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ABSTRACT

Technology is becoming ever more central to teaching and training. In classrooms, students use intelligent tutors and
adaptive tests instead of textbooks and worksheets. In daily life, mobile devices enable blended, on-demand and
ubiquitous life-long learning applications. Connected, pervasive media enables compelling transmedia learning
(Raybourn, 2014) experiences. However, learning opportunities are still often implemented in “walled gardens” or
stand-alone technology systems that must be manually curated and coordinated with all the others through costly,
one-off efforts of developers or individual instructors.

Next-generation learning refers to a vision for breaking down technical barriers between different learning
technologies so that learners and instructors can transition seamlessly between them, increasing usability and impact
on learning. The Advanced Distributed Learning (ADL) Initiative proposes an open-source set of specifications
together called the Total Learning Architecture (TLA) to achieve this vision. TLA enables technologies to
interoperate by sharing data about learners and content, mixing media and delivery methods as context changes, and
sequencing recommendations (Regan, Raybourn, & Durlach, 2013). The initial reference implementation
demonstrates multiple systems interacting via the TLA in an adaptive training use case for cyber operators.

In the present paper, we describe recommendations for achieving new learning opportunities via meta-adaptation, or
recommendations for more adaptive learning experiences that cross technical boundaries and connect systems,
making each one more effective than it would be alone. Through system interoperability and meta-adaptation, the
TLA facilitates an ecosystem of technologies that can work together to enhance their impact on learning.
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INTRODUCTION

According to the U.S. Navy’s Sailor 2025 Initiative, there is a strong operational need for ready, relevant learning
that continues outside of schoolhouses, whenever it is most relevant throughout each individual’s operational career
(Greenert, 2011; Richardson, 2016). The goal to make individual Sailors and the Navy as a whole better trained and
more ready, at lower cost, is possible explicitly because of modularized learning content that can be reused and
repurposed, that can assess and track Sailor skill progression, and that can be tailored to meet different individuals’
needs. Similar directives are reflected across the DoD (Neller, 2016; U.S. Department of the Air Force, 2015; U.S.
Department of the Army, 2011). All of these requirements suggest the new research and development that can be
explored if we unify the content, assessment, and tailoring that currently reside in many different systems in such a
way that the whole, shared performance becomes greater than the sum of its parts.

Advances in technical capabilities and the learning sciences present new challenges and opportunities. The
frequency, acceptance, and pervasiveness of learner contact with technology outside the classroom and after
schoolhouse instruction have increased in recent years. Today, a learning system (or computing system that delivers
learning experiences to individuals, teams, and groups) can be more than a stand-alone intelligent tutor or computer-
delivered courseware (Raybourn, 2014). Instead, learning systems can appear on different devices and be
coordinated to create distributed learning opportunities (DODI 1322.26, 2006) that extend outside of the classroom
or stand-alone solutions and into more aspects of a learner’s everyday life (Raybourn, 2007, 2013). Transmedia
learning is one example, defined as the scalable system of messages representing a narrative or core experience that
unfolds across multiple media and leverages the unique properties of each medium to encourage learning
(Raybourn, 2014). Quite often today, informal learning takes place on demand through always-available systems
such as YouTube and Wikipedia. In a broad view, blended learning classes, LVC training, and on-the-job
performance monitoring constitute working examples of distributed learning systems.

The Advanced Distributed Learning (ADL) Initiative was created by Presidential order in 1999 to help the United
States Department of Defense craft a vision for tailored, anytime, anywhere learning, and provide research and end-
user facilitation to help reach that vision. In this role, ADL has promulgated standards such as the Sharable Content
Object Reference Model (SCORM) that enable content modularity, interoperation, and reuse across the DoD and
civilian learning institutions (Dodds & Fletcher, 2004). Today, Service labs and research communities continue to
pursue the goal of adaptive, ready, relevant training. Where in the past the emphasis was on sharing content, ADL’s
research thrust now lies in sharing learner analytics across systems.

To this end ADL designed a high-level structure called the Total Learning Architecture (TLA) to unify diverse and
disparate learning systems (Regan et al., 2013; there called the Training and Learning Architecture). TLA specifies a
set of data models, development patterns, and interfaces (APIs) that anyone can implement in whole or in part.
Enabling individual learning systems with TLA concepts lets them share vital data and engage in coordinated action.
A key vehicle for data sharing to date is the Experience API (also xAPI; see second subsection below). XAPI is part
of the TLA specification which has been adopted by DoD and others for the purpose of describing what individual
learners experience at a fine-grained level. The fine granularity of communication enables unprecedented learner
analytics and understanding across learning systems. The TLA effort we describe in the present paper builds upon
the xAPI specification and further adds functionality relevant to sharing learner data across more learning topics,
facilitating ever more comprehensive interoperation.
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The key takeaways of the present paper for the I/ITSEC community are as follows: 1) TLA offers a modular
ecosystem where many developers and research approaches may work together, 2) TLA supports existing and new
learning systems, even if they can adapt learning internally, and 3) TLA overcomes technical challenges introduced
by one-off integrations.

TECHNICAL CHALLENGES TO READY, RELEVANT LEARNING

We describe the array of learning systems one institution chooses to make available as that institution’s learning
solution. There is an ongoing research challenge of unifying the proliferating systems within each learning solution
via shared data and coordinated action. As a result, we posit that a general and reusable approach to this research
challenge will yield improved understanding of learners and improved learning effectiveness for the unified systems.

Consider a hypothetical situation. A vehicle has evolved to maintain two different crew training simulators. Each
simulator is appropriate for a different revision of the vehicle. The two simulators are examples of learning systems,
and together with systems for tracking learner attendance and scores they make up one learning solution for training
vehicle crews. However, several problems arise because the two simulators were developed separately and do not
effectively share information or interoperate. For example:

e Learners who transfer between vehicle types are required to repeat training because their learning record
does not transfer across learning systems.

e Instructors must coordinate and manually transfer scores between simulators and record systems.

e Instructional designers who create and assign training may not freely choose between simulators for non-
specialized content (perhaps assigning the one with greater fidelity, or the one with more availability).

o Researchers are not able to easily compare or aggregate data collected in the two simulators, because the
parallels that exist are not explicit.

o Developers of the two training simulations do not have a technically easy way to begin sharing learner data.
They can accomplish a one-off integration, but if they do, then that work may not be reused whenever one
of the two simulators changes or a third system comes online.

This example helps make concrete some of the costs that motivate a general architecture for integrating learning
systems. Across Defense, K-16, and other learning communities, similar situations are apparent. Learning
Management Systems (LMSs) commonly maintain instructor-created content and individual student records. One
could imagine an LMS that lets a teacher create slides and homework assignments for their class, but that content is
tantalizingly restricted from another instructor at a school with a different LMS. Furthermore, change is needed to
enable repurposing the same content to deliver exciting new perspectives such as blended or flipped classrooms
(Baepler, Walker, & Driessen, 2014), social learning (McLoughlin & Lee, 2010), and on-the-job training that might
be delivered just-in-time (Coppus et al., 2007). These examples indicate some of the potential that could be attained
by freeing learning content within a particular system for greater reuse and making it available to a wider audience
without removing it from the learning system that owns it.

A need exists to keep learning content within its native simulator, LMS, or other learning system, but also make it
available through that system to a wider audience of learners under more diverse circumstances. Specifying a
common method for sharing data and switching between learning systems enables this objective. Keeping content
within its native system retains system-specific functionality and protections such as licenses and subscriptions. The
approach also maintains continuity with legacy SCORM LMSs (Poltrack, 2014). Because it enables diverse systems
to fill appropriate niches in the learning needs of an individual, we call a solution built from effectively
interoperating learning systems a learning ecosystem (Siegfried & van den Berg, 2015).

Subsequent sections describe how a learning ecosystem approach enables new research opportunities. TLA
describes open, publicly available APIs with the aim to help build a learning ecosystem. TLA also offers example
software implementations for reference and reuse, but does not impose requirements on implementation or how a
learning system makes use of the integration features it offers. Since TLA-enabled components are instantiated
locally within an institution, data sharing can be locally controlled and need not be made public. Also, an institution
may rearrange components to provide a range of functions and meet its particular learning use cases. As a result, the
TLA design supports straightforward, scalable interoperation in an upgradeable and customizable ecosystem.
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Need for Meta-adaptation

Within an ecosystem that contains several learning systems, a method is needed to match learning systems with the
immediate needs of a learner. Once multiple systems are sharing data and working together toward one goal, it
becomes possible to identify learning goals or circumstances that may make a particular system well suited. The
capability to identify differences in how learning systems address learner needs enables meta-adaptation. Meta-
adaptation (Folsom-Kovarik, Jones, & Schmorrow, 2016; Nye, 2016) refers to adapting the learning experience by
selecting between learning systems or directing a change that crosses boundaries between learning systems. In order
to enable precise and timely meta-adaptation, a need exists for fine-grained and comprehensive sharing of learner
data from different systems. xAPI and related learning data specifications enable meta-adaptation in the TLA.

In the fields of intelligent tutoring and adaptive training, micro-adaptation might tailor the feedback a learner sees in
response to an error while macro-adaptation might select the next course content that is most appropriate for the
learner (Shute & Towle, 2003). Micro-adaptation refers to fine-grained responsiveness to learner actions, for
example providing an immediate hint after a learner makes an error during a simulation or providing delayed, but
still responsively prioritized, after-action review of the performance. Macro-adaptation refers to more sweeping
changes that affect the broad course of the learning experience, for example choosing between an introductory video
or an advanced practice based on how well the learner has mastered a skill to date, or choosing when to move from
training that skill to another one because the target mastery has been reached.

While TLA might provide new information to influence micro-adaptation or macro-adaptation within a learning
system, great research potential and learning value may lie in enabling adaptive recommendations external to a
system, or meta-adaptation. For example, a meta-adaptive response to a learner error might be an immediate
recommendation to pause the simulation for a moment and view a remedial document on a handheld device. Neither
the simulator nor the document viewing software need special programming to know about the other. Meta-
adaptation thus represents a decision made from a perspective outside any one learning system.

Frequently related to micro-adaptation and macro-adaptation is the distinction between inner-loop and outer-loop
adaptation (VanLehn, 2006). The terms imply (but do not require) a view of adaptation wherein control over the
learning experience is handed back and forth between the fast inner loop and slower outer loop. In theory, meta-
adaptation does not need to impose a third and even less responsive type of loop. Instead, it may someday be carried
out as more of a software interrupt, suggesting adaptations can occur at any time during learning. This may become
possible if meta-adaptation is triggered from outside a learning system by information about the learner experience.

In summary, we argue that distributed learning in current practice often takes place in disconnected walled gardens,
which restrict by design the amount and types of data available to each system and therefore limit the ability to tailor
or adapt learning experiences. This challenge impacts Government, industry, national lab, and university
stakeholders in our community, in roles such as developers, researchers, instructors, and most importantly, learners
who do not receive a maximally tailored and coherent learning experience. However, we have argued in this section
that there is an opportunity for improved impact on learning if these systems from different developers can work
together. The learner can seamlessly move from one learning system to another, and interact with the particular
system out of all those available that is most needed at any given moment.

AN ARCHITECTURE AND A LEARNING ECOSYSTEM APPROACH

In order to research a learning ecosystem approach to interoperation, we developed the shared APIs and models of
the current TLA. The TLA offers learning systems developers an agreed-upon lingua franca supporting
communication and interoperation as follows. First, TLA builds on the messaging model of xAPI and defines how
learning systems communicate about additional topics in addition to learner experience. As part of communication,
TLA specifications define methods for easily discovering other learning systems, sending and responding to queries
to one or several systems, and storing or retrieving data in one or several stores. Second, TLA-enabled specialized
components facilitate translating data between learning systems without requiring developers to change their internal
data, and recommending adaptation including adapting across systems. The specialized components make use of
data communicated in TLA by automating certain tasks of knowledge engineering and signal interpretation.
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In its role of specifying communication, the TLA does not constrain how components internally process data, it only
helps to ensure they understand each other when they communicate it. The authors like to say informally that the
TLA “provides the wires in your solution diagram, not the boxes.” The boxes, or components, can each be
developed independently by different institutions. They may interoperate, and they may be interchanged to achieve
different desired functionality. As such, the vision of TLA development is not to produce only one recommended
way to assess learners, or one recommended way to select adaptations. Instead, the TLA specifications create an
overall ecosystem for many such products to both compete and effectively work together in solving real problems.
The learning ecosystem approach represents a philosophical choice.

Typically, an institution that uses the TLA to unify learning will instantiate TLA-enabled learning systems on their
own servers. Their learning solution will only contain the learning systems desired at that particular institution. In
this way, each organization that integrates TLA specifications becomes a metaphorical ecosystem where entities can
coexist or compete to fill a niche. Learning systems are not expected to encompass every possible learning
interaction in a monolithic manner, because even those systems that provide only few functions may be called on
when their functions are needed. Philosophically, it may be that putting components on an equal footing via the TLA
will benefit institutions by letting them select the particular components that best meet their functional need with
reduced concern of technical lock-in because all offerors comply or can be tested for compliance with the TLA
technical standards.

Approach to Meta-adaptation Using TLA

An organization using TLA-enabled learning systems is perhaps uniquely well suited to explore meta-adaptation
because of the fine-grained learner knowledge afforded by XAPI and the stream of learner experience. It is the XAPI
stream that gives TLA the ability to bring together information about not only a learner’s coarse-grained properties
such as mastery estimates, but also the moment-to-moment descriptions of what the learner is seeing, attempting,
and accomplishing. The detail of the xAPI stream builds a clear picture of a learner’s progress and lets every
component, not only the currently active learning system, recognize right away when an opportunity for
instructional intervention should arise.

An APl (Application Programming Interface) defines standard computer instructions and data structures that let
programs make requests and share data in a universally understood manner. Within TLA, XAPI is the API that is
most fully mature and widely adopted. The XAPI specification, officially version 1.0.0 as of April 26, 2013, defines
how to track, store, and expose fine-grained data about individual actions and interactions a learner has with a
learning system (ADL Initiative, 2016a). Data collected via the XAPI can be exposed for assessment, statistical
analyses, data mining, traditional reports, and data sharing. The data in XAPI is fine-grained in that this standard lets
learning systems describe what an individual learner is doing from moment to moment, rather than summarizing
only at the end of a long interaction. As an example, a simulator for training gunnery tasks could report outcomes of
individual exercises testing different firing conditions as each one is completed, rather than simply recording a final
score (Long et al., 2015). More information about xAPI is in (ADL Initiative, 2016a) and (ADL Initiative, 2016b).

By leveraging the existing work of xAPI design and specifications, meta-adaptation within a learning ecosystem has
the potential to create amplifying or new effects that would be impossible with a single system. Meta-adaptation can
introduce new users into a learning system from outside paths, exactly when the system is relevant and likely to
make a positive impression on users. By sharing data between systems, meta-adaptation also may work to reduce the
cold-start problem created when a learning system does not know enough about a learner to provide effective
adaptation internally. Meta-adaptation can also help get learners unstuck and quickly return them to productive
learning in the original system. In these ways, meta-adaptive interactions can benefit learning systems that allow
them, even when those systems might seem to surrender some control of the learning experience.

Adding meta-adaptation by participating in a learning ecosystem does not mean that individual systems that carry
out adaptation internally are not needed or will be overridden. Instead, the TLA as a whole provides adaptive
systems more learner analytics, adaptation suggestions (not overrides), and other information with which systems
may carry out the beneficial adaptation they already accomplish.
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AN EXPERIMENTAL IMPLEMENTATION OF THE TLA APPROACH

Figure 1 represents a high-level diagram of an implementation that uses TLA specifications to integrate several
learning systems and carry out meta-adaptation to choose between them.

Figure 1 represents a learning solution wherein

. several learning systems communicate within the
ecosystem provided by the TLA. At the top of the

figure, the systems that learners interact with directly
BT could be viewed as standalone products. They might

-~. be able to work without communicating with other
components or participating in the TLA, although
their functions that require TLA components would
be degraded. But in the depicted ecosystem,
supporting back-end components (shaded area)
collect data from the learning systems via TLA APIs
and process the data to provide meta-adaptation.

System 3

v )
|

Estimate

J— The paths passing data, signified by arrows in the
Profile figure, represent only one way of connecting TLA-
enabled components. The TLA specifications
support many more configurations to meet
alternative use cases. In this simple case, each
learner-facing system publishes information about
skill mastery through TLA services. One process
queries each service and uses their responses to estimate mastery, updating a learner profile with estimates that
combine data from each system. A second process acts on changes in the learner profile to suggest adaptations that
each system may act on as it works with the learner. This brief example shows how TLA supports data sharing that
can maximize available learner analytics, reduce one-off effort needed to make learning systems work together, and
let every learner access just the right learning content in just the right way through meta-adaptation.

Figure 1: Combining data from multiple learning systems
builds a learner profile that may support all systems.

Communication

Five kinds of learning topics, or broad data categories, that TLA specifications can help integrate are listed in
Table 1. These topics correspond to API specifications that together comprise the TLA. All specifications are open
to community discussion or contribution and, at present, all specifications other than XAPI are experimental. Any
learning systems that input, process, or generate data within these learning topics has an opportunity to participate in
the TLA and receive new data about these topics from other systems within a shared technical environment.

Table 1: Learning Topics Specified in the TLA.

Data Categories | Examples of Data that TLA Helps Share Integrated at Publication
Learner Skills Needed, Skills Mastered, Detailed Experience Stream https://moodle.org
Competency Prerequisites, Job Skills, Relationships between Skills http://www.cassproject.org
Activity Skill Coverage, Content Ratings, Learner Observation Meanings | http://learningregistry.org
Circumstance Devices Available, Affect, Schedule and Training Duration

Meta-Adaptation Recommended Content, Recommended Interaction Patterns https://perlsapp.com

Table 1 also shows that within the architecture as currently implemented, certain components already exist that
provide successful examples of using the TLA to store, process, and communicate learning data. In addition to these,
reference implementations of components that comply with the specifications are publicly available as open source,
at http://www.adlnet.gov/tla/, so that developers may follow the examples or reuse the code freely.

The TLA offers a relatively low-cost and well-understood approach to software development, using a service-

oriented architecture exposed through REST (Representational State Transfer) APIs (Webber, Parastatidis, &
Robinson, 2010). This structure was chosen to minimize the technical barrier to entry within the TLA, as new
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components may be implemented in any programming language, manage their own data as they wish, run
independently of any other components, and handle only lightweight communication and management as opposed to
more demanding distributed processing protocols. In this way, the TLA aims to increase the capability and reduce
the complexity of potential learning solutions. Complexity is reduced because it is not necessary for other
component developers or the solution creators to understand components’ underlying technologies to make sure they
work together. It is only necessary to assemble TLA-compliant components whose functional features meet the
specific teaching or training need.

Operating within the REST viewpoint, TLA views individual learning systems or sub-system components as
services which can answer particular types of requests. A valuable feature of the service-oriented architecture is that
TLA does not specify a single pathway for linking components or learning systems. Instead, each component is
available to be queried by each other component. Thus, TLA enables a large number of next-generation learning use
cases. For example, TLA can be used to build a system with no adaptation component or with multiple components
providing adaptation functionality. TLA defines methods for discovering which components are present and linking
to the right ones for desired functionality. When different components exist that implement the same interfaces,
discovery capabilities defined in the TLA spec help steer data to the proper storage locations and synthesize queries
as needed. As examples, one may wish to duplicate learner test scores to different LMSs, query one or another of the
LMSs as the authoritative record for different instructional domains, and average scores across all available records
to make a high-level visual display of progress. The service-oriented architecture enables compliant components to
carry out each of these tasks.

Within the TLA it does not matter what internal processing, programming languages, operating systems, or
computer hardware each component uses. As a result, administrators who are creating a TLA instance can swap
components from different developers, upgrade one component without disturbing other components, and run
different components of the same type in parallel. TLA administrators keep all data and learning systems under their
own control, on their own system, inside their own firewalls. They choose which learning systems participate in
handling the data. The goal of the TLA is to encourage participation from all in a common API, rather than to
mandate a one-size-fits-all implementation.

Specialized Components

Empirically, many learning systems use different internal representations and logic to reason about learner mastery
and propose individualized adaptations. To reduce the friction introduced by such differences, within our
experimental TLA implementation we defined two services specifically to translate or otherwise mediate between
different learning systems. These specialized components, the evidence mapper and the adaptation pipeline, aim to
reduce integration effort by letting every learning system share data via TLA interfaces without needing to change
the internal representation and processing of the learning system. A dynamic approach to mediating between
systems is hypothesized to avoid some pitfalls of very large ontologies and manual semantic web approaches that
have been attempted in the past. In keeping with the learning ecosystem approach to designing a TLA, the
specialized functions are encapsulated within service interfaces that allow any developer to choose different
implementations of them or to create a new implementation.

An evidence mapper is a service which outputs assertions about an individual that it infers from evidence. Like other
services, the TLA interfaces define how the evidence mapper may communicate inferences without proscribing
methods or algorithms for making inferences. The reason the evidence mapper plays a vital role is because different
learning systems need to contribute to a shared inference about an individual, such as learner mastery, but they may
each contribute evidence in a variety of formats.

The TLA design supports both learning systems that publish the detailed semantic meaning of evidentiary xAPI
statements, and also those that do not. The TLA does not impose a single ontology or vocabulary for all statements,
because any designed vocabulary is unlikely to meet the needs of all learning systems. Semantic markup that
explains an XAPI vocabulary is allowed but not required, because it would impose a high barrier on participation in
the TLA. Finally, semantic meaning is known to be highly sensitive to context and to change over time, requiring a
non-static and intelligent approach to interpreting evidence in context and over long periods.
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As a result, a service is needed that can interpret the learner experience into rollup or other high-level form. Typical
evidence will be in the form of XAPI experience statements (though any data may become evidence). The assertions
of the evidence mapper may be recorded in XAPI and refer back to the supporting statements. Examples of inference
might include a mapping from a test score to an estimate of declarative knowledge, or from a specific pattern of
actions in a simulation to an inference about habitual behavior or mastery of underlying skills.

Like the evidence mapper, an adaptation pipeline is a specialized service which implements interfaces defined in the
TLA. The adaptation pipeline provides a location for decisions about adapting the learner experience. Examples of
decisions include recommending which learning system best meets an identified need, or providing information that
can influence how individual learning systems carry out adaptation internally. Because many learning systems are
expected to carry out adaptation internal to their own content and interventions, the design philosophy of the TLA is
that adaptations from the pipeline can be usefully viewed as suggestions that add information to each system, rather
than as absolute directives. Again, in keeping with the TLA philosophy, there are no requirements on a learning
system to carry out externally suggested adaptations.

The adaptation service is a pipeline because the relevant interfaces are designed such that individual components
may be assembled in sequence to carry out desired recommendations. This gives users excellent control and ability
to override specific functions or reuse highly modular components to build the pipeline that fits a specific use case.
For example, adaptation components in a pipeline might each take responsibility for recalling relevant information,
aggregating data, identifying currently available devices, generating initial recommendations, filtering and
prioritizing recommendations, and down-selecting to find one or a few adaptations that should be presented to a
learner. Again, developers can make their specialized processing or “secret sauce” available as a service and carry
out any of these steps without needing to share their source code or rewrite it to account for others’ internal details.

The implementation status of our TLA demonstration at the time of publication includes working code for service
wrappers, reference examples of specialized components, and multiple different learning systems that together use
TLA APIs and data models to interoperate. We next describe how the experimental TLA facilitates these systems
from different developers working together to produce adaptation across all learning systems, or meta-adaptation.

Implemented Use Case for Meta-adaptation: Adaptive Cyber Training

We describe at a functional level one example of meta-adaptation that can occur in our current reference
implementation of components for an adaptive training use case. The example use case has been implemented in the
current reference software (Figure 2). As a stepping stone to the meta-adaptation vision, implementing a
straightforward example of meta-adaptation helps explore essential aspects of the concept.

The implemented example takes place in a cyber training domain (Nicholson, Massey, O'Grady, & Ortiz, 2016). A
trainee, Angela, is studying on her own time to move into a Cyber Security Intelligence Analyst role. The relevant
competencies defined by the National Initiative for Cybersecurity Education (NICE; http://csrc.nist.gov/nice/) are
stored in an instance of the Competencies and Skills System (CASS), a back-end component which participates in
the TLA (http://www.cassproject.org/).

Angela begins an interaction by choosing to read a static document (slide show or textbook chapter) that introduces
NICE knowledge of penetration testing principles, tools, and techniques. Facts about her reading the document are
broadcast via XAPI statements, including the amount of time reading and which pages she lingered over or skipped.
An evidence mapper component reads these statements in Angela’s record and infers that Angela’s knowledge of
penetration testing has increased, but also assigns a decreased confidence to its mastery estimate because Angela
might not have fully absorbed what she read. As a result, the adaptation pipeline recommends following up with a
formative self-assessment on penetration testing.

The recommended self-assessment is presented in a different learning system than the static content, so a user-facing
suggestion offers Angela the opportunity to switch systems. The suggestion displays information drawn from the
TLA that Angela might want in order to make a decision, such as her estimated time investment and an auto-
generated, specific rationale: self-assessment will help find how much she retained from the reading material.
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Figure 2: Implemented learning solution that can: capture fine-grained learner analytics from different
systems in a common structure, apply the two specialized components Evidence Mapper and Adaptation
Pipeline, and carry out meta-adaptation to coordinate the learner’s experience across learning systems.

Angela accepts the suggestion and the assessment system is launched with the correct assessment that covers
knowledge of penetration testing. As Angela answers the questions, her performance on individual test items
indicates that she still needs work on a subset of the topic: recalling penetration capabilities of specific tools. Since
Angela has recently read some text-based content on the penetration-testing topic, the adaptation engine next
recommends a video relevant to the target material. Angela watches the video and improves her declarative
knowledge of the topic, making her ready for effective practice applying her skills.

Detailed documentation and source code implementing the example use case are available in our repository
(http://www.adlInet.gov/tla). While the use case presents a simple example, it represents the potential of TLA to
advance the state of the art and enable new research and technology development. In the implemented example, the
determination that certain learner experiences suggest increased or decreased knowledge about a specific topic is
made outside the text viewer, assessment system, and video player, so it does not need to be coded into each.
Furthermore, the authors of the text viewer do not need to know in advance what external content such as the video
might exist, or need to embed all possible remediation inside their small learning system. Instead, the selection of
the remediation content is based on current availability across the TLA ecosystem. In future work, adding to this use
case with information about the rich learner experiences in simulators and intelligent tutors may trigger more
sophisticated meta-adaptation that learns and plans adaptive responses to specific combinations of learner actions
(Folsom-Kovarik et al., 2016).

RESEARCH CHALLENGES
Specific challenges we have encountered in the process of developing our experimental implementation suggest

opportunities for immediate future research. First, many components participating in the TLA would benefit from
general approaches such as machine learning to automate semantic understanding of the rich data being shared by
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different learning systems. Second, scalability to incorporate many more users and computer systems could be added
via distributed processing approaches. Third, design for privacy and security is needed.

Currently within TLA communication and data specifications, semantic markup on shared data types such as xAPI
statements explain the meaning of individual records in a machine-readable manner. This markup is needed because
while it may be obvious to a human that a high score is more likely associated with mastery than a low score, a
machine such as a TLA component needs to be told explicitly. Furthermore, there are many possible ways
heterogeneous systems communicate about related semantic meanings with different assumptions, such as stating a
person is a master without defining the comparison population, or broadcasting a score as five (out of five) versus
five (out of ten). Finally, nonobvious or context-specific semantic meanings change often and are probably too
numerous to enumerate fully, such as whether the fact that a person has searched for a term might indicate an
interest in learning about it or merely an assignment to do so, or when a particular action in one scenario indicates
mastery if performed with specific timing and not otherwise. As our research explores various limits of static
semantic markup (e.g. Yu et al., 2011), we will research how machine learning and dynamic approaches (Folsom-
Kovarik et al, 2016) help to understand the semantic meaning of fine-grained and voluminous shared data.

While the current reference implementation of components have not experienced performance problems, we have
yet to test their ability to scale under truly massive amounts of data. The scalability of the TLA is not merely a
component implementation detail. Instead, it may be that the easily-used REST interfaces the TLA defines are
themselves not suited for large and fast-moving data. A research approach to addressing this challenge might be to
define parallel interfaces that support greater scalability and fault tolerance through distributed processing. The
distributed versions of TLA interfaces should exist in parallel with the existing streamlined versions, in order to
reduce barriers to entry for straightforward cases where sophistication is not required.

Finally, since learner data sharing is a goal of the TLA, privacy and cybersecurity should be addressed early. User
models and training methods themselves could reveal information that is of operational concern, such as near term
activity or the kinds of equipment and procedures used and what personnel are trained to do with them (Raybourn et
al., 2015). A properly coordinated attack could access the system to sabotage training or databases in a number of
ways to cause harm. For example, removing training material on how to successfully conduct operations would
leave the trainees more vulnerable to failure and inefficiency than if they had seen proper material or had proper
training. Additionally, the modified system could continue to tell them they are fully trained and ready even if they
are not. This loss of system effectiveness may cause a degradation of trust leading to users abandoning the system
altogether (Benbasat & Wang, 2005).

Consideration for data privacy and cyber security should not begin at deployment of a large-scale software system.
Security and privacy considerations should be interwoven into the software development process from the very
beginning. Engaging design assurance experts focused on securing and integrating subsystems into the final system
will help address privacy and security concerns (Raybourn et al.,, 2015). Ongoing dialog allows iterative
investigation into the details of particular design decisions and establishment of proper protections. This dialog
should carry on from prototype construction all the way to final product to ensure that the final ecosystem delivered
is safe, secure, and trustworthy (Raybourn et al., 2015). We are using our current implementation to help define a
threat model in order to focus data protection efforts while still allowing valuable data sharing.

Additional Use Cases

In addition to challenges, the present research also suggests a wealth of opportunities to extend into related emerging
areas that support learning. While our team initially implemented an adaptive training use case, the TLA is
differentiated from a general system for adaptive training because it enables many other learning use cases. Work to
select and implement additional specific use cases is predicted to have the effect of making the experimental
specifications and architecture in the TLA increasingly robust.

Personnel Management. Instead of adaptive training, improved understanding of individuals in a TLA-enabled
ecosystem can be used to identify good candidates for advancement, or connect individuals with recommended
fields of work. The same APIs that describe learning experiences can be extended with further development to unify
work experience in the same data stores and processing pipelines, thus providing a new and valuable source of data
for intelligent personnel decisions.
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Usage Monitoring. Fine-grained reporting in a TLA-enabled ecosystem might let institutions recognize which
learning content is earning more frequent or more in-depth usage. Instead of simply recording which content is
opened, the data defined in the TLA offers information about what individual learners did as they interacted with the
content. The data can help decision makers select content to purchase or to emphasize, even without requiring a
sophisticated machine learning component in the system. Another outcome of usage monitoring might be to identify
effort levels in individual students, helping identify who effectively used the available study tools.

Job Task Support. The TLA could be used to support Just-In-Time (JIT) delivery of help when a person needs
support to complete a job task. The delivery device could be an embedded system or a personal mobile device, and
the trigger for a tool to offer help might be performance monitoring of job tasks through the same channels TLA
uses to monitor instructional performance. The TLA’s detailed record specifications would support recommending
useful help when a person is confronted at work with an infrequently occurring or otherwise unfamiliar situation.

The Quantified Self. Defense researchers (Blackhurst, Gresham, & Stone, 2012) and even motivated individuals
(Swan, 2009) are carefully studying human performance and precursors or mediators that contribute to performance.
A TLA-driven approach could help individuals learn about themselves by facilitating the empirical measurement
and manipulation of individual experience across many devices and in the context of many different circumstances.

Assistant Integration. At the time of publication, commercial assistants are available in most consumer computer
and mobile platforms, including Siri (http://www.apple.com/ios/siri), Cortana (https://www.microsoft.com/en-
us/windows/Cortana), and Google Assistant (https://www.google.com/landing/now/). Information passed through
the TLA about learners could help tailor each of these assistants to individual needs. For example, when the learner
engages in informal learning by searching through a commercial assistant, TLA-enabled components can help
identify the appropriate reading level and the background knowledge the learner has. Of course, the TLA ecosystem
would also benefit from any information the assistants share about the learner’s current context and life experience.

CONCLUSIONS

In a modern learning environment that provides learning across devices and settings, we are researching a general
approach to let learning systems communicate and form a coherent experience. Although research and development
are ongoing, a learning ecosystem approach is hypothesized to encourage participation from many contributors
because it offers all improved learning impact as compared to monolithic operation. The general architecture
approach enables valuable meta-adaptation and next-generation learning use cases.

The implemented example of an adaptive training use case described in the present paper will be demonstrated and
studied with human participants in 2017. The study will provide an initial characterization of one adaptive training
example that can serve as a baseline for future comparisons. Work on the TLA specifications will progress through
annual integrations, evaluation studies, and community discussions toward a releasable version 1 milestone.

The community may engage with the TLA by viewing design documents and source code at the related website,
http://www.adInet.gov/tla/. The research team welcomes contributes and challenges from the community that will
help to ensure the TLA supports as many users and learning requirements as possible.
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