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Material Assurance

 Material formation concurrent w/geometry

 want to predict part/material performance

 how to ID a bad part?

 Quantify critical material defects & useful
“signatures”

 Understand mechanistic impacts on 
properties

 build process-structure-property relationships 
to predict margins & reliability

 characterize stochastic response to design for 
uncertainties

 provide scientific basis for qualification of AM 
metals for high consequence applications
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Representative Material Defects

Al contamination

SHT + H900 
age, 43% 
austenite
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Blue = Austenite (FCC)
Red = Martensite/Ferrite (BCC)
Black = non-indexed



17-4PH Study

drop-in tensile tester

tensile test w/DIC strain field overlay

 Monolithic build w/110 dogbones
 custom design per ASTM

 external vendor

 constant process

 SHT + H900 HT

 High-throughput testing
 digital image correlation (DIC)

 necessary to rapidly capture material 
distributions

high throughput test sample w/120 dogbones, 
1x1mm gage x-section

Salzbrenner, B., Journal of Materials Processing Technology, 2017; Boyce, B., Advanced Engineering Materials, 2017



Stochastic Response

 Defect dominated failure

 3-parameter Weibull fits inform design 
threshold

 ductile dimples & shear rupture planes

 voids & lack-of-fusion boundaries are 
likely crack nucleation sites

 Extensive performance variations

 can inter-build performance be 
predicted?
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failure at 2% elongation, SHT+H900

AMS spec for H900: modulus = 197 MPa, yield = 1172 MPa, UTS = 1310 MPa, strain at failure = 5%

110 stress-strain curves for 17-4 PH after SHT+H900

material performance fit to 3-parameter Weibull distributions



Material Characterization

 NDE before testing

 detect defects, performance correlations

 density (Archimedes)

 resonant ultrasound spectroscopy (RUS)

 optical surface measurements

 computed tomography (CT)

 Post mortem after testing

 inform performance & failure mechanisms

 fractography

 metallography

 composition

 XRD

 Do reasonable defect signatures exist which tie 
to performance tests?

17-4PH dogbone porosity

dogbone in 2-point RUS test fixture

fracture surface



Implicit Part Correlations

 Archimedes density

 Resonant Ultrasound Spectroscopy

 swept sine wave input from 2-point 
transducer (74.2 kHz - 1.6 MHz)

 19 resonance peaks

 Surface finish

 No significant trends observed



dogbone B,16 CT surface image (left), porosity map (right)

# of pores = 632
mean ESD = 31.82 µm
max ESD = 139.03 µm

modulus = 189 GPa
yield = 660 MPa
UTS = 1059 MPa
ductility = 8.2 %

Explicit Porosity Measurements
 Computed tomography (CT)

 NDE “gold standard” for porosity measurement

 gage sections imaged w/resolution of 7 or 10 µm voxel edge length

 What can we see? Does it inform material behavior predictions?
 justifiable for qualification and/or production?

ESD = equivalent spherical diameter

dogbone C,16 CT surface image (left), porosity map (right)

# of pores = 1124
mean ESD = 33.23 µm
max ESD = 155.52 µm

modulus = 183 GPa
yield = 593 MPa
UTS = 1054 MPa
ductility = 8.0 %



 Total Volume of Defects ( Vtot )

 Pore Volume Fraction ( Vfract )

 Spatial Location of Pores (x, y, z)

 Total Number of Defects (N)

 Total Defects/Length (N/L)

 Average Defect Volume ( Vavg. )*

 Average Equivalent Spherical Diameter ( ESDavg. )*

 Average Cross-Sectional Area ( CSAavg. )*

 Average Nearest Neighbor Distance ( NNDavg. )*

L

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

(x2,y2,z2)

Defect Characterization

How do we best represent the 
defect populations present?

Madison, J., “Strength of Micro-CT as an Indicator of Process History and Estimator of Mechanical Performance in AM SS”, Wednesday 1:50pm



Statistical Correlations Are Elusive

Measure R2

No. of Defects 0.50

Avg. NN Distance (mm) 0.40

Avg. ESD (mm) 0.36

Max CSA Redux ( mm2) 0.38

Total Pore Volume (mm3) 0.27

Avg. Defect Vol. (mm3) 0.25

Max CSA Redux ( %) 0.24

Maximum Pore Size 0.07

Seven factor multivariate 
regression

0.60



Post Mortem Analyses
 Can forensic trends be identified?

 CT data analysis

 calculate cross-section per layer

 gage sections are rough & porous

 fractures sometimes correspond to 
minimum areas

 general trends remain weak

column B 
samples

B2

B3



Fractography

 Defect dominated failure observed

 Increasing data fidelity & integration
 overlay fracture surface w/porosity map 

using DREAM.3D

 roughness inhibits registration accuracy

 fracture surface may correlate to large 
pore B2, fracture surface optical image by 

structured light scanning



Microstructure Examination

 Compositional analysis identified no 
anomalies

 XRD revealed unexpected austenite 
variation in X-Y

 what about Z?

 further complication to dogbone 
performance

 source = powder, atmosphere?

austenite 
peaks

B2
E17

XRD analysis of dogbones across the build sample

Blue = Austenite (FCC)
Red = Martensite/Ferrite (BCC)
Black = non-indexed

SHT + H900, ~22 vol% 
retained austenite

as printed, ~0 vol% 
retained austenite

material performance variation w/austenite phase fraction



Material Models

 Want to inform & predict material 
variability

 Approach

 explicitly subtract spherical CT 
porosity volumes from dogbones

 solve tensile loading

 ignore residual stress, surface finish 
& defects w/volume below ~90µm3

 continuum properties calibrated to 
low porosity sample D16

 Expectations

 large defects will intensify & localize 
deformation

 microscale void mechanisms will 
drive failure

explicit defect representation 
applied to dogbone model

defects near surfaces 
localize plastic 

deformation

different defect 
populations impact 

response



Summary

 Material assurance is a challenge
 material behavior is complex

 predictive inter-build correlations for 17-4PH have not been straight-forward

 contributing factors include process, feedstock, measurement, surface finish, 
microstructure

 orthogonal testing pursuing multiple signatures is invaluable (& necessary)

 Tools developed to interrogate & analyze defects
 performance distributions can be captured efficiently & used to 

understand material & process

 tracking intra-build population shifts may be possible

 porosity & surface roughness couple in failure initiation



QUESTIONS?

Bradley Jared, PhD

bhjared@sandia.gov

505-284-5890



AM vs. Wrought 17-4PH

H900 data for vendor 1 (top left), vendor 2 (top right) & wrought (bottom) 
w/corrected stress area

AMS spec for H900: modulus = 197 MPa, yield = 1172 MPa, UTS = 1310 MPa, strain at failure = 5%
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CT Voxel Resolutions

Effective pixel = 10.2μm

Effective pixel = 6.5-7.8μm



Metallurgical Interrogations

 Microstructure

 optical, SEM, EBSD, WDS micro-
probe

 Composition

 LECO combustion, ICP mass-spec, 
XRD

 powder analysis

 Microhardness

SHT+H900 microhardness along dogbone length

Element
Vendor 1, run 2 

(wt%)

Cr 16.64

Mo 0.045

Si 0.38

Nb 0.3

V 0

W 0

Ti 0

Ta 0

Al 0

Ni 4.24

Mn 0.24

C 0.012

N 0.056

Co 0

Cu 4.05

P 0.019

S 0.003

O 0.100

Nb 0.30

bulk chemical 
analysis

bulk XRD analysis

Map avg.: 227 ± 9 HVN0.3

as-printed microhardness on gauge 
cross section

EBSD phase map, SHT+H900, 22% retained 
austenite



Austenite Spatial Variation


