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Abstract  22 

A central challenge to understanding how climate anomalies, such as drought and 23 

heatwaves, impact the terrestrial carbon cycle, is quantification and scaling of spatial and 24 

temporal variation in ecosystem gross primary productivity (GPP). Existing empirical and 25 

model-based satellite broadband spectra-based products have been shown to miss critical 26 

variation in GPP. Here, we evaluate the potential of high spectral resolution (10 nm) shortwave 27 

(400-2500 nm) imagery to better detect spatial and temporal variations in GPP across a range of 28 

ecosystems, including forests, grasslands, wetlands, and shrublands in a water-stressed region. 29 

Estimates of GPP from eddy covariance (EC) observations were compared against airborne 30 

hyperspectral imagery, collected across California during the 2013-2014 HyspIRI airborne 31 

preparatory campaign. Observations from 19 flux towers across 23 flight campaigns (102 total 32 

image-flux tower pairs) showed GPP to be strongly correlated to a suite of spectral wavelengths 33 

and band ratios associated with foliar physiology and chemistry. A partial least squares 34 

regression (PLSR) modeling approach was then used to predict GPP with higher validation 35 

accuracy [adjusted R2 = 0.71] and low bias (0.04) compared to existing broadband approaches 36 

[e.g., adjusted R2 = 0.68 and bias = -5.71 with the Sims et al. (2008) model]. Significant 37 

wavelengths contributing to the PLSR include those previously shown to coincide with Rubisco 38 

(wavelengths 1680, 1740 and 2290 nm) and Vcmax (wavelengths 1680, 1722, 1732, 1760, and 39 

2300 nm). These results provide strong evidence that advances in satellite spectral resolution 40 

offer significant promise for improved satellite-based monitoring of GPP variability across a 41 

diverse range of terrestrial ecosystems.  42 

Keywords: GPP, eddy covariance, imaging spectroscopy, hyperspectral imagery, HyspIRI  43 
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Introduction  44 

Recent work by Serbin et al. (2015) and Singh et al. (2015) has shown promising 45 

advancements in the use of hyperspectral imaging, collected from high-altitude airborne 46 

missions, to map the variation in the drivers of gross primary productivity (GPP) through 47 

measurement of leaf structure, metabolic capacities, and related biochemistry. While the use of 48 

broadband spectroscopy on tower, airborne, and satellite platforms to quantify seasonal variation 49 

in vegetation greenness, leaf area, and photosynthesis is well established (Carlson and Ripley, 50 

1997; Myneni et al., 2002; Heinsch et al., 2006), imaging spectroscopy affords new 51 

opportunities to more accurately monitor spatial and temporal variation in ecosystem function 52 

based on its sensitivity to leaf physiology. Imaging spectroscopy (also known as hyperspectral 53 

imagery) is here defined as reflectance data consisting of narrowband (5-10 nm) measurements 54 

across the full range of visible, near infrared and shortwave infrared wavelengths (VSWIR, 400-55 

2500 nm). Such high-dimensional data take advantage of narrow spectral features related to 56 

specific leaf functional, chemical and structural traits (Curran, 1989; Townsend et al., 2016). 57 

In this study, we test an approach using imaging spectroscopy data collected across two 58 

years as part of the NASA HyspIRI Preparatory campaign to estimate GPP based on linkage to 59 

eddy covariance (EC) data from flux towers, which are currently the most widely used ground 60 

data for inferring ecosystem-level GPP. Although data from broadband sensors such as Landsat 61 

and MODIS have been used to generate GPP maps across large spatial scales (e.g., Running et 62 

al., 2004; Jung et al., 2011), the resulting estimates are subject to large biases and appear to 63 

primarily detect broad differences in GPP among ecosystem types and across vegetation density 64 
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gradients, potentially missing physiological influences on GPP arising from variations in leaf 65 

traits responding to winter dormancy, plant stress, and stomatal response.  66 

For example, the NASA Terra/Aqua-based MODIS GPP MOD17 product correlates well 67 

to flux tower GPP estimates, but, on average, monthly GPP overestimates site-level average GPP 68 

by 20-30% across a range of land cover types compared to EC, with significant discrepancies 69 

between EC and MODIS emerging during phenological transitions (particularly spring green-up) 70 

(Heinsch et al., 2006). As well, MODIS GPP did not capture spatial variability observed at the 71 

flux tower level between sites of similar vegetation type (Heinsch et al., 2006), especially at the 72 

regional scale. As such, a general conclusion is that MODIS may characterize broad variation 73 

among physiognomically different ecosystems by detecting differences in vegetation structure 74 

and/or cover rather than physiology.  75 

The limits of current broadband remote-sensing techniques to accurately predict spatial or 76 

temporal GPP variation (Heinsch et al., 2006) provide an impetus to test the use of imaging 77 

spectroscopy to detect variation in vegetation function directly related to GPP. This is motivated 78 

by increasing evidence that hyperspectral data are sensitive to biochemical and physiological 79 

properties important to ecosystem function (Martin and Aber, 1997; Smith et al. 2002; Ollinger 80 

and Smith 2005; Asner et al., 2007; Martin et al., 2008; Wolter et al., 2008; Ollinger, 2011; Lee 81 

et al., 2015; Schimel et al. 2015; Serbin et al., 2015; Singh, 2015; Jetz et al., 2016). For example, 82 

high-resolution spectral data have the ability to capture variation in foliar concentrations of 83 

water, chlorophyll, cellulose, lignin, nitrogen, and other leaf constituents (Green et al., 1998), 84 

and studies have shown the ability to use hyperspectral data to map these and other leaf traits 85 

(Ustin and Gamon, 2010; Serbin et al., 2012; Singh et al., 2015).  86 
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The NASA HyspIRI Preparatory Airborne mission provided an opportunity to collect a 87 

large quantity of high-resolution imagery across a range of EC flux towers in California covering 88 

numerous seasons across gradients of vegetation type, density, and physiology of temperate and 89 

semi-arid ecosystems with large variation in average GPP. Studied ecosystems ranged from 90 

coastal sage and valley grassland systems to high-elevation conifer forests. Our objective was to 91 

evaluate the ability of imaging spectroscopy data, through time and across multiple EC flux 92 

towers encompassing a range of ecosystem types, to estimate local-scale vegetation productivity. 93 

Flux tower measurements were combined with high-spectral and high-spatial resolution 94 

narrowband visible to shortwave infrared imaging spectroscopy, repeatedly captured at each 95 

tower site with high-altitude airborne sensors, to identify which spectral wavelengths, or 96 

combinations of multiple wavelengths (Inoue et al., 2008), relate most strongly to GPP variation 97 

within and across sites and compare the use of narrowband (400-2500 nm) spectroscopy data for 98 

estimating GPP against existing approaches (e.g., from MODIS) that rely on broadband data. 99 

Methods  100 

GPP  estimates  using  eddy  covariance    101 

The EC flux towers span two climate/elevation gradients, a collection of wetland, 102 

grassland, and savanna sites in central California, and chaparral/coastal sage sites in southern 103 

California (Suppl. Table 1). The latitudinal and topographic gradients create a wide range of 104 

mean annual temperature and precipitation among the sites (Suppl. Fig. 1). Further, given the 105 

climatological wet season that typically lasts from late autumn to early spring, a number of 106 

ecosystem types and plant hydrological adaptations occur in this region, allowing us to observe a 107 

wide range of GPP patterns.  108 
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Three sets of sites were used here. One climate/elevation gradient crosses the San Jacinto 109 

Mountains in southern California, the other ascends from the San Joaquin Valley into the Sierra 110 

Nevada Mountains in central California, and the third set includes agricultural and wetland sites 111 

(Fig. 1). The southern California gradient includes the following sites (all site names 112 

corresponding with the dominant vegetation type): Grassland, Coastal Sage, and Oak-Pine Forest 113 

on the western slope of the San Jacinto Mountains, and Pinyon-Juniper Woodland, Desert 114 

Chaparral and Sonoran Desert on the eastern slope (Kelly and Goulden, 2008; Goulden et al., 115 

2012), rising from 470 m elevation to 1300 m and back down to 275 m in the desert (Table 1). 116 

The Sierra gradient is situated within the Upper Kings River watershed, and comprises 117 

grassland-savanna (Oak-Pine Woodland) and forest (Ponderosa Pine and Mixed Conifer) sites 118 

(Fig. 1), increasing in elevation from 405 m to 2015 m (Goulden et al., 2006).  119 

The wetland and agricultural sites (pasture, rice paddy and alfalfa) are near the San 120 

Joaquin River, in the grassland-savanna of the lower Sierra Nevada foothills, and grassland in the 121 

Altamont Hills. The wetlands (Twitchell East End Wetland and Mayberry Wetland) are recently 122 

restored (2010-2014) and the nearby agricultural fields (Twitchell Island, rice paddy; Twitchell 123 

Alfalfa, alfalfa field; Sherman Island, pasture) are actively managed. The sites located in the 124 

foothills are located on privately owned land and occasionally grazed by cattle. The Diablo 125 

grassland, located in the Altamont Hills, is owned by the Lawrence Livermore National 126 

Laboratory and is not actively managed. The southern California shrubland sites are located at 127 

the Sky Oaks Field Station (San Diego State University), with one flux tower in old-growth 128 

chaparral (Sky Oaks New) and the other in recently naturally burned (2003) chaparral (Sky Oaks 129 

Young). 130 
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From all 19 tower sites, half-hourly estimates of CO2 flux were measured using the eddy 131 

covariance technique (Aubinet et al., 2011). We gap-filled missing and quality-screened data 132 

points using the Desai-Cook gap filling model (Cook et al., 2004; Desai et al., 2005). This model 133 

was applied to data filtered according to a turbulence threshold based on friction velocity (u*), 134 

utilizing the 30-minute averages for turbulent carbon flux or net ecosystem exchange (NEE). The 135 

model uses a variable moving-window mean diurnal variation method to estimate missing 136 

meteorological data, with the window size depending on the completeness of the dataset. The 137 

Eyring function (Cook et al., 2004) was then applied to the data to estimate ecosystem 138 

respiration (Reco). GPP was then estimated as the residual between the 30-minute modeled Reco 139 

and the measured NEE data. Variation in the estimated GPP was then related to 30-minute 140 

averages for site photosynthetically active radiation (PAR) with a Michaelis-Menton reaction 141 

rate equation (Falge et al., 2001). The resulting models afforded GPP predictions when there 142 

were NEE gaps in the original dataset, allowing us to adequately characterize seasonal and 143 

annual GPP dynamics (Baldocchi et al., 2015). However, comparisons to imagery were limited 144 

to periods when NEE observations were measured.  145 

Image  acquisition  146 

During the NASA HyspIRI Preparatory Campaign (Hochberg et al. 2015, Lee et al. 147 

2015), all 19 flux tower sites were repeatedly overflown by the NASA ER-2 aircraft at 20 km, 148 

collecting imaging spectroscopy and thermal imagery using the AVIRIS (Airborne 149 

Visible/Infrared Imaging Spectrometer) and MASTER (MODIS/Advanced Spaceborne Thermal 150 

Emission and Reflection Radiometer Airborne Simulator) sensors (Fig. 1). The AVIRIS sensor 151 

measures reflected solar energy in the 380-2510 nm spectral region with 224 spectral bands, with 152 

an average bandwidth of 10 nm (Vane et al., 1993, Green et al., 1998). Flights were conducted at 153 
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several times throughout the dry and wet seasons and timed to capture maximum variation in 154 

plant phenology and ecosystem function (Suppl. Table 2). 155 

The NASA Jet Propulsion Laboratory processed data, including radiometric calibration to 156 

surface reflectance following Thompson et al. (2015) and ortho-rectification and resampling to 157 

consistent 18-m pixels. To normalize between- and within-scene brightness offsets, we 158 

performed a brightness correction on all scenes following Feilhauer et al (2010) as discussed in 159 

Serbin et al (2015). Images were topographically corrected using the modified sun-canopy-160 

sensor topographic method (Soenen et al. 2005), and cross-track changes in bidirectional 161 

reflectance distribution function (BRDF) were corrected using a quadratic function of the 162 

volumetric scattering term from the Ross-Thick BRDF model (Roujean et al. 1992, Lucht et al. 163 

2000). Prior to analysis, we removed the five shortest and longest wavebands, along with those 164 

influenced by atmospheric water (1313–1453 nm and 1782–2018 nm), leaving 172 of the 224 165 

channels of AVIRIS data over the 414–2447 nm range.  166 

Image  data  extraction  from  tower  footprints    167 

For each tower site, AVIRIS data were extracted only from cloud-free acquisitions. 168 

Locations of flux towers were identified within AVIRIS images using GPS coordinates, and 169 

spectra were extracted only from pixels containing within tower influence areas, as described 170 

below. The total number of acquisitions for our analysis was 102, encompassing 19 towers with 171 

an average of 5.4 acquisitions from multiple overflights during a 2-year period (Table 1). To 172 

identify the vegetation influencing tower GPP, a one-dimensional online footprint model, based 173 

on Kljun et al. (2015), was used to estimate the size of the tower- influenced footprint at the time 174 

of each overflight. The model uses observations or estimates of conditions in the atmospheric 175 
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boundary layer and canopy layer, including standard deviation of vertical velocity, surface 176 

friction velocity, instrument measurement height, boundary layer height, and roughness length. 177 

These were derived from the meteorological measurements made at the flux tower or, in the case 178 

of boundary layer height, assumed to be 1500 m, for each overflight. Overlapping AVIRIS pixels 179 

were based on the upwind distance from the tower so as to encompass 90% of the total surface 180 

footprint influence. The footprint crosswind width was calculated as half the total length, so that 181 

the footprint was represented as a rectangle beginning from the base of the tower. The 18 m x 18 182 

m AVIRIS pixels from this footprint rectangle were then extracted for analysis, with the pixels in 183 

the footprint averaged to create a mean reflectance value for each AVIRIS band. The use of the 184 

footprint model allows us to address possible bias in flux tower measurements owing to different 185 

land cover or photosynthesis rates with direction and distance (Xu et al., 2017), a concern 186 

particularly at some of the more open and semi-arid sites. 187 

Linking  footprint  imagery  and  tower  flux  data  188 

We adopted two approaches to evaluate the sensitivity of imaging spectroscopy data to 189 

variation in GPP. First, we analyzed relationships between GPP and vegetation indices, which 190 

are routinely used in remote sensing of vegetation physiology (e.g., Roberts et al. 2011). We also 191 

statistically modeled GPP variation using partial least squares regression (PLSR) modeling 192 

approach, a chemometric method (Wold et al. 2001) that is often used for the analysis of 193 

hyperspectral imagery (Townsend et al. 2003, Martin et al. 2008, Wolter et al. 2008, Singh et al. 194 

2015, Serbin et al. 2015) because it can exploit the full reflectance spectrum rather than select 195 

data subsets (such as vegetation indices) and doesn’t assume the remote sensing data were 196 

measured without error. Furthermore, PLSR avoids collinearity in the predictor variables (i.e. 197 

wavelengths) even when these exceed the number of observations (Geladi and Kowalski, 1986; 198 
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Wold et al., 2001, Carascal et al., 2009). These issues are avoided by reducing the number of 199 

predictor variables down to relatively few, non-correlated latent components, using a stepwise 200 

selection method with individual bands or indices (Grossman et al. 1996). These latent 201 

components capture other nuance in the relationship between the spectra and GPP (e.g. canopy 202 

structure, leaf physiology, nutrients) (Asner et al. 2008, Asner et al. 2011). PLSR is not a 203 

standard linear regression, and instead uses singular value decomposition (SVD) to reduce the 204 

predictor matrix to a much smaller set of predictor latent components, which are transformed 205 

through scores, weightings, and internal relationships to build the vector of regression 206 

coefficients by wavelength or index (Geladi and Kowalski, 1986; Wold et al., 2001).  This is not 207 

a limitation of PLSR but instead a feature of the approach which can allow for the dimensionality 208 

reduction of large problems to a much simpler model. 209 

For the analysis of vegetation indices, we calculated Normalized Difference Spectral 210 

Indices (NDSI) for all combinations of the 172 wavebands in our VSWIR imagery, where, for 211 

each pair of bands (e.g., i and j), one band’s reflectance value (Bandj) is subtracted from the 212 

other’s (Bandi), and the difference is divided by their sum: 213 

 NDSI[i,j] = [Bandi-Bandj]/[Bandi+Bandj] (Eq. 1) 

 214 

NDSI offers the ability to examine all narrowband features – in this case 14,792 possibilities – 215 

and determine their relationship with ecosystem function, such as GPP (Inoue et al., 2008; Ryu 216 

et al., 2010). Normalization standardizes NDSI values from -1 to 1 and reduces atmospheric and 217 

BRDF effects not otherwise addressed in preprocessing. We note that the NDSI approach 218 

includes calculation of several widely used indices, including Normalized Difference Vegetation 219 
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Index (NDVI, normalized index of 850 and 650 nm, Tucker, 1979) and Photochemical 220 

Reflectance Index (PRI, normalized index of 531 and 570 nm, Gamon et al. 1992). NDVI is of 221 

interest because of its wide use as a correlate with variation in aboveground vegetation structure 222 

and greenness, while PRI is related to stress-induced physiological responses (Gamon et al. 223 

1997, Penuelas et al. 1995, Garbulsky et al. 2011). There are a vast number of additional 224 

multispectral and hyperspectral indices that have been correlated with vegetation function (Ustin 225 

et al. 2009), but the NDSI approach, covering all possible combinations of bands and their linear 226 

combinations, captures the variation expressed in those indices, so the only additional index we 227 

tested was a simple chlorophyll index (Gitelson and Merzlyak, 1996), calculated as [(1/R700)-228 

(1/R850)-0.1515]/0.01517.  229 

We first analyzed correlations between GPP and NDSI using data pooled across all sites, 230 

and then performed the same analysis on data subdivided by the four plant functional types 231 

(PFTs). Separating data into PFTs enabled assessment of the extent to which correlation was 232 

simply a consequence of broad differences in GPP across physiognomic vegetation types that 233 

look different in imagery (likely due to differences in physiognomy and/or soil fraction in the 234 

AVIRIS pixels), and subsequently whether image spectroscopy could detect variations within 235 

types independent of the structural differences among them.  236 

PLSR, implemented in Python, was used to examine the relationship between flux tower 237 

and imagery data across the full reflectance spectrum, i.e., using all 172 wavebands. Typically, 238 

PLSR analyses are applied to reflectance from the 172 bands, enabling the exploitation of all 239 

information in the spectrum and resulting in an equation having a beta coefficient for reflectance 240 

in each waveband (e.g., Martin et al. 2008, Singh et al. 2015, Serbin et al. 2015). Here, we tested 241 
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a new approach to PLSR, using the 14,792 NDSI combinations rather than reflectance bands as 242 

inputs. The closest 30 minute average GPP estimate to image acquisition was used to minimize 243 

the effects of diurnal changes in productivity. We performed 1,000 permutations of the data with 244 

a 2/3-1/3 split for calibration and validation. We determined the number of components to be 245 

used for model fitting by successively increasing the number of components from 1 to 15 till 246 

model validation statistics indicated overfitting. Once the number of components had been fixed, 247 

we extracted 2/3 of the data using a stratified random sampling strategy based on the land cover, 248 

and applied the model to the 1/3 of the withheld data for validation. In addition, to reflect 249 

uncertainties in the response variable, we added noise equivalent to 20% of each observation 250 

during each iteration by sampling from a normal distribution with a mean at the observation, and 251 

a standard deviation equal to 20% of the mean. This way, our modeling strategy accounts for 252 

uncertainties in data completeness by randomly dropping 1/3 of the tower sites, and in addition, 253 

accounts for uncertainties in the observations themselves. At each model iteration, we stored the 254 

PLSR coefficients, and present calibration and validation R2, biases, and RMSEs as a percent of 255 

variation as model diagnostics. Supplemental Table 4 shows overall model performance 256 

diagnostics, and diagnostics averaged across functional types. A heat graph of model coefficients 257 

by wavelength pairs was used to illustrate the importance of specific wavelengths and 258 

wavelength combinations as predictors of flux tower GPP from AVIRIS data. Use of NDSI 259 

rather than reflectance enables us to test whether identification of narrow absorption features is 260 

more predictive of vegetation function than magnitude of reflectance at a particular wavelength.  261 

Lastly, we compared the predictive capacity of imaging spectroscopy from high-altitude 262 

AVIRIS against standard methods used to estimate GPP from broadband measurements. For this, 263 

we applied the broadband light-use efficiency method of Sims et al. (2008) to estimate satellite-264 
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derived GPP using Terra MODIS broadband-based enhanced vegetation index (EVI) and land 265 

surface temperature (LST), which has previously been shown to outperform the traditional and 266 

similar MOD17 GPP product by including a scalar to account for a water stress response of GPP 267 

(Sims et al., 2008). For the comparison, we convolved the AVIRIS wavelengths corresponding 268 

with the MODIS bands used to calculate EVI. We used LST estimates from the MODIS/ASTER 269 

airborne simulator (MASTER) (Hook et al., 2001), which was acquired simultaneously with 270 

AVIRIS imagery (Lee et al. 2015). Sims et al. (2008) parameterized the scalar quantity m using 271 

three years of flux tower data. The model developed in Sims et al. (2008) requires mean annual 272 

nighttime LST estimates in the calibration of parameter m. However, there were not enough 273 

MASTER flights conducted at night to make this approach viable, so we instead used the mean 274 

of annual nighttime temperature calculated from flux tower data. Finally, we also compared the 275 

MODIS GPP product to tower GPP using the 1-km MODIS pixel encompassing the tower 276 

location (LP DAAC, 2015). Tower GPP was then aggregated to 8-day estimates to match the 277 

MODIS product.  278 

Results  279 

The two-year study period occurred during a period of lower than average precipitation 280 

and higher than average temperature (Table 1, Suppl. Fig. 1). Over this time, among our 19 281 

tower sites, the desert site recorded the lowest daily average tower-based GPP, 0.5 µmol m-2 s-1, 282 

while the irrigated Twitchell Alfalfa site (USTW3), which becomes highly productive between 283 

cuttings, set the maximum, 25.6 µmol m-2 s-1 (Fig. 2). The coefficient of variation for GPP (30-284 

minute average) at the time of AVIRIS overflights was 70% within individual tower sites, and 285 

109% averaged across sites.  286 
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Heat graphs (Figs. 3-4) illustrate correlations between GPP (30-minute average) at the 287 

time of overflight and NDSI calculated for each of the 14,792 waveband combinations in the 288 

corresponding footprint hyperspectral imagery. GPP and NDSI were closely correlated (|r| > 0.6) 289 

in broad regions of the spectrum when data were pooled across all sites (Fig. 3). In contrast, 290 

within vegetation types, strong correlations were generally restricted to narrower regions of the 291 

spectrum. Particular bands of high correlation include 414-434 nm, 704-714 nm, and 743-792 292 

nm (Suppl. Table 3). In forests (Fig. 4a), high correlation (|r| > 0.7) occurred only when NDSI 293 

was generated from two groups of narrowband wavelength combinations, one based on 890-909 294 

nm with 812 nm and another with 2278-2307 nm against 2138-2198 nm, reflective of larger 295 

differences in near infrared albedo across forest types and changes in shortwave infrared related 296 

to canopy structure, water content, and leaf nitrogen. Among the widely used vegetation indices 297 

that we evaluated, NDVI and the chlorophyll index correlated with GPP (R2 = 0.70 and 0.44 298 

respectively) across all sites (Fig. 3), but these relationships were not significant within the forest 299 

type (Fig. 4, p>0.05). PRI, on the other hand, did not correlate with GPP across sites (p>0.05). 300 

PLSR results reveal high fidelity in the ability to predict GPP across all sites and 301 

vegetation types (R2 = 0.78, P < 0.0001, Fig. 5a), with all cover types performing similarly. The 302 

only significant difference between slopes of actual vs. predicted GPP occurred between 303 

grasslands and forest (P = 0.0015). Normalized PLSR coefficients (Fig. 6) indicate that an array 304 

of specific features, distributed throughout the entire spectrum, contribute substantively to the 305 

predictive model. Important narrow spectral regions in the predictive model included NDSI band 306 

combinations using 1250-1280 nm (combined in particular with wavelengths across the NIR), 307 

2030-2050 nm, and 2270-2300 nm. Broader SWIR features important to the model incudes 308 



 15 

NDSIs in the 1710-1780 nm (when combined with 1250-1270 nm) and 1500-1680 nm regions 309 

(Fig. 6).  310 

In contrast, the Sims broadband approach for remote estimation of GPP from spectra 311 

(Fig. 5b) is generally able to differentiate highest from lowest values of GPP across all types (R2 312 

= 0.68, P < 0.0001), but not as well as the PLSR approach, and does not accurately predict 313 

spatial and temporal variation in GPP within functional types. Slopes between actual and 314 

predicted GPP (Fig. 5b) vary significantly between grassland and forest (P = 0.0044), grasslands 315 

and shrublands (P = 0.041), and grasslands and wetlands (P = 0.0041). The models also deviate 316 

considerably from the 1:1 line compared the PLSR approach. This outcome is also replicated 317 

using other approaches such as the MODIS GPP product (MOD17A2.005) (Suppl. Fig. 2).  318 

Discussion  319 

Water stress is likely one of the strongest drivers of large-scale GPP reductions globally (Ciais et 320 

al., 2003). Collectively, the results of this study illustrate the capacity of imaging spectroscopy to 321 

more accurately capture spatial and temporal variation in terrestrial ecosystem GPP over a water-322 

stressed landscape, though additional years of observations over the same sites in non-drought 323 

conditions would be required to evaluate the full capability of the approach. In addition to its 324 

improved predictive capability relative to existing remote sensing approaches, an appealing 325 

advantage of the narrowband PLSR model we derived, relative to conventional broadband 326 

approaches, is that it does not require external inputs of meteorology or parameters related to 327 

plant ecophysiology.  328 
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Although the potential of imaging spectroscopy to track GPP has been shown at 329 

individual towers (Matthes et al., 2015; Gamon et al., 2015) and with individual indices (Alton, 330 

2017), our study is the first to demonstrate the capability across a diverse array of ecosystems, 331 

utilizing the full information content of narrowband spectra. Our results provide a robust initial 332 

assessment of the reliability of spatial extrapolation from hyperspectral imagery to justify the 333 

benefits of proposed future missions to GPP mapping (Schimel et al. 2015).  334 

It is likely that a significant improvement in the fit over broadband occurs primarily from 335 

directly capturing the effects of physiology on GPP, which are highly variable over space and 336 

time. This improvement may be most noticeable in evergreen species, whose leaf phenology and 337 

density may be relatively constant, limiting broadband sensitivity to GPP variation. While a 338 

direct PLSR approach was not applied to the MODIS bands separately, the Sims model tested 339 

here represents the best-in-class for currently published MODIS based GPP algorithms. There 340 

are limitations in the comparison with the Sims model, as we were required to use air 341 

temperature rather than LST for the nighttime temperature measurements. However, modest 342 

adjustments in nighttime temperature parameters are unlikely to change the conclusion the PLSR 343 

model outperformed the broadband based model.  344 

High correlations occurring with NDSIs at using wavelengths close to each other in the 345 

spectra indicate the importance of narrow features in the spectrum to vegetation properties that 346 

influence tower GPP. The heat graph of NDSI contributions to the PLSR model of GPP (Fig. 6) 347 

indicates several key narrowband combinations that are important to predicting tower GPP, 348 

especially in wavelength regions that have been shown to be important to vegetation physiology. 349 

Our findings mirror those of previous studies (e.g. Matthes et al., 2015; Zarco-Tejada et al., 350 
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2001; Singh et al., 2015; Ryu et al., 2010), which show a number of consistent regions of high 351 

correlation between GPP and narrowband NDSI. Ryu et al. (2010) used NDSI to compare 352 

spectra in the range of 400 nm and 900 nm with assimilation calculated using a similar flux 353 

partitioning method at the Vaira Ranch site between 2006 and 2009. The wavelength 354 

combinations associated with high and low correlation in the NDSI figure from the Ryu et al. 355 

(2010) study match the NDSI figure from this study for the Grassland group of sites, which 356 

includes the Vaira Ranch site. The broad areas of high correlation for the given spectral range are 357 

present in both figures, as are the narrow features of low correlation associated with indices 358 

involving 700 nm and the range 400 to 700 nm, and 750 nm and the range 750 to 900 nm. Unlike 359 

Ryu et al, we were also able to demonstrate consistently important wavelengths in the shortwave 360 

infrared (SWIR, >1100 nm).  361 

Our findings confirm that specific features are associated with leaf/canopy spectral traits 362 

that reflect variation in leaf structure and function. The wavelengths significant to our PLSR 363 

model coincide with important physiological features, which is consistent with previous analyses 364 

showing AVIRIS wavelengths can be used to predict photosynthetic capacity via known features 365 

as opposed to simply measuring canopy structure (Serbin et al., 2015). Narrow NDSI 366 

combinations of wavelengths in the SWIR (2050 nm) and near infrared (760 nm) appear 367 

especially influential, as do some broader features around 1200, 1600 and 2200 nm. For the 368 

shortwave infrared regions, RuBisCo has known spectral absorption features around wavelengths 369 

1500, 1680, 1740, 2050, and 2290 (also: 1940, 2170 and 2470 nm) (Elvidge, 1990), while 370 

significant wavelengths in the leaf-level Vcmax model presented in Serbin et al. (2012) occur at 371 

1510, 1680 and 1760, nm (also 1940, 2210, and 2490 nm). Using AVIRIS imagery, Serbin et al. 372 

(2015) identified key features at 1158-1168, 1722-1732 and 2300-2400 nm.  373 
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In contrast, across all sites, the visible and near infrared regions (VNIR, 400-1100 nm) 374 

did not exhibit as many key features for predicting GPP as did the SWIR. However, key narrow 375 

features do appear in the chlorophyll a absorption wavelengths at 414-434 nm, the red-edge 376 

(704-714 nm), and in the NIR (743-792 nm, including 763 nm, near a well-documented 377 

chlorophyll fluorescence feature). Spectral features such as the broader red edge (690-750 nm) 378 

are unsurprising as they are known to shift under water stress conditions (Vogelmann et al., 379 

1993), one of the major contributors to variations in GPP in the ecosystems of California that 380 

were strongly affected by drought during our study period (Asner et al., 2016). These findings 381 

demonstrate that the improved predictive performance of a model based on imaging 382 

spectroscopy likely results from exploiting multiple mechanistic links among observed plant 383 

pigments, traits, and functional response. 384 

Using the NDSIs (rather than raw reflectance wavelengths) allows the identification of 385 

combinations of narrow features (one or two wavebands wide) that appear repeatedly as 386 

important in our model. The heat graph for the PLSR coefficients using NDSI show a range of 387 

narrow features with high contribution to the PLSR (e.g., 2288 nm) and wider features indicating 388 

broader correlations, likely related to vegetation water content (e.g., 1503-1682 nm). In 389 

particular, combinations of narrow wavebands centered on 414, 1762, 2048 and 2298 appeared 390 

repeatedly in the PLSR model (indicated by streaks in the heat graph in Fig. 6). The value to 391 

PLSR used in the way presented here is that we were able to exploit both the full spectrum in the 392 

PLSR, but also narrow features at specific wavebands that emerged in the important NDSIs in 393 

the model. 394 
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The differences between the correlation heat maps (Figs. 3 and 4) and PLSR heatmap 395 

(Fig. 6) demonstrate the value of the imaging spectroscopy and PLSR approaches in estimating 396 

GPP across broadly varying ecosystems. Simple correlations with NDSI in which all cover types 397 

are pooled (Fig. 3) indicate that broad areas of the spectrum characterized by widely used indices 398 

such as NDVI, rather than narrow features that require imaging spectroscopy, are sufficient to 399 

capture major variation in GPP that is largely attributable to differences in physiognomic cover 400 

type (e.g., forest vs. grassland). This suggests decent discrimination of differences between types 401 

but poor predictability within types (Fig 5b).  402 

In contrast, the correlation heat graph broken out by cover type (Fig. 4) shows widely 403 

differing correlations between GPP and hyperspectral NDSIs by type, and indicates that both 404 

narrow and broad regions within different cover types are important correlates with GPP. 405 

Moving to a predictive framework, the PLSR of all data using NDSIs (Figs 5a, 6) demonstrates 406 

that the imaging spectroscopy data – using NDSIs – can effectively discriminate variations in 407 

GPP encompassing differences between and within cover types. When contrasted with 408 

broadband approaches (5a vs. 5b), both imaging spectroscopy and broadband analyses 409 

adequately capture variations associated with type differences, although the imaging 410 

spectroscopy model exhibits less bias (Fig 5a) than the broadband model (Fig 5b), with the 411 

imaging spectroscopy PLSR approach standing out in that the different cover types more closely 412 

align along the same 1:1 line than the broadband approach. The limited dataset does not allow in 413 

depth analysis of model performance for each vegetation type, but the model generated more 414 

accurate predicted GPP for Grassland-Savanna, Shrubland and Wetland, while the Forest type 415 

exhibited the lowest correlation (Suppl. Table 4). The NDSI values associated with the Forest set 416 

of sites also exhibited the lowest overall average correlation (Fig. 4). The lower relative 417 
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performance of both the model and average NDSI correlation for Forest sites compared to the 418 

other types is expected, as the LAI for these sites is relatively constant throughout the growing 419 

season, as compared to other sites with a less dense canopy. Broad spectral areas of correlation 420 

(Fig. 4) are prevalent in sites where LAI is highly correlated with ecosystem productivity. For 421 

this reason, broadband-based productivity models can generally perform well across vegetative 422 

types, while the relationship breaks down within a classification (Fig. 5b). Furthermore, variation 423 

within a single site has been difficult to detect with all existing models examined, but the 424 

narrowband-based model presented in this study is able to maintain low error and bias within 425 

vegetation types, including Forest sites which produced the lowest adjusted R2 value (0.32). The 426 

result of this ability to capture variability within PFTs is a more robust model when compared to 427 

broadband based predictive models including the Sims model (Fig. 5). We provide the first 428 

evidence that a complex range of sites can be well simulated with no additional information 429 

beyond the spectral content and the PLSR model. Additional research and sampling is required 430 

to examine potential methods to improve predictability within Forest sites. 431 

Collectively, these analyses enable us to determine the capacity to extrapolate ecosystem 432 

function derived from flux tower data using hyperspectral imagery, and then infer ecosystem 433 

responses to climate anomalies such as the unprecedented drought that occurred in California 434 

during our study period (Asner et al., 2016). Challenges remain in handling diverse canopy 435 

architecture, especially open canopies with large soil exposed gaps, and integrating across 436 

complex terrain, land management, and seasonally stressed ecosystems (Kobayashi et al., 2012). 437 

Additional measurements across a wider range of climatic and ecological conditions will be 438 

required to develop a useful model at broader scales. Nonetheless, our findings have an 439 
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important bearing on proposed future satellite-borne imaging spectroscopy missions that could 440 

fill the gaps in the globally sparse network of EC flux towers (Schimel et al. 2015). 441 

Conclusion  442 

Flux tower estimates of GPP across multiple ecosystems in a water-stressed region offer 443 

important observations that can inform remote sensing algorithm development for improved 444 

detection of drought impacts on carbon cycling and plant productivity. PLSR models based on 445 

imaging spectroscopy with high spectral resolution are capable of accurately predicting GPP 446 

independent of vegetation type and season, with significant improvement over traditional 447 

broadband approaches. Use of NDSIs in our PLSR models enabled us to leverage not only the 448 

full spectrum, as is common with hyperspectral imagery, but also narrow features identifiable in 449 

combinations of narrow bands, which has not typically been done in hyperspectral analyses, as 450 

usually just reflectance by wavelength is used.  451 

Our findings provide the opportunity to accurately map ecosystem properties where 452 

broadband sensor capabilities are limited and suggest that spectral resolution is as or even more 453 

important than spatial resolution in consideration of future sensor design for satellite remote 454 

sensing. Further, there is strong evidence for mechanistic links among wavelengths and response 455 

associated with specific elements in leaf structure that influence plant productivity, and therefore 456 

GPP, on a canopy scale. We conclude that the sensitivity of ecosystem metabolism to ongoing 457 

and future climatic changes can be monitored continuously at high spatial resolution using 458 

satellites equipped with sensors similar to the proposed HyspIRI imaging spectrometer. 459 
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Tables  695 

Table 1. Eddy covariance flux tower site information, including average temperature (°C)  and 696 
precipitation (%) anomalies for 2013-2014 against the average for 2003 through 2012. SiteID 697 
corresponds with Ameriflux Site ID. (PRISM Climate Group, Oregon State University, 698 
http://prism.oregonstate.edu, created 17 May 2016) 699 
  700 
Site Name Latitude Longitude SiteID PFT 

Classification 
2013-2014 
Temperature 
anomaly 
(degrees C) 

2013-2014 
Precipitation 
anomaly (percent 
of average) 

Twitchell Island 38.1055 -121.652 USTWT Wetlands 1.5 61 
Twitchell East 
End Wetland 

38.103 -121.641 USTW4 Wetlands 1.8 61 

Mayberry 
Wetland 

38.0498 -121.765 USMYB Wetlands 1.5 63 

Tonzi Ranch 38.4316 -120.966 USTon Grassland-
Savanna 

1.3 58 

Vaira Ranch 38.4067 -120.951 USVar Grassland-
Savanna 

1.3 58 

Twitchell Alfalfa 38.1159 -121.647 USTW3 Grassland-
Savanna 

1.5 61 

Sherman Island 38.0373 -121.754 USSnd Grassland-
Savanna 

1.5 63 

Diablo 37.6773 -121.53 USDia Grassland-
Savanna 

1.4 63 

Oak-Pine 
Woodland 

37.1087 -119.731 USCZ1 Grassland-
Savanna 

1.5 32 

Grassland 33.737 -117.695 USSCg Grassland-
Savanna 

1.6 36 

Sierran Mixed 
Conifer Forest 

37.0675 -119.195 USCZ3 Forest 1.3 34 

Ponderosa Pine 
Forest 

37.0310 -119.257 USCZ2 Forest 1.6 33 

Oak-Pine Forest 33.808 -116.772 USSCf Forest 1.8 51 
Coastal Sage 33.734 -117.696 USSCs Shrubland 1.6 36 
Desert Chaparral 33.61 -116.45 USSCc Shrubland 1.6 46 
Pinyon-Juniper 
Woodland 

33.605 -116.455 USSCw Shrubland 1.6 46 

Sky Oaks New 33.3844
3 

-116.64 USSO4 Shrubland 1.5 58 

Sky Oaks Young 33.3772 -116.623 USSO3 Shrubland 1.5 58 
Sonoran Desert 33.652 -116.372 USSCd Shrubland 1.5 43 
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Figures  Captions  701 

Figure 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the 702 
study region in 2013 and 2014 (imagery: Google Earth). 703 

Figure 2. Eddy covariance mean daily GPP for each study site, with flight imagery acquisition 704 
times noted by dotted lines. Colors represent site plant functional category used in analysis.  705 

Figure 3. Linear Pearson correlation coefficient of tower GPP to airborne imagery spectra 706 
normalized difference between all combinations of two bands (NDSI). Black box denotes 707 
general region and width of normalized difference vegetation index (NDVI) used by broadband 708 
sensors and yellow box the photochemical reflectance index (PRI). This figure includes all sites. 709 
Strong positive and negative correlations exist in a number of broad spectral regions. Histogram 710 
shows frequency of correlation on legend. 711 

Figure 4. Same as Fig. 3, but based on plant functional category, including a) forests, b) 712 
wetlands, c) shrublands, and d) grasslands. In contrast to Fig. 3, many areas of previously 713 
significant correlation disappear and those that persist are generally narrower in width.  714 

Figure 5. Predicted 30-minute average GPP (µmol [m-2 ground area] s-1) derived by a) partial 715 
least squares regression of NDSIs based on all airborne spectra and b) airborne spectra simulated 716 
as broadband and applied to a widely used GPP model (Sims et al. 2008). While both models 717 
capture variability in flux tower GPP across all vegetation types, only the narrowband PLSR 718 
model (left) shows low bias and similar performance for all cover types. Bars represent 719 
uncertainty in eddy covariance fluxes (vertical, calculated as 20% of the GPP value [Desai et al., 720 
2008]) and PLSR regression (horizontal, calculated as one standard deviation based off the 1000 721 
iterations of the PLSR model).   722 

Figure 6. Coefficients from the PLSR predicting EC-based GPP as a function of NDSIs based on 723 
all data pooled across all sites. Values plotted are mean coefficients, based on 1000 724 
permutations, and higher absolute values indicate higher contribution to the predictive model. 725 
Only NDSI combinations that were significantly different from zero across the 1000 726 
permutations are plotted. Also shown at bottom (shaded) is histogram of how frequently 727 
wavelengths appear in the PLSR predicting EC-based GPP as a function of NDSIs, based on all 728 
data pooled across all sites.  729 
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Figure 1. Location of eddy covariance flux towers (circles) and all AVIRIS flight lines for the 730 

study region in 2013 and 2014 (imagery: Google Earth). 731 
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Figure 2. Eddy covariance mean daily GPP for each study site, with flight imagery acquisition 735 

times noted by dotted lines. Colors represent site plant functional category used in analysis. 736 

  737 
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Figure 3. Linear Pearson correlation coefficient of tower GPP to airborne imagery spectra 738 

normalized difference between all combinations of two bands (NDSI). Black box denotes 739 

general region and width of normalized difference vegetation index (NDVI) used by broadband 740 

sensors and yellow box the photochemical reflectance index (PRI). This figure includes all sites. 741 

Strong positive and negative correlations exist in a number of broad spectral regions. Histogram 742 

shows frequency of correlation on legend. 743 

 744 
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Figure 4. Same as Fig. 3, but based on plant functional category, including a) forests, b) 746 

wetlands, c) shrublands, and d) grasslands. In contrast to Fig. 3, many areas of previously 747 

significant correlation disappear and those that persist are generally narrower in width.  748 

  749 
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Figure 5. Predicted 30-minute average GPP (µmol [m-2 ground area] s-1) derived by a) partial 750 

least squares regression of NDSIs based on all airborne spectra and b) airborne spectra simulated 751 

as broadband and applied to a widely used GPP model (Sims et al. 2008). While both models 752 

capture variability in flux tower GPP across all vegetation types, only the narrowband PLSR 753 

model (left) shows low bias (validation bias is 0.04 for the PLSR model, and -5.71 for the Sims 754 

model) and similar performance for all cover types (Suppl. Table 4). Bars represent uncertainty 755 

in eddy covariance fluxes (vertical, calculated as 20% of the GPP value [Desai et al., 2008]) and 756 

PLSR regression (horizontal, calculated as one standard deviation based off the 1000 iterations 757 

of the PLSR model). 758 

  759 
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Figure 6. Coefficients from the PLSR predicting EC-based GPP as a function of NDSIs based on 760 

all data pooled across all sites. Values plotted are mean coefficients, based on 1000 761 

permutations, and higher absolute values indicate higher contribution to the predictive model. 762 

Only NDSI combinations that were significantly different from zero across the 1000 763 

permutations are plotted. Also shown at bottom (shaded) is histogram of how frequently 764 

wavelengths appear in the PLSR predicting EC-based GPP as a function of NDSIs, based on all 765 

data pooled across all sites. 766 
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