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Presentation Overview ) .

= Deep Borehole Field Test (DBFT) Background
= The Deep Borehole Disposal (DBD) Concept
= Feasibility is being evaluated
= DBFT Overview — Science and Data to Evaluate DBD Concept
= Current Project is Being Wrapped Up
= Geoscience Guidelines for DBFT Site
= Considered Characteristics
= Crystalline Basement Characteristics/Conceptual Profiles
= Evaluation of Fluid-Rock Reactions in Crystalline Basement
= Fluid-Rock Reaction Concepts and Geochemical Description
= General Observations and Results

= Summary and Conclusions



Deep Borehole Disposal (DBD)
Concept
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= Deep borehole disposal of high-level radioactive waste has
been considered in the U.S. and elsewhere since the 1950s
and has been periodically studied since the 1970s

= Current DBD concept consists of drilling a borehole (or array
of boreholes) into crystalline basement rock
= Total depth about 5,000 m depth
= Lower 3000 m in crystalline basement
= Waste canisters would be emplaced in the lower 2,000 meters

= Upper crystalline basement portion would be sealed with compacted
bentonite clay, cement plugs, and cemented backfill

= At least 1000 m
= Upper borehole filled/sealed



Why Consider Deep Borehole
Disposal?
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= Potential for Robust Isolation

= Gives DOE the Flexibility to Consider Options for Disposal of
Smaller Waste Forms in Deep Boreholes

= Potentially earlier disposal of some wastes than might be possible in a
mined repository

= Possible reduced costs associated with projected treatments of some
wastes
= Several DOE-managed Small Waste Forms are Potential
Candidates for Deep Borehole Disposal (SNL 2014), e.g.,
= 1,936 cesium and strontium capsules stored at the Hanford Site

= Untreated calcine HLW currently stored at INL in sets of stainless steel
bins within concrete vaults
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Deep Borehole Disposal Concept — e
Safety and Feasibility Considerations

Long-Term Waste Isolation (hydrogeochemical characteristics)

Waste emplacement is deep in

crystalline basement

» At least 1,000 m of crystalline rock
(seal zone) overlying the waste
disposal zone

» Crystalline basement within 2,000 m
of the surface is common in many
stable continental regions

Crystalline basement can have very

low permeability
e limits flow and transport

Deep groundwater in the crystalline basement:

e Can have very long residence times — isolated from shallow groundwater

« Can be highly saline and geochemically reducing — enhances the sorption and limits
solubility of many radionuclides

e Can have density stratification (saline groundwater underlying fresh groundwater) —
opposes thermally-induced upward groundwater convection :



Deep Borehole Field Test (DBFT) o e
Overview
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= Assess DBD Feasibility Via Field Study of Site and Handling
= NOTE: Project is Being Closed-out this Fiscal Year

= Construct Two 5-km Boreholes
= Characterization Borehole (CB): 21.6cm [8.5”] @ Total Depth
= Field Test Borehole (FTB): 43.2 cm [17”] @ Total Depth

= Evaluate our Ability to:
= Drill deep, wide, straight in crystalline rocks (CB + FTB)
= Characterize bedrock via geophysics (CB)
= Conduct tests in basement <150°C & 50 MPa (CB)
= Collect geochemical profiles (CB)
= Emplace/retrieve surrogate waste packages (FTB)




Geoscience Guidelines Considerations

= Crystalline Basement
= Depth
= Rock Fabric & Stress State
= Regional Structure(s)
= Hydrology and Geochemistry

= Heat Flow
= Recent Seismicity/Volcanism
= Resources

= Anthropogenic Contamination
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Depth to Basement — National Scale @ .
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Deep Borehole Conceptual Profiles @
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Observed Profiles

Bulk Permeability Decreases with Depth
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Fluid-Rock Reaction Evaluations ) =,

= Analyses for generic fluid-rock reaction systems in crystalline
basement

= Evaluate mechanisms in the crystalline basement to form deep,
isolated brines

= Reaction path models for granite mineral reactions with seawater
— Alteration mineralogy — hydrous phases (H,O sinks)
— Evolved brine compositions (major elements, Cl, Br)

= Fluid inclusion contributions (soluble salts) considered

= Calculating leachate compositions from Black Forest crystalline basement
rocks

= Conditions Comparable to ~ 5 km depth
= Generic Granite Composition(s)
= Seawater Starting Brine Composition
= ~100 - 150°C, P,
= PHREEQC Reaction Path Calculations
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Hypothetical Granite )

= 20% Quartz; 40% K-feldspar; 15% Plagioclase (Albite); 9%
Muscovite; 8% Biotite; and 8% Hornblende (volume %)

= Represented as a 10 kg (3.8 L) block having a molar mixture of

= 33.3 moles Quartz: 14.4 moles K-feldspar: 5.7 moles Albite: 2.2 moles
Muscovite: 1.8 moles Biotite: 0.9 moles Hornblende

= Granite is “reacted” with 0.1 liter of seawater at 100°C.

= This is a 38:1 rock:fluid ratio by volume, equivalent to a rock with a
fluid-filled porosity of ~ 3%




General Observations LU

= Calculated Generic Granite Hydrologic Alteration Results

= Reaction creates Albite + K-feldspar + Chlorite + Laumontite + Brine
= Minor amounts (< 0.02 moles) of epidote, calcite, and gypsum form
= Albite and K-feldspar masses increase substantially
= Almost all of the quartz is dissolved.

= Produces a residual Ca-Na-Cl brine at pH of 6.8

= Net Loss of water causes the ionic strength of the solution to increase
— From an initial ionic strength of 0.6 upwards to > 5 molal
— The Ca/Na calculated for brine is 1.55
— Low Mg concentration

= End-member Canadian Shield brines from Frape et al. (1984) with
highest salt contents of ~240 — 325 g/L

= Have ionic strengths of 4.5 - 6.2
= 0.7<Ca/Na<3
= Low Mg concentration
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Solution and Mineralogic Evolution @J.
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Summary and Conclusions )i
= Planned DBFT Project is Ending this Fiscal Year

= Many Sites within U.S. with Functional Geology
= Multifaceted Objectives of DBFT Provide Opportunities for Success
= Choosing Any Site would be based on Uncertain Geologic Information
= Generally Regions Lacking Exploration

= Each Site will have its own Geologic Challenges

= Would Provide Substantial Direct Data and Understanding
— Characterization methods
— Feasibility of implementation

= Geochemical Processes in Generic Crystalline Basement
Appear to be Able to Affect/Control Fluid System Isolation

= Still to evaluate

= Sensitivity of the PHREEQC calculations to input water chemistry
= More thorough comparison of predicted/observed alteration
= More detailed consideration of activity coefficient effects
15
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Backup Materials
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Deep Geologic Disposal Remains an
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Essential Element of Nuclear Waste

Management

“The conclusion that disposal is
needed and that deep geologic
disposal is the scientifically
preferred approach has been
reached by every expert panel
that has looked at the issue and
by every other country that is
pursuing a nuclear waste

management program.”
Blue Ribbon Commission on
America’s Nuclear Future, 2012
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Spent nuclear fuel Surface portion of final repository 3km DBH Plug

& SealZone

Fuel pellet of Copper canister Crystalline
uranium dicxide with cast iron insert bedrack




Deep Borehole Field Test Objectives 1.

= The RD&D objectives for deep borehole disposal are being met with
a borehole field test that is conducted to a depth of 5 kmin a
suitable location (without emplacement of radioactive wastes)

= The DBFT includes the following major activities:
= Obtain a suitable test site

= Design, drill and construct the Characterization Borehole (8.5” diameter)
to requirements

= Collect data in the Characterization Borehole to characterize crystalline
basement conditions and evaluate expected hydrogeochemical conditions

= Accommodate a subsequent Field Test Borehole (17” diameter)




Preferred Geologic Conditions ) .

= Geohydrological Considerations

= No large-scale connected pathways from depth to aquifer systems
= No through going fracture/fault/shear zones that provide fast paths
= No structural features that provide potential connective pathways

= Low permeability of crystalline basement at depth
= Urach 3: (Stober and Bucher, 2000; 2004)

— ~10" m? (intact rock); ~1014 to 10'” m? (bulk: parallel to or across shears)
— Decreasing with Depth

= Evidence of ancient, isolated nature of groundwater

= Salinity gradient increasing downward to brine at depth (Park et al., 2009)
— Limited recharge/connectivity with surface waters/aquifers
— Provides density resistance to upward flow

= Major element and isotopic indication of compositional equilibration with rock
— Crystalline basement reacting with water (Stober and Bucher, 2004)
— Ancient/isolated groundwater
» Ages — isotopes, paleoseawater (Stober and Bucher, 2000)
» Radiogenic isotopes from atmosphere lacking: 8Kr, 12°|, 3¢C|
» Radiogenic isotopes/ratios from rock: 8'Kr, 87Sr/26Sr; 238U /234U

» Noble gases (*He, Ne) & stable isotopes (2H, *80) compositions from deep
water: (e.g., Gascoyne and Kamineni, 1993)
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Preferred Geologic Conditions
(Continued)

=  Geochemical Considerations

= Reduced, or reducing, conditions in the geosphere (rock and water system)
= Crystalline basement mineralogical (and material) controls
= Magnetite-hematite buffer low oxygen potential
— Oxides equilibria => T-low fO, paths (e.g., Sassani and Pasteris, 1988; Sassani, 1992)
= Biotite common Fe*? phase (Bucher and Stober, 2000)
— Rock-reacted fluid compositions — water sink (Stober and Bucher, 2004)
— More rock dominated at depth (Gascoyne and Kamineni, 1993)
= Stratification of salinity — increasing to brine deep in crystalline basement

= Canadian Shield salinity increases with depth to ~350 g/L TDS; (Gascoyne and Kamineni,
1993; Park et al., 2009)

— More Ca-rich brines with further reaction with deeper rock

= Urach 3, Germany, ~70- g/L TDS NaCl brine (Stober and Bucher, 1999; 2004)
= Subset of waste forms and radionuclides are redox sensitive

= Lower degradation rates

= Lower solubility-limited concentrations

= Increased sorption coefficients
= Higher salinity

= Density gradient opposes upward flow

= Reduces/eliminates colloidal transport
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