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Material Assurance

=  Material formation concurrent w/geometry
= want to predict part/material performance
= how to ID a bad part?

lack of
fusion
= Quantify critical material defects & useful i
“signatures” . lgy”:rts
=  Understand mechanistic impacts on 17-4PH dogbone fracture surface
pro perties 1200 - 17-4PH dogbone porosity
=  build process-structure-property relationships —
to predict margins & reliability 1000
= characterize stochastic response to design for .
uncertainties 5
= provide scientific basis for qualification of AM ~E,; 600 L
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metals for high consequence applications §
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Representative Material Defects
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17-4PH Study

Monolithic build w/110 dogbones

= custom design per ASTM

= external vendor

= constant process
= SHT + H900 HT

High-throughput testing

= digital image correlation (DIC)

" necessary to rapidly capture material
distributions

SGEBTANS
391 0SZ ALOVdYD)

high throughput test sample w/120 dogbones,
1x1mm gage x-section

tensile test w/DIC strain field overlay

Salzbrenner, B., Journal of Materials Processing Technology, 2017; Boyce, B., Advanced Engineering Materials, 2017
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Stochastic Response

= Defect dominated failure
= 3-parameter Weibull fits inform design

threshold

= ductile dimples & shear rupture planes

= voids & lack-of-fusion boundaries are
likely crack nucleation sites

= Extensive performance variations

= caninter-build performance be
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= NDE before testing

= Post mortem after testing

= Do reasonable defect signatures exist which tie
to performance tests?

~ Material Characterization

detect defects, performance correlations
density (Archimedes)

resonant ultrasound spectroscopy (RUS)
optical surface measurements
computed tomography (CT)

inform performance & failure mechanisms
fractography

metallography

composition

XRD

fracture surface
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Explicit Porosity Measurements

= Computed tomography (CT)
= NDE “gold standard” for porosity measurement
= gage sections imaged w/resolution of 7 or 10 um voxel edge length

= What can we see? Does it inform material behavior predictions?

= justifiable for qualification and/or production?
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Defect Characterization

= Total Volume of Defects ( V,,, )

" Pore Volume Fraction ( V)

= Spatial Location of Pores (x, y, z)
= Total Number of Defects (N)

= Total Defects/Length (N/L)

" Average Defect Volume (V,,, )*

= Average Cross-Sectional Area ( CSA,,, )*

= Average Nearest Neighbor Distance ( NND

avg. )

g
(X27y2122) o

How do we best represent the

° .5 X3,Y323) defect populations present?
Q. .
1+ LY

¢ ¢

Madison, J., “Strength of Micro-CT as an Indicator of Process History and Estimator of Mechanical Performance in AM SS”, Wednesday 1:50pm
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Measure R2
No. of Defects  0.50
Avg. NN Distance (mm)  0.40
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Total Pore Volume (mm?3)  0.27
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Max CSA Redux (%) 0.24
Maximum Pore Size  0.07
Seven factor multivariate 0.60

regression
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Post Mortem Analyses
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" Fractography

= Defect dominated failure observed
= |ncreasing data fidelity & integration

= overlay fracture surface w/porosity map
using DREAM.3D

= roughness inhibits registration accuracy

= fracture surface may correlate to large

pore B2, fracture surface optical image by
structured light scanning
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Microstructure Examination

2000
austenite
oy e . . . pe peaks
= Compositional analysis identified no o
anomalies 3
=  XRD revealed unexpected austenite 2 1000

variation in X-Y

= what about Z? s
= further complication to dogbone
performance s % = S ——

XRD analysis of dogbones across the build sample

= source = powder, atmosphere?

1200 25
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5 15 &
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Material Models

=  Want to inform & predict material
variability
= Approach
= explicitly subtract spherical CT
porosity volumes from dogbones
= solve tensile loading

= ignore residual stress, surface finish
& defects w/volume below ~90um3

= continuum properties calibrated to
low porosity sample D16

= Expectations

= large defects will intensify & localize
deformation

®" microscale void mechanisms will
drive failure

exterior

explicit defect representation
applied to dogbone model
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Summary

= Material assurance is a challenge

= material behavior is complex
= predictive inter-build correlations for 17-4PH have not been straight-forward

= contributing factors include process, feedstock, measurement, surface finish,
microstructure

= orthogonal testing pursuing multiple signatures is invaluable (& necessary)

= Tools developed to interrogate & analyze defects

= performance distributions can be captured efficiently & used to
understand material & process

= tracking intra-build population shifts may be possible

= porosity & surface roughness couple in failure initiation
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AM vs. Wrought 17-4PH
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CT Voxel Resolutions

Effective pixel = 6.5-7.8um
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Effective pixel = 10.2um
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Metallurgical Interrogations
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Austenite Spatial Variation
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