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Motivation

« Nano-therapeutics:

« The last 20 years have witnessed a plethora of studies focused on using
intravascularly injected NP systems to deliver drugs to biological targets such
as tumor.

It is shown that NP therapeutics has the potential to improve current disease therapies
because of their ability to overcome multiple biological barriers and release
therapeutic load in the optimal dosage range.

Decuzzi et al., Pharm. Res., 2009
Georgia & Alexis et al., Mol. Pharm., 2008
Tech|) Blanco et al., NATURE BIOTECHNOLOGY, 2015



Motivation

 Being able to computationally investigate the characteristics of NP transport in cellular
blood flow is of strategic significance to the improvement the NP bioavailability in
biological systems.

« Support the realization of controllable the NP circulating time and favorable pre-
extravasation/adhesion states.

 Major challenges:

1) To resolve the large length-scale discrepancy (2~3 orders of magnitude) between NPs and cells

such as RBC, platelet, and white blood cell using one resolution of mesh remains challenging;
2) Capture the NP dynamics including Brownian effect and interactions with other cells.

RBC ~8 um

Specific Aim:

1) Develop an efficient computational approach
to resolve the multi-scale nature of NP
transport in cellular blood flow,

2) and understand the fundamental physics
of the NP diffusion process.

3) Support the development of targeted
NP drug delivery system.

A Platelet 2~3 um

4 von Willebrand
actors (VWF)
monomers ~60 nm
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Computational Approach

Lattice-Boltzmann
(LB) method for fluid 2 Mesoscale .
Multi-scale
-
Comprehensive Nanoscale
two-way b
. couplings -
Cell models: Microscale \—/g/

- RBC: Spectrin-link 4/
(SL) method s ‘

« Platelet: rigid |
particle

Langevin dynamics (LD) for
nanoscale particles/proteins
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Method: Lattice Boltzmann method for the fluid

« Solve the discretized Boltzmann equation in velocity space with the collision term
treated by the single-relaxation-time Bhatnagar, Gross, and Krook (BGK) operator and

a forcing term to represent the body force effect

1 (eq) S
fi(r + At ge;, t + Aty g) = fi(r,t) — - [ﬁ-(r, t)—f O (r, t)] + (. t)

o Equilibrium distribution function: Recovers incompressible
1 1 Navier-Stok ti
(eq) _ 2 P S avier-Stokes equations
fi @) = wp |14 c2 (€ -w) + 2c2 (e; - u) 2c2 (u u)] at low Mach number limit
u
. .. . (— <« 1)
LB kinematic viscosity: Pseudo-sound-speed: Cs
1\ , Ar c Arp
vg=|T—=]cC =
LB 2)°S  \3At

 Recovers the macroscopic properties:

D3Q19 _ D30Q19 Density ); fi(r,t) =p Velocity Y, fi(r,t) e; = pu
Lattice Stencil .

« weights w; ,

. lattice velocity e; Pressure Y, f;(r,t) eje; = pcs1 + puu

Bhatnagar, Gross, & Krook, Phys. Rev., 94(3), 1954.

He et. al. J. Stat. Phys., 87, 1997.

Aidun, Lu & Ding, J. Fluid Mech., 373, 1998.

Georgia&
Tech Aidun & Clausen. Annual Rev. Fluid Mech., 42, 2010.



Method: Spectrin-link method for the RBC membrane

Bnd ) A

* The SL model for deformable RBC membranes is inspired by the physiological structure of
the RBC membrane.

» Course-graining procedure to match material properties and enable dense suspension
simulations.

* The total Helmholtz free energy of the RBC membrane:

E{xn} = Ein—plane + Ebending + Evolume + Earea

Ein—plane = ZiES VWLC (Li) + Zael’[ C/Am (compressional + repulSive)

Ebending — Zadjacent a,f Kpend [1 - COS(Haﬁ - 60)]

E,oiume and E 4.4 introduce constraints to the total volume and total area of the RBC

= SL forces: f, = —% .

Update according to Newton’s equation of motion:

dx, dv,
——=v,; M——=f,+f8+fFF
dt dt
Vertices: x,, n€1l,..,N
Link lengths: L; = |x,, — x|, 1€ 1,...,S
| 1 Liu et al., J. Cell Bio., 104:528-536, March 1987.
- B Triangle centers: x, == (x,,, + x,, + x;), « € 1, ..., II ’ ’ ¢
d & “ 3 (tm + 2Xn + X1) Li et. al, Biophysical J., 88, 2005.
Triangle Area: Ag = - | (X — X1) X (Xn — X1)| Dao et. al, Mat. Sci. Engr. C-BioS., 26, 2006.
Georgia& Pivkin & Karniadakis, Phys. Rev. Lett., 101, 2008.
Tech|| Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.



Method: Langevin dynamics for NPs

- By treating each NP as a point particle, the NP dynamics can be described via the
Langevin Equation:
du,
T

= CL +FL + S}

* Three driving forces: Local fluid velocity

Conservative force: Frictional force:
dUt%otal F;o = _([ué(t) - u(r;o» t)]

I — _
Cp = dr}i) (Stokes’ drag law: ¢ = 3mpvd,)

Stochastic force S, (source of the Brownian effect)

S{;,a(t) =0 the Cartesian component of

: ' ) St exhibit a Gaussian
St (t)S) (t") = 2kgT{8;:8,55(t —t") p
p.a(t)Sy 5(t") 51€0ij0ap distribution of zero

\ mean

Demonstration of the
fluctuation-dissipation theorem

Particle i of mass m;
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Method: Langevin dynamics for NPs

« Two critical time scales:

1) Brownian relaxation time scale 2) LB time scale

= m_ = m LZVLB
r — , T = >
¢ 3mpvdy, L2y

L: physical length

v: physical viscosity
L; g, vy g: corresponding
properties in lattice
units.

« The LE is conditionally solved with first-order forward Euler method:

)
u, (6) + 2 [€,(0) + 5, (O] + u(ry, t),
Velocity: u, (t + At;p) = 4

m

\

(TLg> 7r)

W, (£) + LB (C () + S, (£) — {[uy(8) — u(ry, O]}, (T15< T7)

Displacement: r,(t + At;p) = r,(t) + At p u,(t + Aty p)

Georgia &
Tech
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Method: Couplings

1]

Cell-fluid coupling i ‘

———

« Standard bounce-back (SBB)

The distributions of the LB node at the end point of a LB link is
adjusted by

=

e e
s s i 8

e ——

=

=%

5

firt+1) = fu(r, o

The LB fluid force acting on the SL surface vertex is determined by i
LB(r+ e;, )——Ze [f. (7, i] ' %

Identical to no-slip boundary condition

first-order accuracy in space due to intersection point not at

midpoint

== —
e —
= s
3 >

st

Aidun & Lu, J. Stat. Phys., 81, 1995.

Aidun, Lu & Ding, J. Fluid Mech., 373, 1998.
MacMeccan et. al, J. Fluid Mech., 618, 2009.

Aidun & Clausen. Annual Rev. Fluid Mech., 42, 2010.
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Method: Couplings

NP-fluid (LD-LB) coupling

» Two stencils can be adapted to interpolate u(rp, t) from neighboring LB nodes. r o

1) Trilinear method g

w(r,r,) = [eegy,z lrz;::al (15t order) ‘[
2) External boundary force (EBF) method Arpp
{14cos fig%%f%ﬁg
w(r,1p) = ez pyv. (22 order) l ‘Ta
 The fluid velocity at the NP vicinity then reads & ¢
u(rp, t) = z W(r, rp)u(r, t) ==

Tr€N,
* Fluid force in LD, including frictional force and the stochastic force, are then obtained as
f _ _
F At
LB .

E__— is assigned back to the
Ar;p

» To conserve momentum, the reactionary impulse density, J(r) = —w(r)

neighboring LB nodes
wJ(r) - e;
2

S

et =

He et. al. J. Stat. Phys., 87, 1997.

Aidun, Lu & Ding, J. Fluid Mech., 373, 1998.
Ahlrichs & Dunweg, J. Chem. Phys., 111, 1999.
C. S. Peskin, Acta Numer., 11, 2002.

Georgia & _ ]
Wu & Aidun, Int. J. Numer. Methods Fluids, 2008.
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Method: Couplings

NP-Cell Interactions

ool Distance [LB Unit] . * Mimic the way of cell-cell interaction through Morse
e i - o potential with a cut-off distance at r, = 0.5d,,

UM(rpc) =D, [em(rpc—re) - Ze—a(rpc—re)] y (pe=Te)

Morse Potential

= b

Neu & Meiselman Experiment o

—

» Here r;,. denotes a particle-cell distance instead of a cell-cell
distance.

Interaction Energy [J/m?]

i i ] i 0
[l B SN [ S} —
T T T T

A search algorithm is implemented to efficiently locate the
closest RBC triangulation with respect to each NP.

5] 10 15 20 25
Cell-Cell Distance [nm]

NP-NP interactions

 Standard Lennard—Jones potential is employed to resolve the NP-NP
interaction forces

o 12 o 6
UL](rij) = 4e¢ [(T_> — (T_> ], (TijS 3.00’)
] L]
Jones, Proc. R. Soc. London. Ser. A, 106, 1924.

Georgia& Utotat = Um + Ury + Uother Neu & Meiselman, Biophys. J., 83, 2002.
Tech|) Liu et. al., Int. J. Num. Meth. Fluids, 46, 2004.



Verification: LB-SL coupling

- The LB-SL coupling has been extensively validated with experiments and
benchmark cases, proved to be successful to capture both single RBC dynamics and

rheology of dense suspensions of RBCs. Cac
, 0 02 04 06 08 1
‘ ‘ ‘ ‘ "Li et al. SL, N=28,673 —— C 2 , ; — ; .
16 & [ils ot {)a}g et al. Fl*i 1 aq Tsukada et al. Experiment o
| S T 0 002 004 006 008 01 0 ‘ Simulation A&
= 12} 1 I\ imulation, N= 80 A | | | | | 1.6 } o
= 0l g b Pivkin et al. Tumbling = o) o]
SR 70 + Pivkin et al. Tank Treading X — 19 @8 A A
= . o Simulation Tumbling A - <
= i N"i’ ¢ .{, + ) B, 60 | Simulation Tank Treading © = % % :
2 Dy E 50 L ~ 08 _ I
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ g A A
0 40 010 10 20 200 20 320 AL yq | 04 |
i Force [pN] S l___ - ‘ ‘
) o "é 30 L 0 y X
g 20 " ‘.& - o 1 2 3 4 5 6
o 10 | - o x / RBC Velocity [mm - sec™!]
X
0 1 1 1 1 |x 1 o ‘

0 1 2 3 4 5 6 7 8
Shear Rate [sec™!]

« This work hereby intends to demonstrate the validity of the LB-LD coupling.

Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.

Georgia&
Reasor, Clausen, & Aidun, J. Fluid Mech., 726, 2013.
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Verification: LB-LD coupling

Velocity relaxation of a single particle

Georgia
Tech
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10°

Journal Article in Preparation

my = 29.3,m, =m, /10, { = 0.48, u, (0) = 0.01 allin lattice units (lu);
simulation performed in a 1003 cube with periodic BCs in all directions.

i T e LT ""I a
_ """""""""""""""""""" Exponentlalhahé@y i
E “ N :
L \ N,
i . R ARY
= * . ‘\\ """""" \: -
: Cos, U \\\\ 5
=R 37 . \“‘\ﬁm =
At exp(-{t/m,) . ng-tlm:iéi'i? :
JERRTECRREE exp(-Ct/m,)
[ =iy m, (under- damped) _
3 m, (under-damped) \
- . no 1nertla (Ové.r damped) \
= | | . | R =
Q° 0 107 10° \

t (lw)

Alder & Wainwright,
Phys Rev. A, 1, 1970.

Fluctuation due to relatively
large time steps.

10*
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Verification: self-diffusion of a single particle

. Stokes-Finstein relation  Measure the diffusivity through mean

kgT squared displacement
Dtheo = T D = lim MSD;
Stm At -0 H6AL

where ¢ = 3npvd,. where MSD, = Ar?(t).

100 nm particle self-

x 10 e
6O T T T T ] diffusion in blood plasma at
! ] body temperature 298 K
50F Stokes-Einstein 7
I * Simulation ]
‘S 40Ff -
S’ | .
o B ]
~ 30 .
- i ]
72 [ ]
z 20 .
1.0F -
E i Time: 0.00 ms
00 ! ! ! 1 ! ! ! 1 ! ! ! 1 ! ! ! 1 ! ! ! 1 !
0 200 400 600 800 1000 C :
Georgia At (Tu) Journal Article in Preparation.
Tech& Einstein, Ann. Phys., 322, 1905.



Verification: self-diffusion of a single particle

. Stokes-Einstein relation  Measure the diffusivity through mean

kgT squared displacement
Dtheo = T D = lim MSD;
ST At >0 6AL

where ¢ = 3npvd,. where MSD, = Ar2(t).

o—_— 100 nm particle self-
[ 15 _— 1 diffusion in blood plasma at
At = 1000 | body temperature 298 K
8¢ @, ] -
I 4 4 “”“000
,;3\ : 35
o~ &) - g
5 N _' 64 08 08 1 |
a ¢ 5
2 __ Dtheu = kBT / c __
I * D, =MSD,/6At ;
03_ ! l 4I- w T R é ] Time: 0.00 ms
& ) t (ms) Journal Article in Preparation.
r
ec"re%ﬁ& Einstein, Ann. Phys., 322, 1905.



Verification: dispersion of a particle swarm

— (0]
For dilute suspensions of nanoparticles, the calculated 100 nm, ¢ = 0.4%,

[ ] (] [ ] [ ] [ ] dilute
diffusivity matches well with the theoretical BN et Gy s
counterpart given by Einstein’s relation. o

4.5 : 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I |: - .
- 3F < Time: 0.01 ms
72! B ]
& o5k D —kT/C : 100 nm, ¢ = 12%,
i - theo — B ] dense
= 2 :_ o Ddilute = MSDt, e / 6At _: *’ﬂ;“&‘.ﬂ%ﬁ'&f:{u%ﬁ }EE:
; A D =MSD ] S o AR A
= sk seme = MO, SOAC R el
- . L AN A el 1
: : ERT G g Span <Y
1 F - . . : 28 58, Bl B S5 e
: x Einstein relation  ¥¢0% wgt“;‘:;c:wiﬁ,r y g &%
05F . assumes single ~ "of B EECE TR
- | | | | | | O particle scenario :; %ﬂﬁu S¥e o FEWS
% 7 5 8 0 12 14 (dilute regime). N EREHEE F Lo
t (ms A A s L AR TS
LI
Georgia Time: 0.01 ms

Tech& Journal Article in Preparation. Einstein, Ann. Phys., 322, 1905.



Application to NP diffusion in a capillary vessel

e Non-dimensional Parameters:

Wall shear rate y,,

D;, = @ (dy, ¢, Pe, Cay)

Normalized Radial diffusivity:

D
D * — . rr
TT Yw dgza

Georgia &
Tech
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RBC hematocrit ¢,
RBC shear moduli G,
d and RBC viscosity ratio A
v

o . " d
Confinement ratio: d;, = d—”
R
RBC hematocrit ¢
3T UV, Ao
NP Peclet number: Pe = -Xw=p
4kgT
_ Uywdpr

RBC capillary number: Ca,, = ”



Application to NP diffusion in a capillary vessel

Cag

o D;k"r = ¢ (d;‘” ¢, Peyp, CaRBC) o0 002 004 006 008 01 012

+ Confinement ratio T
d;; = 2.0 ~5.0; (dv — 16 ~ 40 #m) % (13 Simulation Tank Treading @

« Hematocrit: D; 0y
¢ = 0% ~ 20%; (capillaries) ; N .,

NP Peclet number: - VL %ex x x x
Pep = 0.0 ~ 43.1; 0 1 2 3 4 5 6 T 8

Shear Rate [sec™']

(Brownian diffusion dominant - RBC-enhanced diffusion dominant)
RBC Capillary number:
Ca,, = 0.04 ~ 0.37;
(tumbling - tank-treading)

dy, = 2.5 & =20%, Ca, = 0.12 are fixed with Pe, = 0.01,0.1,10.0 and o to study the

effect of Peclet number on NP diffusion.

Georgia &
Tech
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Application to NP diffusion in a capillary vessel

Pe = infinity (100 nm)

08 ---.-.'---'.-I.-----.-.---I..-.---.-'.\zl-.-.-.---.-I--_._._.‘- ]
- Skimming Laver .
.2 075 F=3Nr /N s Ay :
311-”)/ d B i=1"1 £ ]
— w=P 07k Ca ,=0.12,¢$=20%,d =2.5 i
4kgT i ]
0.65 | .
m“’ - ]
~ 06F -
™ - ]
0.55 j Pe dp -
—— (0,014 50 nm 1
0.5 ——a—— 0.1 100nm
0.45 Y — 10.0 450 nm _f
e co 100 nm i
04 | ] 1 ] | I ] ] | ] | | 1 | \ | B
0 200 400 _ 600 800 1000
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Application to NP diffusion in a capillary vessel

Observations:

e PeT -»D,.. 1T

« Brownian diffusivity is linearly
added (no coupling) to the
RBC enhanced diffusivity

» At equilibrium:

« For 0~100 nm particles,
Brownian diffusion is
dominant;

* For > 450 nm particles, RBC
enhanced diffusion is

competing with Brownian
diffusion.

Georgia& . . .
Tech|) Journal Article in Preparation.

_ MSD,(Ar?) D _ kpT
r — 2At Brwn — 37Tdep
(At = 1000)
14 1 . N EmE ' Tl | '
4 =160, ¢ = 20% Pe d,
12 d =20 um = 0.014 350nm A
- O, =200 = 0.11 100 nm |
10 | —eee 10,0 450 nm ]




Application to NP diffusion in a capillary vessel

% number volume concentration
%5 number
R 1.|:|. 4 10 18 24
[-F -]
' b u
F Y [
: L Sen
I. .I u
L} 1} “
“Turn on” \ / e
Brownian effect, N LA
ieldin h ' =0
yle d g .bOt %a number
Brownian [ g8 8 10 18 20
° ° ° - [-F.]
diffusivity and | o=
RBC-enhanced o
° e o d I n, B2
diffusivity :' L S
|: :l 3
. | 2
(1]
[-F ]

B

_3muy,dp . Vwdp
4'kBT 4'kBT/3Tl'ﬂdp

Georgia@] . . .
Tech|| Journal Article in Preparation.



Application to NP diffusion in a capillary vessel

“Turn off”
Brownian effect,
yielding purely
RBC-enhanced
diffusivity.

Georgia . . .
Te%h& Journal Article in Preparation.



Conclusion

- A lattice-Boltzmann based multiscale simulation approach for simulating
nanoparticle transport in cellular blood flow has been developed and
proved to be successful.

- Particles of low Pe tend to have higher averaging radial displacement owing
to higher averaging radial diffusivity; Brownian effect contributes the major
differences.

« Particles of high Pe could yield “particle free zone” near the wall due to low
Brownian effect.

« Small particles (< 100 nm) are easier to be trapped in RBC-concentrated
regions; Brownian effect is critical for NPs to bypass RBCs.
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Thanks for your attention!
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