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Abstract

A central challenge to understanding how climate anomalies, such as drought and
heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and
temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and
model-based satellite broadband spectra-based products have been shown to miss critical
variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave
(400-2500 nm) imagery to better detect spatial and temporal variations in GPP across a range of
ecosystems, including forests, grasslands, wetlands, and shrublands in a water-stressed region.
Estimates of GPP from eddy covariance (EC) observations were compared against airborne
hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne
preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total
image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths
and band ratios associated with foliar physiology and chemistry. A partial least squares
regression (PLSR) modeling approach was then used to predict GPP with higher validation
accuracy [adjusted R? = 0.71] and low bias (0.04) compared to existing broadband approaches
[e.g., adjusted R? = 0.68 and bias = -5.71 with the Sims et al. (2008) model]. Significant
wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco
(wavelengths 1680, 1740 and 2290 nm) and Vemax (Wavelengths 1680, 1722, 1732, 1760, and
2300 nm). These results provide strong evidence that advances in satellite spectral resolution
offer significant promise for improved satellite-based monitoring of GPP variability across a

diverse range of terrestrial ecosystems.

Keywords: GPP, eddy covariance, imaging spectroscopy, hyperspectral imagery, HyspIRI
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Introduction

Recent work by Serbin et al. (2015) and Singh ef al. (2015) has shown promising
advancements in the use of hyperspectral imaging, collected from high-altitude airborne
missions, to map the variation in the drivers of gross primary productivity (GPP) through
measurement of leaf structure, metabolic capacities, and related biochemistry. While the use of
broadband spectroscopy on tower, airborne, and satellite platforms to quantify seasonal variation
in vegetation greenness, leaf area, and photosynthesis is well established (Carlson and Ripley,
1997; Myneni et al., 2002; Heinsch et al., 2006), imaging spectroscopy affords new
opportunities to more accurately monitor spatial and temporal variation in ecosystem function
based on its sensitivity to leaf physiology. Imaging spectroscopy (also known as hyperspectral
imagery) is here defined as reflectance data consisting of narrowband (5-10 nm) measurements
across the full range of visible, near infrared and shortwave infrared wavelengths (VSWIR, 400-
2500 nm). Such high-dimensional data take advantage of narrow spectral features related to

specific leaf functional, chemical and structural traits (Curran, 1989; Townsend et al., 2016).

In this study, we test an approach using imaging spectroscopy data collected across two
years as part of the NASA HyspIRI Preparatory campaign to estimate GPP based on linkage to
eddy covariance (EC) data from flux towers, which are currently the most widely used ground
data for inferring ecosystem-level GPP. Although data from broadband sensors such as Landsat
and MODIS have been used to generate GPP maps across large spatial scales (e.g., Running et
al., 2004; Jung et al., 2011), the resulting estimates are subject to large biases and appear to

primarily detect broad differences in GPP among ecosystem types and across vegetation density
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gradients, potentially missing physiological influences on GPP arising from variations in leaf

traits responding to winter dormancy, plant stress, and stomatal response.

For example, the NASA Terra/Aqua-based MODIS GPP MOD17 product correlates well
to flux tower GPP estimates, but, on average, monthly GPP overestimates site-level average GPP
by 20-30% across a range of land cover types compared to EC, with significant discrepancies
between EC and MODIS emerging during phenological transitions (particularly spring green-up)
(Heinsch et al., 2006). As well, MODIS GPP did not capture spatial variability observed at the
flux tower level between sites of similar vegetation type (Heinsch et al., 2006), especially at the
regional scale. As such, a general conclusion is that MODIS may characterize broad variation
among physiognomically different ecosystems by detecting differences in vegetation structure

and/or cover rather than physiology.

The limits of current broadband remote-sensing techniques to accurately predict spatial or
temporal GPP variation (Heinsch ef al., 2006) provide an impetus to test the use of imaging
spectroscopy to detect variation in vegetation function directly related to GPP. This is motivated
by increasing evidence that hyperspectral data are sensitive to biochemical and physiological
properties important to ecosystem function (Martin and Aber, 1997; Smith et al. 2002; Ollinger
and Smith 2005; Asner et al., 2007; Martin et al., 2008; Wolter et al., 2008; Ollinger, 2011; Lee
et al., 2015; Schimel et al. 2015; Serbin et al., 2015; Singh, 2015; Jetz et al., 2016). For example,
high-resolution spectral data have the ability to capture variation in foliar concentrations of
water, chlorophyll, cellulose, lignin, nitrogen, and other leaf constituents (Green ef al., 1998),
and studies have shown the ability to use hyperspectral data to map these and other leaf traits

(Ustin and Gamon, 2010; Serbin et al., 2012; Singh et al., 2015).
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The NASA HysplRI Preparatory Airborne mission provided an opportunity to collect a
large quantity of high-resolution imagery across a range of EC flux towers in California covering
numerous seasons across gradients of vegetation type, density, and physiology of temperate and
semi-arid ecosystems with large variation in average GPP. Studied ecosystems ranged from
coastal sage and valley grassland systems to high-elevation conifer forests. Our objective was to
evaluate the ability of imaging spectroscopy data, through time and across multiple EC flux
towers encompassing a range of ecosystem types, to estimate local-scale vegetation productivity.
Flux tower measurements were combined with high-spectral and high-spatial resolution
narrowband visible to shortwave infrared imaging spectroscopy, repeatedly captured at each
tower site with high-altitude airborne sensors, to identify which spectral wavelengths, or
combinations of multiple wavelengths (Inoue et al., 2008), relate most strongly to GPP variation
within and across sites and compare the use of narrowband (400-2500 nm) spectroscopy data for

estimating GPP against existing approaches (e.g., from MODIS) that rely on broadband data.

Methods

GPP estimates using eddy covariance

The EC flux towers span two climate/elevation gradients, a collection of wetland,
grassland, and savanna sites in central California, and chaparral/coastal sage sites in southern
California (Suppl. Table 1). The latitudinal and topographic gradients create a wide range of
mean annual temperature and precipitation among the sites (Suppl. Fig. 1). Further, given the
climatological wet season that typically lasts from late autumn to early spring, a number of
ecosystem types and plant hydrological adaptations occur in this region, allowing us to observe a

wide range of GPP patterns.
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Three sets of sites were used here. One climate/elevation gradient crosses the San Jacinto
Mountains in southern California, the other ascends from the San Joaquin Valley into the Sierra
Nevada Mountains in central California, and the third set includes agricultural and wetland sites
(Fig. 1). The southern California gradient includes the following sites (all site names
corresponding with the dominant vegetation type): Grassland, Coastal Sage, and Oak-Pine Forest
on the western slope of the San Jacinto Mountains, and Pinyon-Juniper Woodland, Desert
Chaparral and Sonoran Desert on the eastern slope (Kelly and Goulden, 2008; Goulden et al.,
2012), rising from 470 m elevation to 1300 m and back down to 275 m in the desert (Table 1).
The Sierra gradient is situated within the Upper Kings River watershed, and comprises
grassland-savanna (Oak-Pine Woodland) and forest (Ponderosa Pine and Mixed Conifer) sites

(Fig. 1), increasing in elevation from 405 m to 2015 m (Goulden et al., 2006).

The wetland and agricultural sites (pasture, rice paddy and alfalfa) are near the San
Joaquin River, in the grassland-savanna of the lower Sierra Nevada foothills, and grassland in the
Altamont Hills. The wetlands (Twitchell East End Wetland and Mayberry Wetland) are recently
restored (2010-2014) and the nearby agricultural fields (Twitchell Island, rice paddy; Twitchell
Alfalfa, alfalfa field; Sherman Island, pasture) are actively managed. The sites located in the
foothills are located on privately owned land and occasionally grazed by cattle. The Diablo
grassland, located in the Altamont Hills, is owned by the Lawrence Livermore National
Laboratory and is not actively managed. The southern California shrubland sites are located at
the Sky Oaks Field Station (San Diego State University), with one flux tower in old-growth
chaparral (Sky Oaks New) and the other in recently naturally burned (2003) chaparral (Sky Oaks

Young).
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From all 19 tower sites, half-hourly estimates of CO; flux were measured using the eddy
covariance technique (Aubinet et al., 2011). We gap-filled missing and quality-screened data
points using the Desai-Cook gap filling model (Cook et al., 2004; Desai et al., 2005). This model
was applied to data filtered according to a turbulence threshold based on friction velocity (u*),
utilizing the 30-minute averages for turbulent carbon flux or net ecosystem exchange (NEE). The
model uses a variable moving-window mean diurnal variation method to estimate missing
meteorological data, with the window size depending on the completeness of the dataset. The
Eyring function (Cook et al., 2004) was then applied to the data to estimate ecosystem
respiration (Reco). GPP was then estimated as the residual between the 30-minute modeled Reco
and the measured NEE data. Variation in the estimated GPP was then related to 30-minute
averages for site photosynthetically active radiation (PAR) with a Michaelis-Menton reaction
rate equation (Falge ef al., 2001). The resulting models afforded GPP predictions when there
were NEE gaps in the original dataset, allowing us to adequately characterize seasonal and
annual GPP dynamics (Baldocchi et al., 2015). However, comparisons to imagery were limited

to periods when NEE observations were measured.

Image acquisition

During the NASA HysplIRI Preparatory Campaign (Hochberg ef al. 2015, Lee et al.
2015), all 19 flux tower sites were repeatedly overflown by the NASA ER-2 aircraft at 20 km,
collecting imaging spectroscopy and thermal imagery using the AVIRIS (Airborne
Visible/Infrared Imaging Spectrometer) and MASTER (MODIS/Advanced Spaceborne Thermal
Emission and Reflection Radiometer Airborne Simulator) sensors (Fig. 1). The AVIRIS sensor
measures reflected solar energy in the 380-2510 nm spectral region with 224 spectral bands, with

an average bandwidth of 10 nm (Vane et al., 1993, Green et al., 1998). Flights were conducted at
7
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several times throughout the dry and wet seasons and timed to capture maximum variation in

plant phenology and ecosystem function (Suppl. Table 2).

The NASA Jet Propulsion Laboratory processed data, including radiometric calibration to
surface reflectance following Thompson et al. (2015) and ortho-rectification and resampling to
consistent 18-m pixels. To normalize between- and within-scene brightness offsets, we
performed a brightness correction on all scenes following Feilhauer ef a/ (2010) as discussed in
Serbin et a/ (2015). Images were topographically corrected using the modified sun-canopy-
sensor topographic method (Soenen et al. 2005), and cross-track changes in bidirectional
reflectance distribution function (BRDF) were corrected using a quadratic function of the
volumetric scattering term from the Ross-Thick BRDF model (Roujean ef al. 1992, Lucht ef al.
2000). Prior to analysis, we removed the five shortest and longest wavebands, along with those
influenced by atmospheric water (1313—1453 nm and 1782-2018 nm), leaving 172 of the 224

channels of AVIRIS data over the 414-2447 nm range.

Image data extraction from tower footprints

For each tower site, AVIRIS data were extracted only from cloud-free acquisitions.
Locations of flux towers were identified within AVIRIS images using GPS coordinates, and
spectra were extracted only from pixels containing within tower influence areas, as described
below. The total number of acquisitions for our analysis was 102, encompassing 19 towers with
an average of 5.4 acquisitions from multiple overflights during a 2-year period (Table 1). To
identify the vegetation influencing tower GPP, a one-dimensional online footprint model, based
on Kljun et al. (2015), was used to estimate the size of the tower- influenced footprint at the time

of each overflight. The model uses observations or estimates of conditions in the atmospheric
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boundary layer and canopy layer, including standard deviation of vertical velocity, surface
friction velocity, instrument measurement height, boundary layer height, and roughness length.
These were derived from the meteorological measurements made at the flux tower or, in the case
of boundary layer height, assumed to be 1500 m, for each overflight. Overlapping AVIRIS pixels
were based on the upwind distance from the tower so as to encompass 90% of the total surface
footprint influence. The footprint crosswind width was calculated as half the total length, so that
the footprint was represented as a rectangle beginning from the base of the tower. The 18 m x 18
m AVIRIS pixels from this footprint rectangle were then extracted for analysis, with the pixels in
the footprint averaged to create a mean reflectance value for each AVIRIS band. The use of the
footprint model allows us to address possible bias in flux tower measurements owing to different
land cover or photosynthesis rates with direction and distance (Xu et al., 2017), a concern

particularly at some of the more open and semi-arid sites.

Linking footprint imagery and tower flux data

We adopted two approaches to evaluate the sensitivity of imaging spectroscopy data to
variation in GPP. First, we analyzed relationships between GPP and vegetation indices, which
are routinely used in remote sensing of vegetation physiology (e.g., Roberts ez al. 2011). We also
statistically modeled GPP variation using partial least squares regression (PLSR) modeling
approach, a chemometric method (Wold et al. 2001) that is often used for the analysis of
hyperspectral imagery (Townsend et al. 2003, Martin et al. 2008, Wolter ef al. 2008, Singh et al.
2015, Serbin et al. 2015) because it can exploit the full reflectance spectrum rather than select
data subsets (such as vegetation indices) and doesn’t assume the remote sensing data were
measured without error. Furthermore, PLSR avoids collinearity in the predictor variables (i.e.

wavelengths) even when these exceed the number of observations (Geladi and Kowalski, 1986;

9
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Wold et al., 2001, Carascal et al., 2009). These issues are avoided by reducing the number of
predictor variables down to relatively few, non-correlated latent components, using a stepwise
selection method with individual bands or indices (Grossman ef al. 1996). These latent
components capture other nuance in the relationship between the spectra and GPP (e.g. canopy
structure, leaf physiology, nutrients) (Asner et al. 2008, Asner et al. 2011). PLSR is not a
standard linear regression, and instead uses singular value decomposition (SVD) to reduce the
predictor matrix to a much smaller set of predictor latent components, which are transformed
through scores, weightings, and internal relationships to build the vector of regression
coefficients by wavelength or index (Geladi and Kowalski, 1986; Wold et al., 2001). This is not
a limitation of PLSR but instead a feature of the approach which can allow for the dimensionality

reduction of large problems to a much simpler model.

For the analysis of vegetation indices, we calculated Normalized Difference Spectral
Indices (NDSI) for all combinations of the 172 wavebands in our VSWIR imagery, where, for
each pair of bands (e.g., i and j), one band’s reflectance value (Band;) is subtracted from the

other’s (Band;), and the difference is divided by their sum:

NDSI[i,;j] = [Band;-Band;]/[Band;+Band;j] (Eq. 1)

NDSI offers the ability to examine all narrowband features — in this case 14,792 possibilities —
and determine their relationship with ecosystem function, such as GPP (Inoue et al., 2008; Ryu
et al., 2010). Normalization standardizes NDSI values from -1 to 1 and reduces atmospheric and
BRDF effects not otherwise addressed in preprocessing. We note that the NDSI approach

includes calculation of several widely used indices, including Normalized Difference Vegetation

10
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Index (NDVI, normalized index of 850 and 650 nm, Tucker, 1979) and Photochemical
Reflectance Index (PRI, normalized index of 531 and 570 nm, Gamon et al. 1992). NDVI is of
interest because of its wide use as a correlate with variation in aboveground vegetation structure
and greenness, while PRI is related to stress-induced physiological responses (Gamon et al.
1997, Penuelas et al. 1995, Garbulsky ef al. 2011). There are a vast number of additional
multispectral and hyperspectral indices that have been correlated with vegetation function (Ustin
et al. 2009), but the NDSI approach, covering all possible combinations of bands and their linear
combinations, captures the variation expressed in those indices, so the only additional index we
tested was a simple chlorophyll index (Gitelson and Merzlyak, 1996), calculated as [(1/R700)-

(1/Rs50)-0.15151/0.01517.

We first analyzed correlations between GPP and NDSI using data pooled across all sites,
and then performed the same analysis on data subdivided by the four plant functional types
(PFTs). Separating data into PFTs enabled assessment of the extent to which correlation was
simply a consequence of broad differences in GPP across physiognomic vegetation types that
look different in imagery (likely due to differences in physiognomy and/or soil fraction in the
AVIRIS pixels), and subsequently whether image spectroscopy could detect variations within

types independent of the structural differences among them.

PLSR, implemented in Python, was used to examine the relationship between flux tower
and imagery data across the full reflectance spectrum, i.e., using all 172 wavebands. Typically,
PLSR analyses are applied to reflectance from the 172 bands, enabling the exploitation of all
information in the spectrum and resulting in an equation having a beta coefficient for reflectance

in each waveband (e.g., Martin et al. 2008, Singh et al. 2015, Serbin et al. 2015). Here, we tested

11
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a new approach to PLSR, using the 14,792 NDSI combinations rather than reflectance bands as
inputs. The closest 30 minute average GPP estimate to image acquisition was used to minimize
the effects of diurnal changes in productivity. We performed 1,000 permutations of the data with
a 2/3-1/3 split for calibration and validation. We determined the number of components to be
used for model fitting by successively increasing the number of components from 1 to 15 till
model validation statistics indicated overfitting. Once the number of components had been fixed,
we extracted 2/3 of the data using a stratified random sampling strategy based on the land cover,
and applied the model to the 1/3 of the withheld data for validation. In addition, to reflect
uncertainties in the response variable, we added noise equivalent to 20% of each observation
during each iteration by sampling from a normal distribution with a mean at the observation, and
a standard deviation equal to 20% of the mean. This way, our modeling strategy accounts for
uncertainties in data completeness by randomly dropping 1/3 of the tower sites, and in addition,
accounts for uncertainties in the observations themselves. At each model iteration, we stored the
PLSR coefficients, and present calibration and validation R?, biases, and RMSEs as a percent of
variation as model diagnostics. Supplemental Table 4 shows overall model performance
diagnostics, and diagnostics averaged across functional types. A heat graph of model coefficients
by wavelength pairs was used to illustrate the importance of specific wavelengths and
wavelength combinations as predictors of flux tower GPP from AVIRIS data. Use of NDSI
rather than reflectance enables us to test whether identification of narrow absorption features is

more predictive of vegetation function than magnitude of reflectance at a particular wavelength.

Lastly, we compared the predictive capacity of imaging spectroscopy from high-altitude
AVIRIS against standard methods used to estimate GPP from broadband measurements. For this,

we applied the broadband light-use efficiency method of Sims et al. (2008) to estimate satellite-

12
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derived GPP using Terra MODIS broadband-based enhanced vegetation index (EVI) and land
surface temperature (LST), which has previously been shown to outperform the traditional and
similar MOD17 GPP product by including a scalar to account for a water stress response of GPP
(Sims et al., 2008). For the comparison, we convolved the AVIRIS wavelengths corresponding
with the MODIS bands used to calculate EVI. We used LST estimates from the MODIS/ASTER
airborne simulator (MASTER) (Hook ef al., 2001), which was acquired simultaneously with
AVIRIS imagery (Lee et al. 2015). Sims et al. (2008) parameterized the scalar quantity m using
three years of flux tower data. The model developed in Sims et al. (2008) requires mean annual
nighttime LST estimates in the calibration of parameter m. However, there were not enough
MASTER flights conducted at night to make this approach viable, so we instead used the mean
of annual nighttime temperature calculated from flux tower data. Finally, we also compared the
MODIS GPP product to tower GPP using the 1-km MODIS pixel encompassing the tower
location (LP DAAC, 2015). Tower GPP was then aggregated to 8-day estimates to match the

MODIS product.

Results

The two-year study period occurred during a period of lower than average precipitation
and higher than average temperature (Table 1, Suppl. Fig. 1). Over this time, among our 19
tower sites, the desert site recorded the lowest daily average tower-based GPP, 0.5 umol m? s,
while the irrigated Twitchell Alfalfa site (USTW3), which becomes highly productive between
cuttings, set the maximum, 25.6 umol m s (Fig. 2). The coefficient of variation for GPP (30-
minute average) at the time of AVIRIS overflights was 70% within individual tower sites, and

109% averaged across sites.
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Heat graphs (Figs. 3-4) illustrate correlations between GPP (30-minute average) at the
time of overflight and NDSI calculated for each of the 14,792 waveband combinations in the
corresponding footprint hyperspectral imagery. GPP and NDSI were closely correlated (Jr| > 0.6)
in broad regions of the spectrum when data were pooled across all sites (Fig. 3). In contrast,
within vegetation types, strong correlations were generally restricted to narrower regions of the
spectrum. Particular bands of high correlation include 414-434 nm, 704-714 nm, and 743-792
nm (Suppl. Table 3). In forests (Fig. 4a), high correlation (|r| > 0.7) occurred only when NDSI
was generated from two groups of narrowband wavelength combinations, one based on 890-909
nm with 812 nm and another with 2278-2307 nm against 2138-2198 nm, reflective of larger
differences in near infrared albedo across forest types and changes in shortwave infrared related
to canopy structure, water content, and leaf nitrogen. Among the widely used vegetation indices
that we evaluated, NDVI and the chlorophyll index correlated with GPP (R? = 0.70 and 0.44
respectively) across all sites (Fig. 3), but these relationships were not significant within the forest

type (Fig. 4, p>0.05). PRI, on the other hand, did not correlate with GPP across sites (p>0.05).

PLSR results reveal high fidelity in the ability to predict GPP across all sites and
vegetation types (R? = 0.78, P < 0.0001, Fig. 5a), with all cover types performing similarly. The
only significant difference between slopes of actual vs. predicted GPP occurred between
grasslands and forest (P =0.0015). Normalized PLSR coefficients (Fig. 6) indicate that an array
of specific features, distributed throughout the entire spectrum, contribute substantively to the
predictive model. Important narrow spectral regions in the predictive model included NDSI band
combinations using 1250-1280 nm (combined in particular with wavelengths across the NIR),

2030-2050 nm, and 2270-2300 nm. Broader SWIR features important to the model incudes

14
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NDSIs in the 1710-1780 nm (when combined with 1250-1270 nm) and 1500-1680 nm regions

(Fig. 6).

In contrast, the Sims broadband approach for remote estimation of GPP from spectra
(Fig. 5b) is generally able to differentiate highest from lowest values of GPP across all types (R?
=0.68, P <0.0001), but not as well as the PLSR approach, and does not accurately predict
spatial and temporal variation in GPP within functional types. Slopes between actual and
predicted GPP (Fig. 5b) vary significantly between grassland and forest (P = 0.0044), grasslands
and shrublands (P = 0.041), and grasslands and wetlands (P = 0.0041). The models also deviate
considerably from the 1:1 line compared the PLSR approach. This outcome is also replicated

using other approaches such as the MODIS GPP product (MOD17A2.005) (Suppl. Fig. 2).

Discussion

Water stress is likely one of the strongest drivers of large-scale GPP reductions globally (Ciais et
al., 2003). Collectively, the results of this study illustrate the capacity of imaging spectroscopy to
more accurately capture spatial and temporal variation in terrestrial ecosystem GPP over a water-
stressed landscape, though additional years of observations over the same sites in non-drought
conditions would be required to evaluate the full capability of the approach. In addition to its
improved predictive capability relative to existing remote sensing approaches, an appealing
advantage of the narrowband PLSR model we derived, relative to conventional broadband
approaches, is that it does not require external inputs of meteorology or parameters related to

plant ecophysiology.
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Although the potential of imaging spectroscopy to track GPP has been shown at
individual towers (Matthes et al., 2015; Gamon et al., 2015) and with individual indices (Alton,
2017), our study is the first to demonstrate the capability across a diverse array of ecosystems,
utilizing the full information content of narrowband spectra. Our results provide a robust initial
assessment of the reliability of spatial extrapolation from hyperspectral imagery to justify the

benefits of proposed future missions to GPP mapping (Schimel et al. 2015).

It is likely that a significant improvement in the fit over broadband occurs primarily from
directly capturing the effects of physiology on GPP, which are highly variable over space and
time. This improvement may be most noticeable in evergreen species, whose leaf phenology and
density may be relatively constant, limiting broadband sensitivity to GPP variation. While a
direct PLSR approach was not applied to the MODIS bands separately, the Sims model tested
here represents the best-in-class for currently published MODIS based GPP algorithms. There
are limitations in the comparison with the Sims model, as we were required to use air
temperature rather than LST for the nighttime temperature measurements. However, modest
adjustments in nighttime temperature parameters are unlikely to change the conclusion the PLSR

model outperformed the broadband based model.

High correlations occurring with NDSIs at using wavelengths close to each other in the
spectra indicate the importance of narrow features in the spectrum to vegetation properties that
influence tower GPP. The heat graph of NDSI contributions to the PLSR model of GPP (Fig. 6)
indicates several key narrowband combinations that are important to predicting tower GPP,
especially in wavelength regions that have been shown to be important to vegetation physiology.

Our findings mirror those of previous studies (e.g. Matthes et al., 2015; Zarco-Tejada et al.,
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2001; Singh et al., 2015; Ryu et al., 2010), which show a number of consistent regions of high
correlation between GPP and narrowband NDSI. Ryu et al. (2010) used NDSI to compare
spectra in the range of 400 nm and 900 nm with assimilation calculated using a similar flux
partitioning method at the Vaira Ranch site between 2006 and 2009. The wavelength
combinations associated with high and low correlation in the NDSI figure from the Ryu et al.
(2010) study match the NDSI figure from this study for the Grassland group of sites, which
includes the Vaira Ranch site. The broad areas of high correlation for the given spectral range are
present in both figures, as are the narrow features of low correlation associated with indices
involving 700 nm and the range 400 to 700 nm, and 750 nm and the range 750 to 900 nm. Unlike
Ryu et al, we were also able to demonstrate consistently important wavelengths in the shortwave

infrared (SWIR, >1100 nm).

Our findings confirm that specific features are associated with leaf/canopy spectral traits
that reflect variation in leaf structure and function. The wavelengths significant to our PLSR
model coincide with important physiological features, which is consistent with previous analyses
showing AVIRIS wavelengths can be used to predict photosynthetic capacity via known features
as opposed to simply measuring canopy structure (Serbin et al., 2015). Narrow NDSI
combinations of wavelengths in the SWIR (2050 nm) and near infrared (760 nm) appear
especially influential, as do some broader features around 1200, 1600 and 2200 nm. For the
shortwave infrared regions, RuBisCo has known spectral absorption features around wavelengths
1500, 1680, 1740, 2050, and 2290 (also: 1940, 2170 and 2470 nm) (Elvidge, 1990), while
significant wavelengths in the leaf-level Vemax model presented in Serbin et al. (2012) occur at
1510, 1680 and 1760, nm (also 1940, 2210, and 2490 nm). Using AVIRIS imagery, Serbin et al.

(2015) identified key features at 1158-1168, 1722-1732 and 2300-2400 nm.
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374 In contrast, across all sites, the visible and near infrared regions (VNIR, 400-1100 nm)
375  did not exhibit as many key features for predicting GPP as did the SWIR. However, key narrow
376  features do appear in the chlorophyll a absorption wavelengths at 414-434 nm, the red-edge
377  (704-714 nm), and in the NIR (743-792 nm, including 763 nm, near a well-documented

378  chlorophyll fluorescence feature). Spectral features such as the broader red edge (690-750 nm)
379  are unsurprising as they are known to shift under water stress conditions (Vogelmann et al.,
380  1993), one of the major contributors to variations in GPP in the ecosystems of California that
381  were strongly affected by drought during our study period (Asner ef al., 2016). These findings
382  demonstrate that the improved predictive performance of a model based on imaging

383  spectroscopy likely results from exploiting multiple mechanistic links among observed plant

384  pigments, traits, and functional response.

385 Using the NDSIs (rather than raw reflectance wavelengths) allows the identification of
386  combinations of narrow features (one or two wavebands wide) that appear repeatedly as

387  important in our model. The heat graph for the PLSR coefficients using NDSI show a range of
388  narrow features with high contribution to the PLSR (e.g., 2288 nm) and wider features indicating
389  broader correlations, likely related to vegetation water content (e.g., 1503-1682 nm). In

390  particular, combinations of narrow wavebands centered on 414, 1762, 2048 and 2298 appeared
391  repeatedly in the PLSR model (indicated by streaks in the heat graph in Fig. 6). The value to

392  PLSR used in the way presented here is that we were able to exploit both the full spectrum in the
393  PLSR, but also narrow features at specific wavebands that emerged in the important NDSIs in

394  the model.

18



395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

The differences between the correlation heat maps (Figs. 3 and 4) and PLSR heatmap
(Fig. 6) demonstrate the value of the imaging spectroscopy and PLSR approaches in estimating
GPP across broadly varying ecosystems. Simple correlations with NDSI in which all cover types
are pooled (Fig. 3) indicate that broad areas of the spectrum characterized by widely used indices
such as NDVI, rather than narrow features that require imaging spectroscopy, are sufficient to
capture major variation in GPP that is largely attributable to differences in physiognomic cover
type (e.g., forest vs. grassland). This suggests decent discrimination of differences between types

but poor predictability within types (Fig 5b).

In contrast, the correlation heat graph broken out by cover type (Fig. 4) shows widely
differing correlations between GPP and hyperspectral NDSIs by type, and indicates that both
narrow and broad regions within different cover types are important correlates with GPP.
Moving to a predictive framework, the PLSR of all data using NDSIs (Figs 5a, 6) demonstrates
that the imaging spectroscopy data — using NDSIs — can effectively discriminate variations in
GPP encompassing differences between and within cover types. When contrasted with
broadband approaches (5a vs. 5b), both imaging spectroscopy and broadband analyses
adequately capture variations associated with type differences, although the imaging
spectroscopy model exhibits less bias (Fig 5a) than the broadband model (Fig 5b), with the
imaging spectroscopy PLSR approach standing out in that the different cover types more closely
align along the same 1:1 line than the broadband approach. The limited dataset does not allow in
depth analysis of model performance for each vegetation type, but the model generated more
accurate predicted GPP for Grassland-Savanna, Shrubland and Wetland, while the Forest type
exhibited the lowest correlation (Suppl. Table 4). The NDSI values associated with the Forest set

of sites also exhibited the lowest overall average correlation (Fig. 4). The lower relative
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performance of both the model and average NDSI correlation for Forest sites compared to the
other types is expected, as the LAI for these sites is relatively constant throughout the growing
season, as compared to other sites with a less dense canopy. Broad spectral areas of correlation
(Fig. 4) are prevalent in sites where LAI is highly correlated with ecosystem productivity. For
this reason, broadband-based productivity models can generally perform well across vegetative
types, while the relationship breaks down within a classification (Fig. 5b). Furthermore, variation
within a single site has been difficult to detect with all existing models examined, but the
narrowband-based model presented in this study is able to maintain low error and bias within
vegetation types, including Forest sites which produced the lowest adjusted R? value (0.32). The
result of this ability to capture variability within PFTs is a more robust model when compared to
broadband based predictive models including the Sims model (Fig. 5). We provide the first
evidence that a complex range of sites can be well simulated with no additional information
beyond the spectral content and the PLSR model. Additional research and sampling is required

to examine potential methods to improve predictability within Forest sites.

Collectively, these analyses enable us to determine the capacity to extrapolate ecosystem
function derived from flux tower data using hyperspectral imagery, and then infer ecosystem
responses to climate anomalies such as the unprecedented drought that occurred in California
during our study period (Asner et al., 2016). Challenges remain in handling diverse canopy
architecture, especially open canopies with large soil exposed gaps, and integrating across
complex terrain, land management, and seasonally stressed ecosystems (Kobayashi ef al., 2012).
Additional measurements across a wider range of climatic and ecological conditions will be

required to develop a useful model at broader scales. Nonetheless, our findings have an
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important bearing on proposed future satellite-borne imaging spectroscopy missions that could

fill the gaps in the globally sparse network of EC flux towers (Schimel ef al. 2015).

Conclusion

Flux tower estimates of GPP across multiple ecosystems in a water-stressed region offer
important observations that can inform remote sensing algorithm development for improved
detection of drought impacts on carbon cycling and plant productivity. PLSR models based on
imaging spectroscopy with high spectral resolution are capable of accurately predicting GPP
independent of vegetation type and season, with significant improvement over traditional
broadband approaches. Use of NDSIs in our PLSR models enabled us to leverage not only the
full spectrum, as is common with hyperspectral imagery, but also narrow features identifiable in
combinations of narrow bands, which has not typically been done in hyperspectral analyses, as

usually just reflectance by wavelength is used.

Our findings provide the opportunity to accurately map ecosystem properties where
broadband sensor capabilities are limited and suggest that spectral resolution is as or even more
important than spatial resolution in consideration of future sensor design for satellite remote
sensing. Further, there is strong evidence for mechanistic links among wavelengths and response
associated with specific elements in leaf structure that influence plant productivity, and therefore
GPP, on a canopy scale. We conclude that the sensitivity of ecosystem metabolism to ongoing
and future climatic changes can be monitored continuously at high spatial resolution using

satellites equipped with sensors similar to the proposed HyspIRI imaging spectrometer.
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695 Tables

696  Table 1. Eddy covariance flux tower site information, including average temperature (°C) and
697  precipitation (%) anomalies for 2013-2014 against the average for 2003 through 2012. SiteID
698  corresponds with Ameriflux Site ID. (PRISM Climate Group, Oregon State University,

699  http://prism.oregonstate.edu, created 17 May 2016)

700

Site Name Latitude | Longitude | SiteID PFT 2013-2014 2013-2014

Classification | Temperature Precipitation
anomaly anomaly (percent
(degrees C) of average)

Twitchell Island | 38.1055 -121.652 | USTWT Wetlands 1.5 61

Twitchell East 38.103 -121.641 | USTW4 Wetlands 1.8 61

End Wetland

Mayberry 38.0498 -121.765 | USMYB Wetlands 1.5 63

Wetland

Tonzi Ranch 38.4316 -120.966 | USTon Grassland- 1.3 58
Savanna

Vaira Ranch 38.4067 -120.951 | USVar Grassland- 1.3 58
Savanna

Twitchell Alfalfa | 38.1159 -121.647 | USTW3 Grassland- 1.5 61
Savanna

Sherman Island 38.0373 -121.754 | USSnd Grassland- 1.5 63
Savanna

Diablo 37.6773 -121.53 | USDia Grassland- 1.4 63
Savanna

Oak-Pine 37.1087 -119.731 | USCZ1 Grassland- 1.5 32

Woodland Savanna

Grassland 33.737 -117.695 | USSCg Grassland- 1.6 36
Savanna

Sierran Mixed 37.0675 -119.195 | USCZ3 Forest 1.3 34

Conifer Forest

Ponderosa Pine 37.0310 -119.257 | USCZ2 Forest 1.6 33

Forest

Oak-Pine Forest 33.808 -116.772 | USSCf Forest 1.8 51

Coastal Sage 33.734 | -117.696 | USSCs Shrubland 1.6 36

Desert Chaparral 33.61 -116.45 | USSCc Shrubland 1.6 46

Pinyon-Juniper 33.605 -116.455 | USSCw Shrubland 1.6 46

Woodland

Sky Oaks New 33.3844 -116.64 | USSO4 Shrubland 1.5 58

3
Sky Oaks Young | 33.3772 -116.623 | USSO3 Shrubland 1.5 58
Sonoran Desert 33.652 -116.372 | USSCd Shrubland 1.5 43
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Figures Captions

Figure 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the
study region in 2013 and 2014 (imagery: Google Earth).

Figure 2. Eddy covariance mean daily GPP for each study site, with flight imagery acquisition
times noted by dotted lines. Colors represent site plant functional category used in analysis.

Figure 3. Linear Pearson correlation coefficient of tower GPP to airborne imagery spectra
normalized difference between all combinations of two bands (NDSI). Black box denotes
general region and width of normalized difference vegetation index (NDVI) used by broadband
sensors and yellow box the photochemical reflectance index (PRI). This figure includes all sites.
Strong positive and negative correlations exist in a number of broad spectral regions. Histogram
shows frequency of correlation on legend.

Figure 4. Same as Fig. 3, but based on plant functional category, including a) forests, b)
wetlands, ¢) shrublands, and d) grasslands. In contrast to Fig. 3, many areas of previously
significant correlation disappear and those that persist are generally narrower in width.

Figure 5. Predicted 30-minute average GPP (umol [m™ ground area] s!) derived by a) partial
least squares regression of NDSIs based on all airborne spectra and b) airborne spectra simulated
as broadband and applied to a widely used GPP model (Sims et al. 2008). While both models
capture variability in flux tower GPP across all vegetation types, only the narrowband PLSR
model (left) shows low bias and similar performance for all cover types. Bars represent
uncertainty in eddy covariance fluxes (vertical, calculated as 20% of the GPP value [Desai ef al.,
2008]) and PLSR regression (horizontal, calculated as one standard deviation based off the 1000
iterations of the PLSR model).

Figure 6. Coefficients from the PLSR predicting EC-based GPP as a function of NDSIs based on
all data pooled across all sites. Values plotted are mean coefficients, based on 1000
permutations, and higher absolute values indicate higher contribution to the predictive model.
Only NDSI combinations that were significantly different from zero across the 1000
permutations are plotted. Also shown at bottom (shaded) is histogram of how frequently
wavelengths appear in the PLSR predicting EC-based GPP as a function of NDSIs, based on all
data pooled across all sites.
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730  Figure 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the
731  study region in 2013 and 2014 (imagery: Google Earth).
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735  Figure 2. Eddy covariance mean daily GPP for each study site, with flight imagery acquisition

736  times noted by dotted lines. Colors represent site plant functional category used in analysis.
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738  Figure 3. Linear Pearson correlation coefficient of tower GPP to airborne imagery spectra

739  normalized difference between all combinations of two bands (NDSI). Black box denotes

740  general region and width of normalized difference vegetation index (NDVI) used by broadband
741  sensors and yellow box the photochemical reflectance index (PRI). This figure includes all sites.
742  Strong positive and negative correlations exist in a number of broad spectral regions. Histogram

743  shows frequency of correlation on legend.
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746  Figure 4. Same as Fig. 3, but based on plant functional category, including a) forests, b)
747  wetlands, c¢) shrublands, and d) grasslands. In contrast to Fig. 3, many areas of previously

748  significant correlation disappear and those that persist are generally narrower in width.
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750  Figure 5. Predicted 30-minute average GPP (umol [m ground area] s!) derived by a) partial
751  least squares regression of NDSIs based on all airborne spectra and b) airborne spectra simulated
752  as broadband and applied to a widely used GPP model (Sims et al. 2008). While both models
753  capture variability in flux tower GPP across all vegetation types, only the narrowband PLSR
754  model (left) shows low bias (validation bias is 0.04 for the PLSR model, and -5.71 for the Sims
755  model) and similar performance for all cover types (Suppl. Table 4). Bars represent uncertainty
756  in eddy covariance fluxes (vertical, calculated as 20% of the GPP value [Desai et al., 2008]) and
757  PLSR regression (horizontal, calculated as one standard deviation based off the 1000 iterations

758  of the PLSR model).
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760  Figure 6. Coefficients from the PLSR predicting EC-based GPP as a function of NDSIs based on
761  all data pooled across all sites. Values plotted are mean coefficients, based on 1000

762  permutations, and higher absolute values indicate higher contribution to the predictive model.
763  Only NDSI combinations that were significantly different from zero across the 1000

764  permutations are plotted. Also shown at bottom (shaded) is histogram of how frequently

765  wavelengths appear in the PLSR predicting EC-based GPP as a function of NDSIs, based on all

766  data pooled across all sites.
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