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• Nano-therapeutics:

• The last 20 years have witnessed a plethora of studies focused on using 

intravascularly injected NP systems to deliver drugs to biological targets such 

as tumor.

• It is shown that NP therapeutics has the potential to improve current disease therapies 

because of their ability to overcome multiple biological barriers and release 

therapeutic load in the optimal dosage range. 

Motivation

Decuzzi et al., Pharm. Res., 2009
Alexis et al., Mol. Pharm., 2008
Blanco et al., NATURE BIOTECHNOLOGY, 2015



• Being able to computationally investigate the characteristics of NP transport in cellular 
blood flow is of strategic significance to the improvement the NP bioavailability in 
biological systems. 

• Support the realization of controllable the NP circulating time and favorable pre-
extravasation/adhesion states.

• Major challenges:   
1) To resolve the large length-scale discrepancy (2~3 orders of magnitude) between NPs and cells 

such as RBC, platelet, and white blood cell using one resolution of mesh remains challenging;
2) Capture the NP dynamics including Brownian effect and interactions with other cells.

Specific Aim: 
1) Develop an efficient computational approach 

to resolve the multi-scale nature of NP 
transport in cellular blood flow, 

2) and understand the fundamental physics 
of the NP diffusion process.

3) Support the development of targeted 
NP drug delivery system.

Motivation

RBC ~8 𝝁𝒎

Platelet 2~3 𝝁𝒎

NP ~100 nm
von Willebrand
Factors (vWF) 
monomers ~60 nm



Computational Approach

Lattice-Boltzmann 
(LB) method for fluid

Cell models:
• RBC: Spectrin-link 

(SL) method
• Platelet: rigid 

particle
• … Langevin dynamics (LD) for 

nanoscale particles/proteins

Comprehensive 
two-way 

couplings

Multi-scale
Mesoscale

Nanoscale

Microscale

vWF
NP



Method: Lattice Boltzmann method for the fluid

D3Q19

Lattice Stencil

Bhatnagar, Gross, & Krook, Phys. Rev., 94(3), 1954. 
He et. al. J. Stat. Phys., 87, 1997.
Aidun, Lu & Ding,  J. Fluid Mech., 373, 1998.
Aidun & Clausen. Annual Rev. Fluid Mech., 42, 2010.

• Solve the discretized Boltzmann equation in velocity space with the collision term 
treated by the single-relaxation-time Bhatnagar, Gross, and Krook (BGK) operator and 
a forcing term to represent the body force effect

𝑓𝑖 𝒓 + Δ𝑡𝐿𝐵𝒆𝑖 , 𝑡 + Δ𝑡𝐿𝐵 = 𝑓𝑖 𝒓, 𝑡 −
1

𝜏
𝑓𝑖 𝒓, 𝑡 − 𝑓𝑖

𝑒𝑞
𝒓, 𝑡 + 𝑓𝑖

𝑆(𝑟, 𝑡)

• Equilibrium distribution function:

𝑓𝑖
(𝑒𝑞)

𝒓, 𝑡 = 𝜔𝑖𝜌 1 +
1

𝑐𝑠
2 𝒆𝒊 ∙ 𝒖 +

1

2𝑐𝑠
2 𝒆𝒊 ∙ 𝒖

2 −
1

2𝑐𝑠
2 𝒖 ∙ 𝒖

LB kinematic viscosity:

𝜐𝐿𝐵 = 𝜏 −
1

2
𝑐𝑠
2Δ𝑡

Pseudo-sound-speed:

𝑐𝑠 =
Δ𝑟𝐿𝐵

3Δ𝑡𝐿𝐵

Recovers incompressible 
Navier-Stokes equations 
at low Mach number limit

(
𝑢

𝑐𝑠
≪ 1)

• Recovers the macroscopic properties:

Density   σ𝑖 𝑓𝑖 𝒓, 𝑡 = 𝜌 Velocity   σ𝑖 𝑓𝑖 𝒓, 𝑡 𝑒𝑖 = 𝜌𝒖

Pressure  σ𝑖 𝑓𝑖 𝒓, 𝑡 𝒆𝒊𝒆𝒊 = 𝜌𝑐𝑠
2𝑰 + 𝜌𝒖𝒖

D3Q19 
• weights 𝜔𝑖

• 𝐥𝐚𝐭𝐭𝐢𝐜𝐞 𝐯𝐞𝐥𝐨𝐜𝐢𝐭𝐲 𝒆𝒊



Method: Spectrin-link method for the RBC membrane

Liu et al., J. Cell Bio., 104:528–536, March 1987.
Li et. al, Biophysical J., 88, 2005.
Dao et. al, Mat. Sci. Engr. C-BioS., 26, 2006.
Pivkin & Karniadakis, Phys. Rev. Lett., 101, 2008.
Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.

• The SL model for deformable RBC membranes is inspired by the physiological structure of 
the RBC membrane.

• Course-graining procedure to match material properties and enable dense suspension 
simulations.

• The total Helmholtz free energy of the RBC membrane:

𝐸 𝒙𝒏 = 𝐸𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 + 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐸𝑣𝑜𝑙𝑢𝑚𝑒 + 𝐸𝑎𝑟𝑒𝑎

▪ 𝐸𝑖𝑛−𝑝𝑙𝑎𝑛𝑒 = σ𝑖∈𝑆 𝑉𝑊𝐿𝐶(𝐿𝑖) + σ𝜶∈Π𝐶/𝐴𝜶, (compressional + repulsive)

▪ 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = σ𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝛼,𝛽 𝑘𝑏𝑒𝑛𝑑[1 − cos(𝜃𝛼𝛽 − 𝜃0)]

▪ 𝐸𝑣𝑜𝑙𝑢𝑚𝑒 𝑎𝑛𝑑 𝐸𝑎𝑟𝑒𝑎 introduce constraints to the total volume and total area of the RBC

▪ SL forces:  𝐟𝐧 = −
𝝏𝐸 𝒙𝒏

𝝏𝒙𝒏
. 

• Update according to Newton’s equation of motion:

𝑑𝒙𝒏
𝑑𝑡

= 𝒗𝒏; 𝑀
𝑑𝒗𝒏
𝑑𝑡

= 𝐟𝐧 + 𝐟𝐧
𝐋𝐁 + 𝐟𝐧

𝐏𝐏

Vertices: 𝒙𝒏, 𝑛 ∈ 1,… , 𝑁
Link lengths: 𝐿𝑖 = |𝒙𝒎 − 𝒙𝒏|, i ∈ 1,… , 𝑆

Triangle centers: 𝒙𝜶 =
𝟏

𝟑
(𝒙𝒎 + 𝒙𝒏 + 𝒙𝒍), α ∈ 1,… , Π

Triangle Area: 𝐴𝛼 =
1

2
|(𝒙𝒎 − 𝒙𝒍) × (𝒙𝒏 − 𝒙𝒍)|



Method: Langevin dynamics for NPs

• By treating each NP as a point particle, the NP dynamics can be described via the 
Langevin Equation:

𝑚𝑖

𝑑𝒖𝒑
𝒊

𝑑𝑡
= 𝑪𝑝

𝑖 + 𝑭𝑝
𝑖 + 𝑺𝑝

𝑖

• Three driving forces: 

Conservative force:

𝑪𝑝
𝑖 = −

𝑑𝑈𝑡𝑜𝑡𝑎𝑙
𝑖

𝑑𝒓𝑝
𝑖

Frictional force: 

𝑭𝑝
𝑖 = −𝜁[𝒖𝑝

𝑖 𝑡 − 𝒖(𝒓𝑝
𝑖 , 𝑡)]

(Stokes’ drag law:   𝜁 = 3𝜋𝜌𝜈𝑑𝑝)

Stochastic force 𝑺𝑝
𝑖 (source of the Brownian effect)

ቐ
𝑆𝑝,𝛼
𝑖 𝑡 = 0

𝑆𝑝,𝛼
𝑖 𝑡 𝑆𝑝,𝛽

𝑗
(𝑡′) = 2𝑘𝐵𝑇𝜁𝛿𝑖𝑗𝛿𝛼𝛽𝛿 𝑡 − 𝑡′

the Cartesian component of 

𝑺𝑝
𝑖 exhibit a Gaussian 

distribution of zero 
mean

Hinch, J. Fluid Mech., 72 1975.

Demonstration of the 
fluctuation-dissipation theorem

Local fluid velocity

Particle 𝑖 of mass 𝑚𝑖



Method: Langevin dynamics for NPs

• Two critical time scales:

• The LE is conditionally solved with first-order forward Euler method:

Velocity: 𝒖𝑝(𝑡 + 𝛥𝑡𝐿𝐵) = ൞
𝒖𝑝 𝑡 +

1

𝜁
𝑪𝑝 𝑡 + 𝑺𝑝 𝑡 + 𝒖 𝒓𝑝, 𝑡 , (𝜏𝐿𝐵> 𝜏𝑟)

𝒖𝑝(𝑡) +
Δ𝑡𝐿𝐵

𝑚
{𝑪𝑝 𝑡 + 𝑺𝑝 𝑡 − 𝜁[𝒖𝑝 𝑡 − 𝒖(𝒓𝑝, 𝑡)]}, (𝜏𝐿𝐵≤ 𝜏𝑟)

Displacement:   𝒓𝑝 𝑡 + Δ𝑡𝐿𝐵 = 𝒓𝑝 𝑡 + Δ𝑡𝐿𝐵 𝒖𝑝(𝑡 + Δ𝑡𝐿𝐵)

2) LB time scale 

𝜏𝐿𝐵 =
ℒ2𝜈𝐿𝐵

ℒ𝐿𝐵
2 𝜈

1) Brownian relaxation time scale

𝜏𝑟 =
𝑚

𝜁
=

𝑚

3𝜋𝜌𝜈𝑑𝑝

ℒ: physical length 
𝜈: physical viscosity
ℒ𝐿𝐵, 𝜈𝐿𝐵: corresponding 
properties in lattice 
units.

Journal Article in Preparation.



Method: Couplings

Cell-fluid coupling

• Standard bounce-back (SBB)

• The distributions of the LB node at the end point of a LB link is 
adjusted by 

𝑓𝑖 𝒓, 𝑡 + 1 = 𝑓𝑖′ 𝒓, 𝑡
+ + 2

𝜌𝜔𝑖

𝑐𝑠
2 𝒖𝑏 ⋅ 𝒆𝑖

• The LB fluid force acting on the SL surface vertex is determined by 

𝑓𝑛
𝐿𝐵 𝒓 +

1

2
𝒆𝑖 , 𝑡 = −2𝒆𝑖[𝑓𝑖′ 𝒓, 𝑡

+ +
𝜌𝜔𝑖

𝑐𝑠
2 𝒖𝑏 ⋅ 𝒆𝑖]

• Identical to no-slip boundary condition

• first-order accuracy in space due to intersection point not at 
midpoint

Aidun & Lu, J. Stat. Phys., 81, 1995.
Aidun, Lu & Ding,  J. Fluid Mech., 373, 1998.
MacMeccan et. al, J. Fluid Mech., 618, 2009.
Aidun & Clausen. Annual Rev. Fluid Mech., 42, 2010. 

i



Method: Couplings

NP-fluid (LD-LB) coupling

• Two stencils can be adapted to interpolate 𝒖 𝒓𝑝, 𝑡 from neighboring LB nodes.

1) Trilinear method       

𝑤 𝒓, 𝒓𝒑 = ς𝛼∈{𝑥,𝑦,𝑧}
| Ƹ𝑟𝛼−𝑟𝑝,𝛼|

Δ𝑟𝐿𝐵
(1st order)

2) External boundary force (EBF) method

𝑤 𝒓, 𝒓𝒑 = ς𝛼∈{𝑥,𝑦,𝑧}

{1+cos
𝜋 𝑟𝛼−𝑟𝑝,𝛼

2Δ𝑟𝐿𝐵
}

4Δ𝑟𝐿𝐵
(2nd order)

• The fluid velocity at the NP vicinity then reads

𝒖 𝒓𝑝, 𝑡 = ෍

𝑟∈𝑁𝑐

𝑤 𝒓, 𝒓𝒑 𝒖(𝒓, 𝑡)

• Fluid force in LD, including frictional force and the stochastic force, are then obtained as

𝑭𝑝
𝑓
= 𝑭𝑝 + 𝑺𝑝 = −𝜁 𝒖𝑝 − 𝒖 𝒓𝑝, 𝑡 + 𝑺𝑝

• To conserve momentum, the reactionary impulse density,  𝑱 𝒓 = −𝑤 𝒓
𝑭𝑝
𝑓
Δ𝑡𝐿𝐵

Δ𝑟𝐿𝐵
3 , is assigned back to the 

neighboring LB nodes

𝑓𝑖
𝑆 𝒓, 𝑡 =

𝜔𝑖𝑱 𝒓 ⋅ 𝒆𝑖

𝑐𝑠
2 He et. al. J. Stat. Phys., 87, 1997. 

Aidun, Lu & Ding,  J. Fluid Mech., 373, 1998.
Ahlrichs & Dunweg, J. Chem. Phys., 111, 1999.
C. S. Peskin, Acta Numer., 11, 2002.
Wu & Aidun, Int. J. Numer. Methods Fluids, 2008.



Method: Couplings

NP-Cell Interactions

• Mimic the way of cell-cell interaction through Morse 
potential with a cut-off distance at 𝑟𝑒 = 0.5𝑑𝑝

𝑈𝑀 𝑟𝑝𝑐 = 𝐷𝑒 𝑒2𝑎 𝑟𝑝𝑐−𝑟𝑒 − 2𝑒−𝑎 𝑟𝑝𝑐−𝑟𝑒 , (𝑟𝑝𝑐≤ 𝑟𝑒)

• Here 𝑟𝑝𝑐 denotes a particle-cell distance instead of a cell-cell 
distance. 

• A search algorithm is implemented to efficiently locate the 
closest RBC triangulation with respect to each NP.

NP-NP interactions

• Standard Lennard–Jones potential is employed to resolve the NP-NP 
interaction forces

𝑈𝐿𝐽 𝑟𝑖𝑗 = 4𝜖
𝜎

𝑟𝑖𝑗

12

−
𝜎

𝑟𝑖𝑗

6

, (𝑟𝑖𝑗≤ 3.0𝜎)

Jones, Proc. R. Soc. London. Ser. A, 106, 1924.
Neu & Meiselman, Biophys. J., 83, 2002.
Liu et. al., Int. J. Num. Meth. Fluids, 46, 2004.

𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑀 + 𝑈𝐿𝐽 + 𝑈𝑜𝑡ℎ𝑒𝑟



Verification: LB-SL coupling

Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.
Reasor, Clausen, & Aidun, J. Fluid Mech., 726, 2013.

• The LB-SL coupling has been extensively validated with experiments and 
benchmark cases, proved to be successful to capture both single RBC dynamics and 
rheology of dense suspensions of RBCs.

• This work hereby intends to demonstrate the validity of the LB-LD coupling.



Verification: LB-LD coupling

Velocity relaxation of a single particle

𝑚1 = 29.3,𝑚2 = 𝑚1/10, 𝜁 = 0.48, 𝑢𝑝 0 = 0.01 all in lattice units (lu); 

simulation performed in a 1003 cube with periodic BCs in all directions.  

Alder & Wainwright, 
Phys. Rev. A, 1, 1970.

Long-time tails

Exponential decay

𝒖𝒑(𝐭)

Journal Article in Preparation

Fluctuation due to relatively 
large time steps.



Verification: self-diffusion of a single particle

• Stokes-Einstein relation

𝐷𝑡ℎ𝑒𝑜 =
𝑘𝐵𝑇

𝜁
where 𝜁 = 3𝜋𝜌𝜈𝑑𝑝.

Einstein,  Ann. Phys., 322, 1905.

100 nm particle self-
diffusion in blood plasma at 
body temperature 298 K

• Measure the diffusivity through mean 
squared displacement

𝐷𝑠𝑖𝑚 = lim
Δ𝑡 →∞

𝑀𝑆𝐷𝑡
6Δ𝑡

where 𝑀𝑆𝐷𝑡 = Δ𝑟2(𝑡).

Journal Article in Preparation.



Verification: self-diffusion of a single particle

Einstein,  Ann. Phys., 322, 1905.

100 nm particle self-
diffusion in blood plasma at 
body temperature 298 KΔ𝑡 = 1000

• Stokes-Einstein relation

𝐷𝑡ℎ𝑒𝑜 =
𝑘𝐵𝑇

𝜁
where 𝜁 = 3𝜋𝜌𝜈𝑑𝑝.

• Measure the diffusivity through mean 
squared displacement

𝐷𝑠𝑖𝑚 = lim
Δ𝑡 →∞

𝑀𝑆𝐷𝑡
6Δ𝑡

where 𝑀𝑆𝐷𝑡 = Δ𝑟2 𝑡 .

Journal Article in Preparation.



Verification: dispersion of a particle swarm

Einstein relation 
assumes single 
particle scenario 
(dilute regime).

Einstein,  Ann. Phys., 322, 1905.

100 nm,  𝜙 = 0.4%, 
dilute

100 nm,  𝜙 = 12%, 
dense

For dilute suspensions of nanoparticles, the calculated 
diffusivity matches well with the  theoretical 
counterpart given by Einstein’s relation.

Journal Article in Preparation.



Application to NP diffusion in a capillary vessel

𝑫𝒓𝒓
∗ = 𝚽 (𝒅𝒗

∗ , 𝝓, 𝑷𝒆, 𝑪𝒂𝒘)

𝑑𝑣𝑑𝑅

𝑑𝑃

Wall shear rate ሶ𝛾𝑤

Plasma: 𝜇, 𝜌, 𝑇

RBC hematocrit 𝜙 ,  
RBC shear moduli 𝐺, 
and RBC viscosity ratio λ

Confinement ratio: 𝑑𝑣
∗ =

𝑑𝑣

𝑑𝑅

NP Peclet number: 𝑃𝑒 =
3𝜋𝜇 ሶ𝛾𝑤𝑑𝑃

3

4𝑘𝐵𝑇

RBC capillary number: 𝐶𝑎𝑤 =
𝜇 ሶ𝛾𝑤𝑑𝑅

2𝐺

RBC hematocrit 𝜙

• Non-dimensional Parameters: 

Normalized Radial diffusivity:

𝑫𝒓𝒓
∗ =

𝑫𝒓𝒓

ሶ𝜸𝒘𝒅𝒑
𝟐



• 𝑫𝒓𝒓
∗ = 𝜱 (𝒅𝒗

∗ , 𝝓, 𝑷𝒆𝑵𝑷, 𝑪𝒂𝑹𝑩𝑪)

• Confinement ratio:

𝑑𝑣
∗ = 2.0 ~ 5.0; (𝑑𝑣 = 16 ~ 40 𝜇𝑚)

• Hematocrit: 

ϕ = 0% ~ 20%; (capillaries)

• NP Peclet number: 

𝑃𝑒𝑃 = 0. 0 ~ 43.1;

(Brownian diffusion dominant  RBC-enhanced diffusion dominant)

• RBC Capillary number: 

𝐶𝑎𝑤 = 0.04 ~ 0.37;

(tumbling  tank-treading)

• 𝑑𝑣
∗ = 2.5, Φ = 20%, 𝐶𝑎𝑤 = 0.12 are fixed with 𝑃𝑒𝑃 = 0. 01, 0.1, 10.0 𝑎𝑛𝑑 ∞ to study the 

effect of Peclet number on NP diffusion.

Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.

Application to NP diffusion in a capillary vessel



Application to NP diffusion in a capillary vessel

𝑷𝒆 =
𝟑𝝅𝝁 ሶ𝜸𝒘𝒅𝑷

𝟑

𝟒𝒌𝑩𝑻

increase Pe

Journal Article in Preparation.



Application to NP diffusion in a capillary vessel

𝑷𝒆𝑷 =
𝟑𝝅𝝁 ሶ𝜸𝒘𝒅𝑷

𝟑

𝟒𝒌𝑩𝑻

𝑫𝒓𝒓 =
𝑴𝑺𝑫𝒕(𝚫𝒓

𝟐)

𝟐𝜟𝒕
(𝚫𝒕 = 𝟏𝟎𝟎𝟎)

𝑫𝑩𝒓𝒘𝒏 =
𝒌𝑩𝑻

𝟑𝝅𝝆𝝂𝒅𝒑

increase Pe

Observations:
• 𝑷𝒆 ↑ → 𝑫𝒓𝒓 ↑
• Brownian diffusivity is linearly 

added (no coupling) to the 
RBC enhanced diffusivity

• At equilibrium:
• For 0~100 nm particles, 

Brownian diffusion is 
dominant;

• For > 450 nm particles, RBC 
enhanced diffusion is 
competing with Brownian 
diffusion.

Journal Article in Preparation.



𝑃𝑒 = 0.11
(100 𝑛𝑚)

𝑃𝑒 =10.0
(450 𝑛𝑚)

Application to NP diffusion in a capillary vessel

𝑷𝒆 =
𝟑𝝅𝝁 ሶ𝜸𝒘𝒅𝑷

𝟑

𝟒𝒌𝑩𝑻
=

ሶ𝜸𝒘𝒅𝒑
𝟐

𝟒𝒌𝑩𝑻/𝟑𝝅𝝁𝒅𝒑

% number volume concentration

Particle free 
zone.

Trapped NP
uniform

Tilted

“Turn on” 
Brownian effect,

yielding both 
Brownian 

diffusivity and 
RBC-enhanced 

diffusivity

Journal Article in Preparation.



𝑃𝑒 = ∞
(100 𝑛𝑚)

𝑃𝑒 = ∞
(450 𝑛𝑚)

Application to NP diffusion in a capillary vessel

“Turn off” 
Brownian effect,
yielding purely 
RBC-enhanced 

diffusivity.

Trapped NP

Trapped NP

Particle free 
zone. 

Journal Article in Preparation.



Conclusion

• A lattice-Boltzmann based multiscale simulation approach for simulating 
nanoparticle transport in cellular blood flow has been developed and 
proved to be successful.

• Particles of low Pe tend to have higher averaging radial displacement owing 
to higher averaging radial diffusivity; Brownian effect contributes the major 
differences. 

• Particles of high Pe could yield “particle free zone” near the wall due to low 
Brownian effect.

• Small particles (< 100 nm) are easier to be trapped in RBC-concentrated 
regions; Brownian effect is critical for NPs to bypass RBCs.



Thanks for your attention!


