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Abstract—The dragonfly network topology has recently gained
traction in the design of high performance computing (HPC)
systems and has been implemented in large-scale supercomputers
such as Trinity. The impact of task mapping, i.e., placement
of MPI ranks onto compute cores, on the communication per-
formance of applications on dragonfly networks has not been
investigated on real large-scale systems comprehensively. This
paper demonstrates that task mapping affects the communication
overhead significantly and the magnitude of this effect is sensitive
to the application, scale, and the OpenMP setting. Among the
three task mapping algorithms we study (in-order, random, and
recursive coordinate bisection), selecting a suitable task mapper
reduces application communication time by up to 47%.

I. INTRODUCTION
HPC plays an important role in scientific research and

engineering applications. The demanding inter-process com-
munication in typical parallel programs calls for strategies to
reduce communication latency by ensuring data locality. Task
mapping, i.e., the process of placing the MPI ranks of a parallel
program onto the compute cores designated by the system
software, can effectively improve locality. With a suitable task
mapping, application runtime can be reduced on average by
34% [1], resulting in both better resource utilization and less
energy consumption.

Dragonfly is an emerging hierarchical network topology
for HPC systems due to its low diameter and high bisection
bandwidth [2]. Dragonfly is composed of groups of routers
which act as high-radix virtual routers connected to compute
nodes. Prior work has studied task mapping on dragonflies
mostly through simulations [3], [4], [5], [6]. Using small-
scale experiments (up to 256 nodes) on a real Cray XC30
system, a recent study concluded that the impact of task
mapping is minimal on dragonflies [7]. We experiment with
three task mapping algorithms, in-order, random, and recur-
sive coordinate bisection (RCB), on a large-scale dragonfly
system, and demonstrate that the impact of task mapping on
communication overhead becomes significant for large-scale
dragonfly networks.

II. EXPERIMENTAL METHODOLOGY
We assess the impact of task mapping on large-scale drag-

onfly systems using the Trinity supercomputer1, two mini-
applications developed by the Department of Energy commu-
nity for performance evaluation in HPC systems, and three
task mapping algorithms.

1Trinity supercomputer: http://www.lanl.gov/projects/trinity/

A. Target System

Trinity is a 8.1PFlop/s, 4.2MW supercomputer with a Cray
XC30 architecture. It consists of over 9000 compute nodes
with 32 processing cores per node, and is the tenth most
powerful supercomputer in the November 2016 Top500 list2.
Trinity uses a dragonfly topology with 26 groups, each with
384 nodes. The nodes within a group are connected to each
other with flattened butterfly topology, whereas the groups are
connected to each other with all-to-all topology.

B. Applications

We use the Mantevo benchmark suite [8], which is designed
for performance evaluation and network scaling studies and
represents the computational core of various HPC applications.
We select two mini-applications that are sensitive to task
mapping in torus networks and represent common HPC ap-
plications: MiniGhost, which represents modeling of complex
multi-dimensional problems such as large deformations and/or
strong shocks, and MiniMD, which is a proxy for the force
computations in molecular dynamics applications. While both
applications focuses on a 3D problem with nearest-neighbor
communication, MiniMD also uses MPI_Allreduce for
FFT calculations and sends messages to the MPI ranks that
are not nearest-neighbors but a few hops away from the source
rank in the problem geometry, in a single time step.

C. Task Mapping Algorithms

We use the following three task mapping approaches:
In-order is the default task mapper in most applications. It
assigns the MPI ranks in-order to the cores of the allocated
compute nodes which are sorted by the allocation order.
Random randomly assigns the MPI ranks to available cores.
RCB [1] recursively splits the allocated system nodes as well
as the MPI ranks of a given 3-D application into equal halves
based on the x, y, and z coordinates of the nodes/ranks. In
both network space and the application space, the split is
performed on the longest dimension. At the end of recursive
splits, the remaining rank is mapped to the remaining core.
RCB is originally built for 3-D mesh topologies. To adapt
this algorithm to dragonfly, we use the group number of a
compute node as its z-coordinate, and the row and column
numbers within the group as the x- and y-coordinates of that
node. While our adapted version loses some information on

2Top 500 Supercomputer Sites: http://www.top500.org/
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the exact dragonfly topology such as the global link locations,
it can reduce the distance messages must travel.

D. Experiments Conducted

We run the selected applications on 1, 2, 4, . . . , 4096 nodes.
For each application size (i.e., number of nodes), we repeat
our experiments 8 times using different sets of nodes that are
assigned by the system software depending on the system state.
For each node allocation, we fully utilize the given nodes by
running one thread on each core using 6 different openMP
settings, where we use 1, 2, 4, . . . , 32 threads per MPI rank.
For each OpenMP setting, we re-run the same application
using different task mappers.

III. RESULTS

Figure 1 shows the time spent during MPI communication
as reported by the applications. For each set of parameters,
the communication time with the task mappers are normalized
with respect to the in-order (default) mapper. To eliminate the
impact of node allocation on the results, we show the median
communication time (out of the 8 runs). In our experiments,
the mapping overhead is negligible compared to application
communication times.

Our results demonstrate that task mapping can change
the communication time significantly when running parallel
programs on dragonfly networks. In Fig. 1(a), RCB mapper
reduces the communication time by 47% when MiniGhost is
running on 128K threads with 1 thread per rank, whereas in
Fig. 1(c), random mapper increases the communication time
by 210% when MiniMD is running on 64K threads with the
OpenMP setting as 1 thread per rank.

Because the two applications differ in their communication
patterns, they benefit from different task mapping strategies. In
Fig. 1(a) when running MiniGhost, RCB is up to 47% better
than in-order mapper; meanwhile in Fig. 1(c) when running
MiniMD, in-order mapper is always better than the others.

We find that the task mapper performance is also sensitive
to application scale. Along the horizontal axis in Fig. 1(a), we
see that the normalized communication time of RCB mapper
can vary more than 134%, from 0.53 to 1.25. RCB tends to
perform worse than in-order mapper with less than 8K threads
(corresponds to 256 nodes in our system), whereas with more
than 8K threads, RCB turns out to be the best choice among
the three task mappers. These results show that conclusions
from small-scale experiments may not be extended to large-
scale experiments.

By comparing the results in Fig. 1(a) with Fig. 1(b), we see
that the OpenMP setting (i.e., number of threads per rank) has
significant effect on the results. In Fig. 1(b) where each rank
occupies many more threads than in Fig. 1(a), the impact of
task mappers on communication time is less than 7%.
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(a) MiniGhost with 1 thread per rank
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Fig. 1: Application communication time normalized with
respect to the in-order task mapper. The results show that task
mapping affects the communication overhead significantly.
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