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Motivation
 Run existing deep networks on spiking neuromorphic hardware
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Spiking neural network architecture

 Spiking Temporal Processing Unit (STPU)
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Spiking network training challenges 

 Spiking neurons promise size, weight and power (SWaP) as 
well as throughput advantages

 Current state-of-the-art deep networks are non-spiking 
trained using backpropagation

 Methods for training spiking neural networks (SNNs) still open 
for debate
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Other training methods for SNNs

 Spiking-Native Training
 Spike Timing Dependent Plasticity

 Linear discriminator or SVM on activity 

 Evolutionary Algorithms

 Spiking-Conversion Training
 Rate-coded or temporally coded spiking neurons

 ‘Real-world Use’ spiking benefits may be lost

 Synthetic gradients

 Requires

 Modified workflow

 Modified networks

 Hardware specific
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Activation functions converge to 
spiking during training
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Algorithmic approach

 Augment existing deep network with extra sigmoid layer 
(one-to-one) for each deep layer to be operated using LIF 
neurons on neuromorphic hardware

 As network is trained sharpen sigmoid neurons to the point 
where they essentially become (spike-like) step functions

 Assumption: we can implement deep activation function 
using LIF neurons
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Advantages
 No restrictions on network model

 Integrates with existing deep 
learning/neural network libraries

 Immediately useable on hardware 
after training

 Independent from hardware 
destination

 1 Frame = 1 Time-step

 Compatible with multiple origin 
activation functions: 

 Sigmoid, ReLu, Leaky ReLu, etc. 

 Software implemented via a custom 
keras activation layer
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Datasets

 MNIST
 28x28 images of digits

 10 classes

 Cifar-10
 32x32 images of common 

objects

 10 classes

 Hyperspectral Dataset
 512 dimension 

hyperspectral pixels

 3 classes
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Data conversion
 We need to convert inputs to spikes

 Binarized MNIST

 Image contours

 Direct current injection
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Results

 MNIST
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STPU DNN STPU CNN CNN
Restricted

CNN
Unrestricted

TrueNorth

Original Acc 97.3 97.1 98.5 99.1

Spiking Acc 97.3 94.9 97.3 98.5 99.4*

*TrueNorth 4uJ/frame network 95% accurate

STPU DNN Input 784 Dense
512

Dense
512

Output
10

STPU CNN Input 784 Conv
3x11x11

MaxPool
2x2

Output
10

CNN Restricted Input 784 Conv
8x3x3

Conv
8x3x3

Dense
100

Dense
100

Output
10

CNN
Unrestricted

Input 784 Conv
32x10x10

Conv
32x10x10

Dense
100

Dense
100

Output
10

STPU-bound networks are size-restricted



Results

 Cifar-10
 Cifar-10 spiking vs non-spiking has ~1-2% accuracy degradation

 Challenge converting images into spikes

 Edge detection forces loss of information content and accuracy

 Hyperspectral cell dataset
 Accuracy degradation 98.2%  to 97.7%

 Raw values ‘current injection’ into first layer

 Network is STPU-compatible
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Visualizing deep spiking CNNs
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Visualizing deep spiking CNNs
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Visualizing deep spiking CNNs
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Visualizing deep spiking CNNs
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Visualizing deep spiking CNNs
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Lessons learned and future work

 Best practices for training stability
 RMSprop best performing optimizer

 Custom optimizer could be designed to 
be ‘activation-aware’ 

 Neurogenesis Deep Learning (NDL) for 
dead neurons

 Effective spiking networks differ 
from CNNs
 Larger patch sizes help performance 

and stability

 Additive noise may help regulate 
activity

 Winner-take-all to replace softmax

 Sparse distributed representations

18

Activation of Convolution Layers

La
ye

r
1

La
ye

r
2



Thank you

 Questions?
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Backup slides
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Comparing spiking (STPU) and non-spiking (keras) deep 
networks using the MNIST dataset

 Non-convolutional
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Comparing spiking (STPU simulator) and non-spiking 
(keras) deep networks using the MNIST dataset

 Convolutional
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non-spiking (CNN) 
network test accuracy: 
97.09

spiking (LIF neuron) 
network test accuracy: 
94.85

This represents work-in-progress – we feel we can improve spiking accuracy
with more time and better hardware
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Spiking convolution representation of example image
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Aggregation of convolution filtersOriginal image

Active filters Aggregated value

1st, 2nd and 3rd 7

2nd and 3rd 6

1st and 3rd 5

3rd 4

1st and 2nd 3

2nd 2

1st 1

none 0

Each filter is 11x11 
but is represented 
by its center pixel

Aggregation of filters seems to be 
”learning” the white-space around the 
digit possibly in addition to the digit –
Note this is unweighted aggregation


