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The Ultrafast X-ray Imager (UXI) program set out to develop@ Notunal
nanosecond time-gated, multi-frame imagers for the ICF
programs at Sandia and the other national ICF facilities

= X-ray imaging is a valuable diagnostic for High
HEDP research _
=  Multi-frame, time-gated X-ray imagers produce |
“movies” of an experiment

= Faster frame-rate movies (temporal resolution)
reduce motion blur and smaller pixels (spatial

resolution) improve the image quality m

= Delivers deeper understanding of experimental results

. Gated MCP Film
. EXiSting time_gatEd X'ray imagers are based on 11E|nhole 1980s. 19 century
century.
microchannel plate technology developed in the g /

1990’s and suffer from a number of limitations
= Moderate dynamic range

= @Gain errors
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DIffICUlt tO Callbrate Bradley, Bell, Kilkenny et al., NOVA & OMEGA, c. 1990
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UXI cameras incorporate in-pixel storage to deliver multiple
frames of data in a burst mode type operation

= Multiplexes multiple pixels into one

= A transistor switch acts as an
electronic “shutter” for each frame

= |n pixel storage holds image data
during the fast sampling operation

= High speed shutters require on-chip
timing generation

= Custom circuitry is required to
distribute these electronic shutters to
the pixels

= Readout occurs on a slow time scale
after the experiment is complete
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There are multiple ways to incorporate the photodetector
element into a CMOS imager

On-chip lens

= Frontside (FSI) "

Metal wiri

i5i

i
= PD integrated into the pixel silicon itself :

Photo-
Substrate dioda

]
] S|mp|e to bUIId Light receiving sur‘er ‘

= Suffers from low fill factor and light absorption issues

= Backside (BSlI)

= Diode integrated into the backside substrate of the .
camera diode = Substrate
| | |
= Slightly more complicated to build W W WER HE
BE HEE HEE e wiing
= Significantly improved light sensitivity o .

= Hybrid (hCMOS)
= Detector is a separate element from the camera itself

= Most expensive to build
= Requires a separate hybridization step

= Allows for heterogeneous detector/ROIC pairing

= Essentially a backside detector with respect to fill factor g

A hybrid sensor enables independent optimization of the diode array & the readout electronics (ROIC)



Icarus is somewhat of a departure from the previous UXI )

National _
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Icarus block diagram
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= CC pixel allows a more robust power distribution architecture




UXI has maintained a consistent ROIC architectural concept () rima

Laboratories
with changes and improvements made from generation to
generatlon e
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UXI has maintained a consistent ROIC architectural concept () rima
with changes and improvements made from generation to
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UXI has maintained a consistent ROIC architectural concept () rima
with changes and improvements made from generation to

generatlon e
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Testing occurs at LLNL and SNL

Short pulse
Laser

= LLNL’s optical testing via 532 nm
laser stimulus

\_\\ |
Photoconducting
Detector E Energy Monitor
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25 ps pulse
532nm

= Shutter profiles are constructed e
by walking the laser pulse
through the camera shutters

Frame |
Shutter
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Icarus displays significantly reduction in trigger-to-pixel

7| Netora
shutter latency over past UXI cameras

= Trigger to pixel shutter latency requires the camera to be pre-
triggered prior to photons incident on the detector array
= External asynchronous trigger initiates the device
= There is a fixed delay from this trigger until the shutters arrive at the pixels
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Independently timed hemispheres offers many timing
possibilities including tuning out process induced timing
offsets observed in past cameras

= Driving pixel rows from L/R hemispheres is needed to allow nanosecond
shutters to propagate across a row

7| Netorw

= Past imagers have shown 400-900 ps timing error between hemispheres

= |ndependent hemisphere control also enables hemisphere fine tuning to
minimize these offsets
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Row skew is also an issue with current UXI camera )
implementations

= Driving the distributed RC load of
many pixels introduces a timing

skew from the outermost pixel
columns to the innermost pixel
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Past imagers also displayed vertical timing offsets based Tl 2
on the binary replication of the shutter signals abotors

= Shorting replication tree output stages rebalances these timing
signals with a slight impact to total dynamic current consumption
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Shutter profiles are obtained by walking a laser pulse

: : i) M.
through the shutters in 20 ps increments
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Maximum shutter speed was investigated in addition to

e ) ) .
repeatability across multiple sensors fabortues
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Readout linearity was examined by stimulating the camera

both electrically and optically

= A DC readout transfer function was
obtained by driving an external
electrical stimulus into the pixel array

= Full readout dynamic was observed with
this method

= QOptical stimulus was also used to
examine low signal linearity

= Slight frame-to-frame offsets exist but are
removed with background subtraction

= Test source limitations prevented full well
scale illumination

= Slight non-linearity observed at low end of
DR
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o . . o . Sandia
Frame to frame isolation and read noise were investigated |fh) i

= Sensor was illuminated in one frame and L_A
the dark frame response was measured S ER
= Amplitude of Bright frame was ~% full well < 1LSB
= Dark frame observed 1 LSB coupling F-F error
= Read noise was investigated with a high
resolution ADC on an LLNL designed
system board and measured to be 1/3 LSB
orl78 e s 36
.




. . . . Sandia
Total array lllumination introduced some non-ideal responséfh) i,
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An Icarus camera, fielded in SLOS-TRXI will serve as the @
back end detector for a 20 ps, 2D diagnostic

= General Atomics pulse-dilation technology fielded at Omega
= Tele-temporal lens temporally magnifies an input signal
= Yields multiple image frames with 20 ps time gates

= Will capture time-resolved images of hot-spot self-emission

High-voltage pulse .
Solid-state Frame 1 Frame 2 No Time
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X-ray pulse : Photoelectrons Gatlng
Mesh —
Photocathode B field

Drift section X ) )
20 ps, time-gated images taken in SLOS
Pulse-dilation concept
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X (zm) Photocathode

Pinhole I
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The Sandia hybrid CMOS (hCMOS) effort has delivered 7| Netorw
burst mode imagers enabling multiple new diagnostics for
HED/ICF science

Zhachine Gas Cell Sh.dwph’ NIF Gated Laser Entry Hole (G-LEH) Diagnostic EE LLE OMEGA SLOS1-TRXI Diagnostic

AW 2-Beamiet Boer
fovased onto

/ S ———

NIF SLOS1-CBI Diagnostic

Z-Machine Spectrometer

Z-Machine OMEGA
- .
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New diagnostics are being enabled by the realization of hCMOS imagers



Icarus delivered significant improvements over past UXI ) e

imagers

= Fine, 25 um spatial resolution

= < 1LSBframe to frame coupling
= < 1LSBreadnoise

= Tunable hemisphere offsets

= Repeatable 2 ns shutter profiles

= 1.7 ns minimum integration time

= Extensive testing has also identified some items for

future design to improve
= |llumination induced rail span issues
= Faster integration time
= 4 frames per pixel design issue

F‘i Mixed Signal
ASIC/SoC
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