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Motivation

= Run existing deep networks on spiking neuromorphic hardware

IBM TrueNorth
Non-convolutional
0000001000

Spiking Temporal Processing Unit
(STPU)
Convolutional
0000100000

Collaboration with Lewis Rhodes Labs (D Follett)




Spiking neural network architecture

= Spiking Temporal Processing Unit (STPU)
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Spiking network training challenges

= Spiking neurons promise size, weight and power (SWaP) as
well as throughput advantages

= Current state-of-the-art deep networks are non-spiking
trained using backpropagation

= Methods for training spiking neural networks (SNNs) still open
for debate
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Rectified Linear Spiking Neuron




Other training methods for SNNs

= Spiking-Native Training
= Spike Timing Dependent Plasticity
= Linear discriminator or SVM on activity
= Evolutionary Algorithms
= Spiking-Conversion Training
= Rate-coded or temporally coded spiking neurons
= ‘Real-world Use’ spiking benefits may be lost

= Synthetic gradients

= Requires
= Modified workflow
= Modified networks

= Hardware specific




Activation functions converge to
spiking during training
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Algorithmic approach

= Augment existing deep network with extra sigmoid layer

(one-to-one) for each deep layer to be operated using LIF
neurons on neuromorphic hardware

As network is trained sharpen sigmoid neurons to the point
where they essentially become (spike-like) step functions

= Assumption: we can implement deep activation function
using LIF neurons




Advantages

= No restrictions on network model

= |ntegrates with existing deep
learning/neural network libraries

= |Immediately useable on hardware
after training
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= |ndependent from hardware
destination

= 1 Frame =1 Time-step

= Compatible with multiple origin
activation functions:

= Sigmoid, ReLu, Leaky Relu, etc. Spiking Platform

= Software implemented via a custom (N2A)
keras activation layer




Datasets

= MNIST

= 28x28 images of digits
= 10 classes
= Cifar-10
= 32x32 images of common
objects
= 10 classes

= Hyperspectral Dataset

= 512 dimension
hyperspectral pixels

= 3 classes
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Data conversion

= We need to convert inputs to spikes
= Binarized MNIST

= |mage contours

= Direct current injection



Results

= MNIST
STPU DNN Input 784 Dense Dense Output
512 512 10
STPU CNN Input 784 Conv MaxPool Output
3x11x11 2x2 10
CNN Restricted  Input 784 Conv Conv Dense Dense Output
8x3x3 8x3x3 100 100 10
CNN Input 784 Conv Conv Dense Dense Output
Unrestricted 32x10x10 32x10x10 100 100 10

STPU-bound networks are size-restricted

STPU DNN STPU CNN TrueNorth
Restrlcted Unrestrlcted

Orlgmal Acc 7. 98.5 99.1

Splklng Acc 97.3 94.9 97.3 98.5 99.4*

*TrueNorth 4ul/frame network 95% accurate




Results

= Cifar-10
= Cifar-10 spiking vs non-spiking has ~1-2% accuracy degradation
= Challenge converting images into spikes
= Edge detection forces loss of information content and accuracy

= Hyperspectral cell dataset
= Accuracy degradation 98.2% to 97.7%

= Raw values ‘current injection’ into first layer

= Network is STPU-compatible




Visualizing deep spiking CNNs
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Visualizing deep spiking CNNs




Visualizing deep spiking CNNs

55555555

Undertrained network




Visualizing deep spiking CNNs
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Overtrained network




Visualizing deep spiking CNNs
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Optimally trained network




Lessons learned and future work

= Best practices for training stability
= RMSprop best performing optimizer

= Custom optimizer could be designed to

= Neurogenesis Deep Learning (NDL) for

= Effective spiking networks differ
from CNNs

Activation of Convolution Layers

be ‘activation-aware’

dead neurons

Larger patch sizes help performance
and stability

Layer 2

Additive noise may help regulate
activity

Winner-take-all to replace softmax
Sparse distributed representations
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Thank you

= Questions?




Backup slides




Comparing spiking (STPU) and non-spiking (keras) deep
networks using the MINIST dataset

= Non-convolutional
0000001000

Output layer - 10

non-spiking (dense) spiking (LIF neuron)
network test accuracy: 3 network test accuracy:
97 3 Dense I]aty@[r’ 012 97 28

Dense layer - 512

t
Input layer = 784




Comparing spiking (STPU simulator) and non-spiking
(keras) deep networks using the MINIST dataset

= Convolutional

0000100000

non-spiking (CNN) spiking (LIF neuron)
network test accuracy: Output layer - 10 network test accuracy:
97.09 94.85

Max=pool layer — 2 x 2

Convolution layer — 3 x 11 x 11
t
Input layer — 28 x 28

This represents work-in-progress — we feel we can improve spiking accuracy
with more time and better hardware



Spiking convolution representation of example image

Original image

Aggregation of filters seems to be
” the white-space around the

"learnin

Aggregation of convolution filters

Each filteris 11x11
but is represented "
by its center pixel
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