blue dotted curve is ATLOG with idealized
short circuits at the ends, the black solid curve is ATLOG with inductive loads at the ends, and the green
dash-dot curve is ATLOG with inductive and radiation resistance loads at the ends of the line. Notice
that the green dash-dot and red dashed curves are showing reasonable agreement at later times and are
illustrating decay in amplitude due to radiation (there is no other loss in the problem being modeled).
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Figure 5. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 20 m long section of line having an open circuit at the left end
and a short circuit at the right end. The blue dotted curve has idealized open and short circuits at the
two ends, the black solid curve has a terminating capacitor and inductor at the respective ends, and the
green dash-dot curve has terminating capacitor-radiation conductance and inductor-radiation resistance at

the respective ends.
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Figure 6. Comparison of full wave simulation (red dashed curve) using CST Microwave Studio with the
ATLOG transmission line calculations for a 40 m long section of line having short circuits at both ends.
The blue dotted curve has idealized short circuits at each end (and has no ringing at normal incidence), the
black solid curve has terminating inductors at each end and shows ringing, and the green dash-dot curve has
terminating inductors and radiation resistances at each end.
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11 CONCLUSIONS

This report constructs circuit models for the end loads used in a transmission line model of a wire
above the earth driven by an electromagnetic field. The cases where the ends of the line are left open, as
well as the case where they are connected to the ground, are both treated. In the open case the effective
capacitance (and conductance if the air is lossy) is estimated to represent the charge build up near the end
of the line. In the shorted case the inductance, in addition to the ground rod or pad impedance, are both
estimated. The radiation damping is also discussed for various types of basic terminations. Good agreement
is shown versus full wave simulations of lines with open or short terminations.

To sort out the sources in these transmission line models we also compare two different types of model
for the plane coupling to these lines and the corresponding meaning of the voltage and current solutions.
Finally, we briefly discuss the decomposition of the currents along the line into antenna and transmission
line modes.
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