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Electrostatic Capacitors are Ubiquitous

Transmission

Courtesy of Bob Kaplar Toraores




Capacitors Impact Power System Volume and
Weight

Magnetics Thermal

Passive elements and ma nagement

thermal management
comprise the bulk of
the volume and mass
of a power converter

WBG/UWBG
materials enable
higher switching

frequency and better
thermal management

Semiconductor
Capacitors switches
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Benefits of Nanocrystalline Ferroelectrics

« Permittivity increases with decreasing grain size down to a critical size
dimension (higher energy density)

* High frequency performance improves with decreasing grain size
(maintain permittivity and low loss to higher frequencies)

* Field and temperature dependence of permittivity may improve (i.e. lower
TCC and VCC)

Most widely reported and
agreed upon behavior

16000 5000 p —e—set1

k [ ] ——5ef 2
] —— et 3
s F £ 4000 | — ]
@ 12000 F )
c F e =
o E e 2
o E \ S 3000 :
gowop || £ :
8 [ 5 2000 g
- E ¥ —-
9D 4000 - <
8 AR & 1000

E »

o '.’ I A . . . L
° 200 100 o0 0 0 200 400 600 800 1000 ° I I
Particle size (nm . 0 50 100 150 200
(nm) Crystal 5ize {nm) Temperature (°C)
= = = = = H Frey, et. al., Ferroelectrics, Vols. 206-207, (1998)
BaTiO; particles in solution Sintered BaTiO, |
Wada et. al., Jpn. J. Appl. Phys. Vol. 42 (2003) 6188—6195 Aygln et. al., J. Appl. Phys. Vol. 109 (2011) 034108
Sandia
4 National

Laboratories




Benefits of Nanocrystalline Ferroelectrics

e Nanocrystalline grain size provides high breakdown strength
(BDS)

e Lower field-induced strain (i.e., better electromechanical
performance)
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Figure 2 Grain size dependence on dielectric strength. Numbers
indicate  sintering temperatures: (1) 1320°C, (2) 1330°C, (3)
1350 °C, (4) 1380 °C, (%) 1400 °C.

Fig. 3.28 Grain size dependence of the induced strain in PLZT ceramics.

from Kenji Uchino’s book, Ferroelectric Devices TUNKASIRI, JOURNAL OF MATERIALS SCIENCE
LETTERS 15 (1996) 1767-1769
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BaTiO; (BTO) Nanoparticles Studied

Primary Particle Synthesis
Diameter (nm) Method

Sandia 80°C solution
Sakai KZM-50 50 hydrothermal
Sakai BT-01 100 hydrothermal
Sakai BT-02 200 hydrothermal
Sakai BT-03 300 hydrothermal
Sakai BT-04 400 hydrothermal
Sakai BT-05 500 hydrothermal
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Preview of results

ALL particle sizes show ~ 0.1 A Ti displacements at ALL temps: 20°
to 200°C!

Large (> 200 nm) BTO NPs (bulk) exhibit a sharp structural transition
at 120°C

Small (< 200 nm) BTO NPs exhibit instead a gradual crossover with
increasing temp.

BaTiO, (BTO)

<120 °C Tetragonal (Ferroelectric)

> 120 °C Cubic (Paraelectic)
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aPDF Temperature Dependence
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s (Ti) (A)

Fits to PDFs over 60 A
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Tetragonal c/a Ratio vs. Temperature

P c/a Ratio
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Raman Scattering from the 500 nm BTO NPs

Tetragonal Raman lines disappear abruptly at 120°C !
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Raman-Scattered Intensity (arpb. units)

500 nm & 50 nm Raman Comparison

Tetragonal Raman lines for 50 nm BTO NPs persist above 120°C !
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XRD Bragg Peaks @ Room Temperature

Bragg Peaks: (002) & (200)

500 nm Large BTO NPs (bUlk)

400 nm A~ have split peaks!
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Bragg Peaks for Small & Large BTO NPs

_ Bragg Peaks: (002) & (200) _ Bragg Peaks: (002) & (200)
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cla

Reduced c/a Ratios Account for Bragg Peak
Singlets!
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Conclusions

ALL particle sizes show ~ 0.1 A Ti displacements at ALL temps: 20° to
200°C!

* Large (> 200 nm) BTO NPs (bulk) exhibit a sharp long-range c/a
decrease @ 120°C

* Low c/a wipes out tetragonal Raman lines above 120°C
* Low c/a yields Bragg peak singlets above 120°

* Small (< 200 nm) BTO NPs exhibit a gradual c/a decrease with
increasing temp.!

* Decreasing c/a allows tetragonal Raman lines but with decreasing
amp.!

» Decreasing long-range c/a yields small Bragg splittings - singlets!

BaTiO, (BTO)
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Preview of results

ALL particle sizes show ~ 0.1 A Ti displacements at ALL temps: 20°
to 200°C!

Large (> 200 nm) BTO NPs (bulk) exhibit a sharp structural transition
at 120°C

Small (< 200 nm) BTO NPs exhibit instead a gradual crossover with
increasing temp.

BaTiO, (BTO)
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aPDFs at Room Temperature (BNL NSLS)

50 : | ' | - | - |

_Ihhhlnul',rl Nickel
40 - '" MIM "I m ” 1 BT200
30 L BT100 [ 30 nm thru 500 nm from:
~ Sakai Chemical Industries Co.
- BT10 | .
20 ‘U”WMMW\PWW%‘- 4 10 nm synthesized by:

Sandia National Labs
i IIII“II'” ’ LaB6
10 - ||| M”H ” BT500 |
m MMI n” ” H BT50
0 -

0 20 40 60 80 100

r(A ) Sandia
20 il

G(r) (A%




s (Ti) (A)

Two Ti displacement Metrics
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Raman Scattered Intensity (arb. units)

100 nm & 50 nm Raman Comparison

Tetragonal Raman lines for 50 nm BTO NPs persist more
strongly above 120°C !
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Fit PDFs over a longer range to capture long-
range structure!
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s (Ti) (A)

Check Ti displacements over long-range
spatial scale!
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BaTiO; Nanoparticle Synthesis,

Ba(OH),-8H,0 Reagent

~ 10 nm diameter
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- Ba(OH),-8H,0 and Ti(OPr), precursors at 80 'C
* Redesigned synthesis using air-free chemistry and with improved

control over water addition

* Modified synthesis for our dry environment through extra H,O

addition

* XRD indicates tetragonal phase present when particles synthesized

with 0.5 and 0.6 mol H,O

25 Yoon et. al., J. Am. Ceram. Soc. 90 311 (2007)
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Ceramic/Polymer Nanocomposites

BTO in PVDF-based

7 L @) —e— P(VDF-TrFE-CTFE)-BaTiO, @100 MVim
—+— P(VDF-TIFE-CTFE)}BaTIO, @150 MV/m -

polymer: 7) / cm3 gl ——P(VOF-CTFE)BaTiO, @100MVIm
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3
9J/cm - High energy densities demonstrated,

but proof of performance in devices
is lacking

* Low volumetric fraction of the
inorganic particles (~ 25-30% loading

5&'

- Size effects in ferroics not exploite
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Nanoparticle/Polymer Composite Capacitors

Polymers (e.g., mylar, teflon, etc.) and inorganic ferroelectrics (e.g.,
BaTiO;, PZT, etc.) have complimentary strengths and weaknesses.

Polymers e
Large area fab Graceful
Rad hard if and chemical
doped Low transition tunability
temps
(T,,T,,=100s °C),
— I
_ eeemm
Dielectric Radiation Thermal Processing/ Energized Breakdown
Constant Hardness Stability Chemistry Failure Strength
T —
- - Catastrophic <10 MV/m
Higher transition Some surface highly dep. on
temps (T.=100s °C chemistry, limited material quality
C ’ .
Intrinsically T,,=1000s °C) pr:‘O:tT‘S;:jr;g
rad hard but high temp.
>100 dep. capacitance
but, dependent on I e
dipole orientation n 0 rga n I CS

Composites combine the best of both worlds, but must mitigate against

worst of both worlds.
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