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Existing gated X-ray imager

 X-ray imaging is a valuable diagnostic for High 
HEDP research

 Multi-frame, time-gated X-ray imagers produce 
“movies” of an experiment

 Faster frame-rate movies (temporal resolution) 
reduce motion blur and smaller pixels (spatial 
resolution) improve the image quality
 Delivers deeper understanding of experimental results

 Existing time-gated X-ray imagers are based on 
microchannel plate technology developed in the 
1990’s and suffer from a number of limitations
 Moderate dynamic range

 Gain errors

 Difficult to calibrate
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The Ultrafast X-ray Imager (UXI) program set out to develop 
nanosecond time-gated, multi-frame imagers for the ICF 
programs at Sandia and the other national ICF facilities

Z-machine



3

 Multiplexes multiple pixels into one

 A transistor switch acts as an 
electronic “shutter” for each frame

 In pixel storage holds image data 
during the fast sampling operation

 High speed shutters require on-chip 
timing generation

 Custom circuitry is required to 
distribute these electronic shutters to 
the pixels

 Readout occurs on a slow time scale 
after the experiment is complete

UXI cameras incorporate in-pixel storage to deliver multiple 
frames of data in a burst mode type operation 
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 Frontside (FSI)
 PD integrated into the pixel silicon itself

 Simple to build

 Suffers from low fill factor and light absorption issues

 Backside (BSI)
 Diode integrated into the backside substrate of the 

camera  

 Slightly more complicated to build

 Significantly improved light sensitivity

 Hybrid (hCMOS)
 Detector is a separate element from the camera itself

 Most expensive to build

 Requires a separate hybridization step

 Allows for heterogeneous detector/ROIC pairing

 Essentially a backside detector with respect to fill factor

There are multiple ways to incorporate the photodetector 
element into a CMOS imager

A hybrid sensor enables independent optimization of the diode array & the readout electronics (ROIC)



Icarus is somewhat of a departure from the previous UXI 
ROICs
 ROIC features 

 1024 x 512 pixels on 25 μm pitch

 4 frames

 500 ke- full well

 500 e- noise floor

 60 dB (1000:1) dynamic range

 < 2 ns integration time

 < 2ns inter-frame time

 Common Cathode detector

 Improvements/modifications on previous ROICs
 Tunable anti-bloom transistor 

 Fully independent hemisphere timing 

 No row-wise interlacing

 L/R hemisphere shutter timing tuning capability

 Shorted intermediate reptree output stages to improve R-R 
timing error

 Increased HST generator user adjustability

 Top/Bottom readout channels 

 Incorporated on chip bypass capacitors 

 CC pixel allows a more robust power distribution architecture
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Active array size: 12.8 mm x 25.6 mm

Icarus block diagram
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 3 primary components

1. Unit pixel/Pixel array

 Multiple frames/shutters

 In-situ storage

 Fast operation

UXI has maintained a consistent ROIC architectural concept 
with changes and improvements made from generation to 
generation
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2. Timing generator and propagation circuitry

 Precision, low jitter oscillator 

 Programmable digital timing generator

– Allows different integration time and inter-frame 
time to be chosen for each shutter
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generation
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 3 primary components

1. Unit pixel/Pixel array

 Multiple frames/shutters

 In-situ storage

 Fast operation

2. Timing generator and propagation circuitry

 Precision, low jitter oscillator 

 Programmable digital timing generator

– Allows different integration time and inter-frame 
time to be chosen for each shutter

 Shutter timing distribution 

3. Readout electronics

 Readout occurs at slow speed, after the experiment

 Simple electronics to minimize risk

 Parallel analog readout

UXI has maintained a consistent ROIC architectural concept 
with changes and improvements made from generation to 
generation



Testing occurs at LLNL and SNL
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 LLNL’s optical testing via 532 nm 
laser stimulus

 Shutter profiles are constructed 
by walking the laser pulse 
through the camera shutters



Icarus displays significantly reduction in trigger-to-pixel 
shutter latency over past UXI cameras 
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 Trigger to pixel shutter latency requires the camera to be pre-
triggered prior to photons incident on the detector array 
 External asynchronous trigger initiates the device

 There is a fixed delay from this trigger until the shutters arrive at the pixels
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Independently timed hemispheres offers many timing 
possibilities including tuning out process induced timing 
offsets observed in past cameras

11

 Driving pixel rows from L/R hemispheres is needed to allow nanosecond 
shutters to propagate across a row

 Past imagers have shown 400-900 ps timing error between hemispheres

 Independent hemisphere control also enables hemisphere fine tuning to 
minimize these offsets
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Row skew is also an issue with current UXI camera 
implementations
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 Driving the distributed RC load of 
many pixels introduces a timing 
skew from the outermost pixel 
columns to the innermost pixel 
columns

 Icarus exhibited slightly worse 
timing skew (400 ps) than past 
camera due to increasing the 
pixel row length from 224 to 256
 Hemisphere offset tuned to 70 ps
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Past imagers also displayed vertical timing offsets based 
on the binary replication of the shutter signals
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 Shorting replication tree output stages rebalances these timing 
signals with a slight impact to total dynamic current consumption 

Past imager with binary striations evidentVertical lineout of L/R hemispheres for 
an Icarus sensor

Replication tree shorting concept



Shutter profiles are obtained by walking a laser pulse 
through the shutters in 20 ps increments
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 Good timing uniformity was 
exhibited with the camera 
tuned to 2 ns integration time
 Only 2 frames per pixel were 

useable due to a physical design 
issue discovered in the pixel

 Independent timing was 
utilized to configure L/R 
hemisphere shutters to 
deliver four frames of data 
with zero dead time

Frame Shutter 
FWHM

F1_L 1.95 ns

F2_L 2.16 ns

F1_R 1.79 ns

F2_R 1.79 ns

Frame Shutter 
FWHM

F1 2.13 ns

F2 2.18 ns



Maximum shutter speed was investigated in addition to 
repeatability across multiple sensors
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 1-3 timing yielded fastest 
achievable integration time of 
1.7 ns
 1-1 timing did not perform at speed

 Reset signal failed to propagate

 4 sensors across 2 wafers were 
tested and demonstrated 
repeatable performance
 Slight offsets exist from die to die 

for this data set

 Offsets are removed by subtracting 
camera specific dark background 
images  



Readout linearity was examined by stimulating the camera 
both electrically and optically
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 A DC readout transfer function was 
obtained by driving an external 
electrical stimulus into the pixel array
 Full readout dynamic was observed with 

this method

 Optical stimulus was also used to 
examine low signal linearity 
 Slight frame-to-frame offsets exist but are 

removed with background subtraction

 Test source limitations prevented full well 
scale illumination

 Slight non-linearity observed at low end of 
DR



Frame to frame isolation and read noise were investigated 
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< 1LSB 
F-F error

 Sensor was illuminated in one frame and 
the dark frame response was measured
 Amplitude of Bright frame was ~½ full well

 Dark frame observed 1 LSB coupling

 Read noise was investigated with a high 
resolution ADC on an LLNL designed 
system board and measured to be 1/3 LSB 
or 178 e-



Total array Illumination introduced some non-ideal response
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 It was observed that a secondary, 
minor peak would occur in frame 2 
when frame 1 is illuminated
 This effect was correlated with total 

detector array area exposed to 
photocurrent 

 Reducing total array exposure minimizes 
this issue

 This implies a global return supply (VRST) 
voltage droop 
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 General Atomics pulse-dilation technology fielded at Omega 
 Tele-temporal lens temporally magnifies an input signal

 Yields multiple image frames with 20 ps time gates

 Will capture time-resolved images of hot-spot self-emission

An Icarus camera, fielded in SLOS-TRXI will serve as the 
back end detector for a 20 ps, 2D diagnostic

20 ps, time-gated images taken in SLOS

Frame 1 Frame 2 No Time 
Gating

* Hilsabeck (GA), Nagel (LLNL) et al.

SLOS-TRXI schematic

Pulse-dilation concept
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The Sandia hybrid CMOS (hCMOS) effort has delivered 
burst mode imagers enabling multiple new diagnostics for 
HED/ICF science 

Z-Machine Spectrometer

NIF SLOS1-CBI Diagnostic

LLE OMEGA SLOS1-TRXI Diagnostic

Z-Machine NIF OMEGA
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20New diagnostics are being enabled by the realization of hCMOS imagers



Icarus delivered significant improvements over past UXI 
imagers
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 Fine, 25 µm spatial resolution

 < 1 LSB frame to frame coupling

 < 1 LSB read noise

 Tunable hemisphere offsets

 Repeatable 2 ns shutter profiles

 1.7 ns minimum integration time

 Extensive testing has also identified some items for 
future design to improve
 Illumination induced rail span issues

 Faster integration time

 4 frames per pixel design issue



Thanks to the many individuals who have helped make 
Icarus a successful camera deployed across the ICF complex
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Stahoviak, John Porter, Greg Rochau, Doug Trotter, Quinn Looker, Gideon 
Robertson, Tom Gurrieri, Sean Pearson, Jason Michnovicz

 LLNL
 Arthur Carpenter, Matthew Dayton, Pratik Patel
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 Terry Hilsabeck, Kyle Engelhorn
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 Wolfgang Theobald



Questions?
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