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Computed Tomography (CT) ) .

= Enables volumetric cross-sectional imaging of an object
= |nput: projection images from multiple angles
= Reconstruction Technique: Three-dimensional FDK (Feldkamp)
= Qutput: Object slices and planes
= Applications:
* Medical imaging
= Failure inspection

= Material identification
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Industrial CT
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Graphical Processing Units (GPUs) @&

= Qriginally built for gaming and CAD industry

= Key features:
= Massively parallel architectures
= Fast read-only memory
= Compatible with multi-threaded CPU computing

= Reconstruction times may still span few days for industrial CT
due to:
= GPU memory limitations
= GPU memory management complications
= Prior work utilizing GPUs for reconstruction optimized for
small-scale datasets (~1 GB)
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Irregular CT Reconstruction UL
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Irregular CT Reconstruction ) 2=

= Performance analysis with constant max slice depth and
memory fraction, and varying TSR:
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Smaller TSR = improved computation time




Irregular CT Reconstruction UL

= Performance analysis with constant max slice depth and
memory fraction, and varying TSR:
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Performance on Different =
Architectures

= Performance analysis with constant TSR and max slice depth,
and varying memory fraction across two different computing

architectures:
= Cluster 1: Tesla K80 with 12 GB of memory

= Cluster 2: Tesla P100-PCIE with 16 GB of memoryv
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Performance on Different =
Architectures

= Performance analysis with constant TSR and max slice depth,
and varying memory fraction across two different computing
architectures:
= GPU 1: GTX 1080 with 8 GB of memory
= GPU 2: Kepler with 2 GB of memory
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GPU 2 has better performance than GPU 1 for certain memory fractions 0




Optimization of Input Parameters @
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Automated Optimization of Input
Parameters

= The best input parameters for a given dataset size and
computing architecture can be identified using the Nelder-
Mead optimization technique
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Conclusion )=,

= Demonstrated
" |ntuitive parameters suboptimal
= GPU performance
= Effects of parameters

= Future work

= Data size and GPU architecture

= Parameter optimization




