

A lattice-Boltzmann based multiscale approach for simulating nanoparticle transport in cellular blood flow

Zixiang “Leo” Liu[§], Yuanzheng Zhu[§], Rekha R. Rao[¶], Jonathan R. Clausen[¶], Cyrus K. Aidun[§]

[§] Georgia Institute of Technology, [¶] Sandia National Laboratories

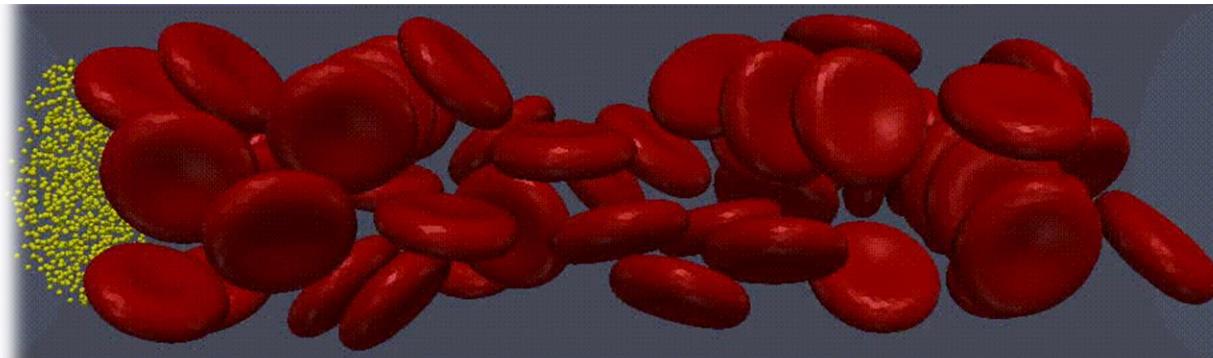
07/19/2017

Outline

- **Motivation**
- **Computational Approach**
 - Lattice-Boltzmann (LB) method for fluid
 - Spectrin-link (SL) method for red blood cell (RBC) membrane
 - Langevin dynamics (LD) approach for nanoscale particles (NP)
 - Coupling of the LB-SL-LD method
- **Verification**
- **Application to NP diffusion in a capillary vessel**

Motivation

- **Nano-therapeutics:**
- The last 20 years have witnessed a plethora of studies focused on **using intravascularly injected NP systems to deliver drugs to biological targets** such as tumor.
- It is shown that NP therapeutics has the potential to improve current disease therapies because of their ability to **overcome multiple biological barriers** and **release therapeutic load in the optimal dosage range**.



Decuzzi et al., *Pharm. Res.*, 2009

Alexis et al., *Mol. Pharm.*, 2008

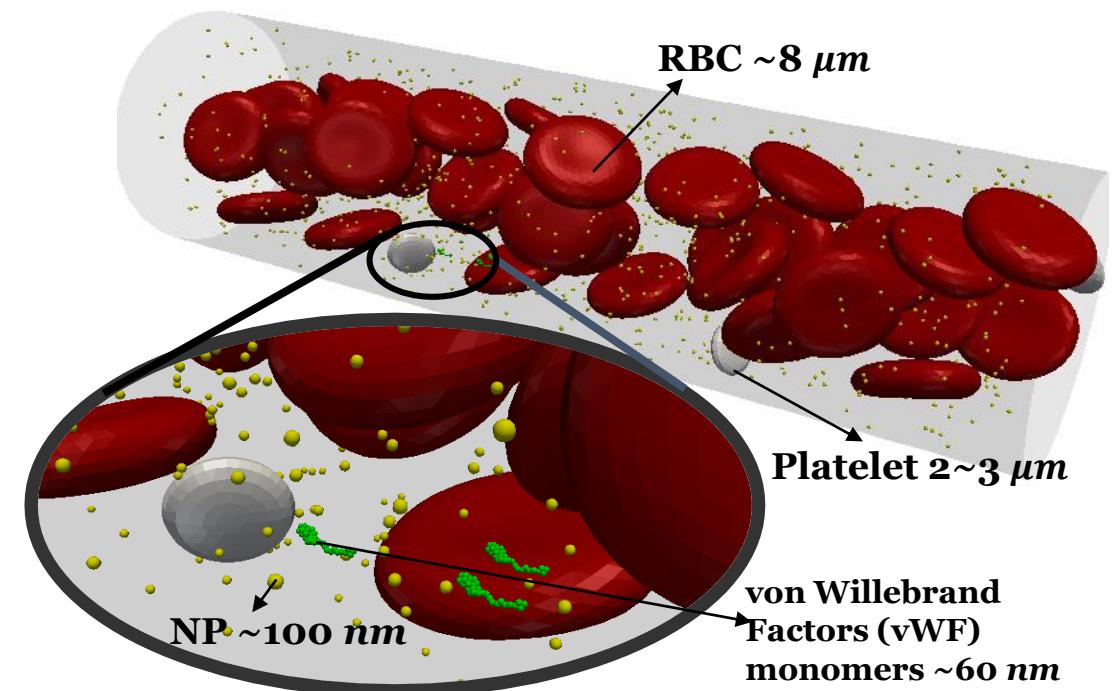
Blanco et al., *NATURE BIOTECHNOLOGY*, 2015

Motivation

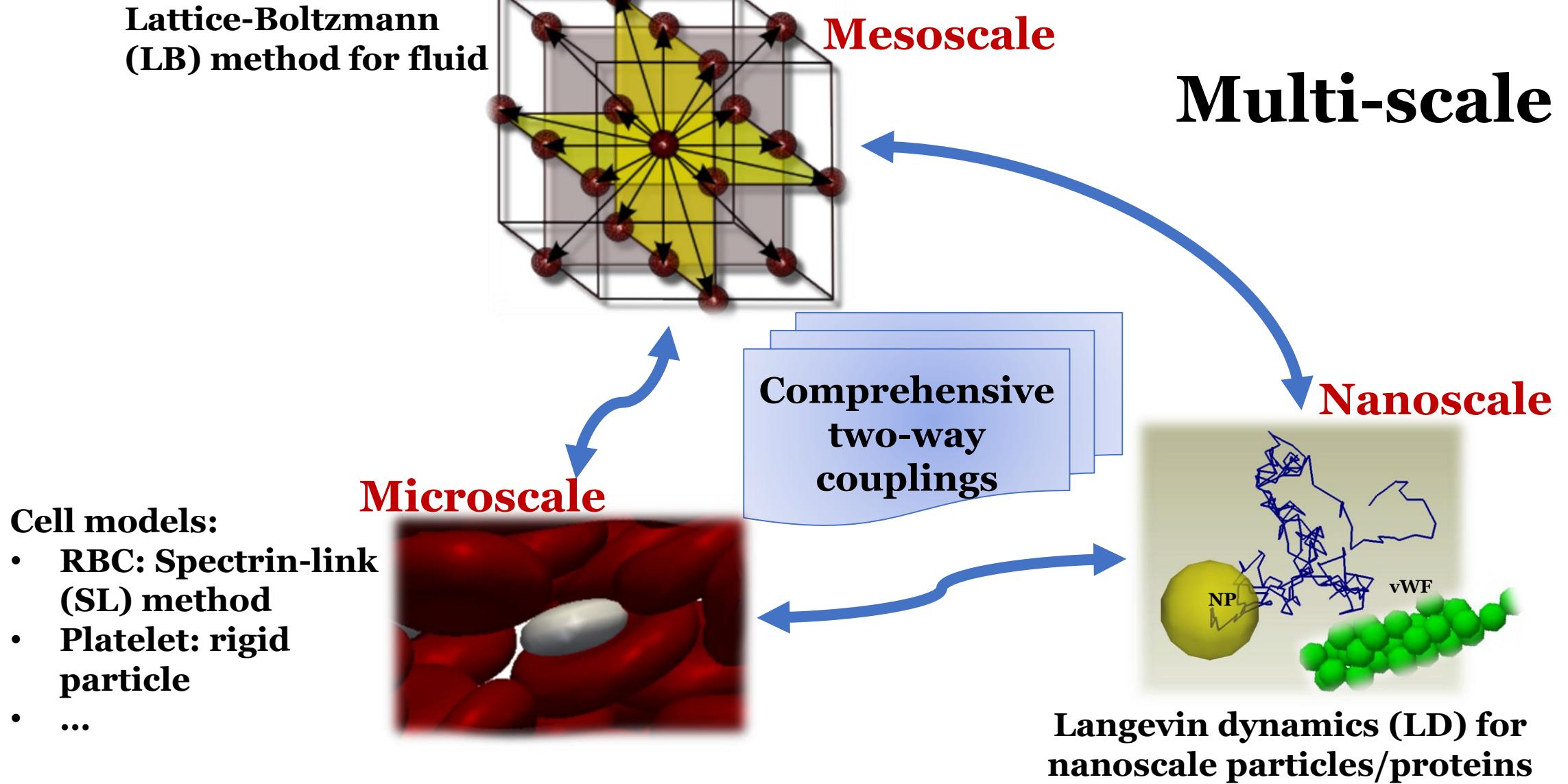
- Being able to computationally investigate the characteristics of NP transport in cellular blood flow is of strategic significance to the improvement the NP bioavailability in biological systems.
- Support the realization of controllable the NP circulating time and favorable pre-extravasation/adhesion states.
- Major challenges:
 - 1) To resolve the **large length-scale discrepancy** (2~3 orders of magnitude) between NPs and cells such as RBC, platelet, and white blood cell using one resolution of mesh remains challenging;
 - 2) Capture the **NP dynamics** including Brownian effect and interactions with other cells.

Specific Aim:

- 1) Develop an efficient computational approach to resolve the multi-scale nature of NP transport in cellular blood flow,
- 2) and understand the fundamental physics of the NP diffusion process.
- 3) Support the development of targeted NP drug delivery system.



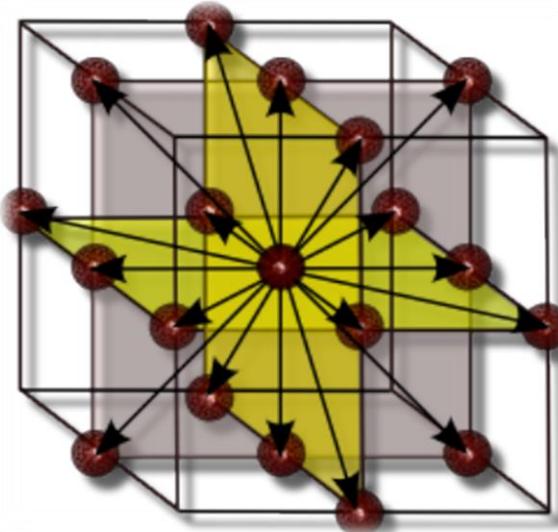
Computational Approach



Method: Lattice Boltzmann method for the fluid

- Solve the **discretized Boltzmann equation** in velocity space with the **collision term** treated by the single-relaxation-time **Bhatnagar, Gross, and Krook (BGK) operator** and a **forcing term** to represent the body force effect

$$f_i(\mathbf{r} + \Delta t_{LB} \mathbf{e}_i, t + \Delta t_{LB}) = f_i(\mathbf{r}, t) - \frac{1}{\tau} [f_i(\mathbf{r}, t) - f_i^{(eq)}(\mathbf{r}, t)] + f_i^S(\mathbf{r}, t)$$



D3Q19
Lattice Stencil

D3Q19

- weights** ω_i
- lattice velocity** \mathbf{e}_i

Density $\sum_i f_i(\mathbf{r}, t) = \rho$

Pressure $\sum_i f_i(\mathbf{r}, t) \mathbf{e}_i \mathbf{e}_i = \rho c_s^2 \mathbf{I} + \rho \mathbf{u} \mathbf{u}$

Velocity $\sum_i f_i(\mathbf{r}, t) \mathbf{e}_i = \rho \mathbf{u}$

Bhatnagar, Gross, & Krook, *Phys. Rev.*, 94(3), 1954.

He et. al. *J. Stat. Phys.*, 87, 1997.

Aidun, Lu & Ding, *J. Fluid Mech.*, 373, 1998.

Aidun & Clausen. *Annual Rev. Fluid Mech.*, 42, 2010.

- Equilibrium distribution function:**

$$f_i^{(eq)}(\mathbf{r}, t) = \omega_i \rho \left[1 + \frac{1}{c_s^2} (\mathbf{e}_i \cdot \mathbf{u}) + \frac{1}{2c_s^2} (\mathbf{e}_i \cdot \mathbf{u})^2 - \frac{1}{2c_s^2} (\mathbf{u} \cdot \mathbf{u}) \right]$$

Recovers incompressible
Navier-Stokes equations
at low Mach number limit
 $(\frac{u}{c_s} \ll 1)$

- LB kinematic viscosity:**

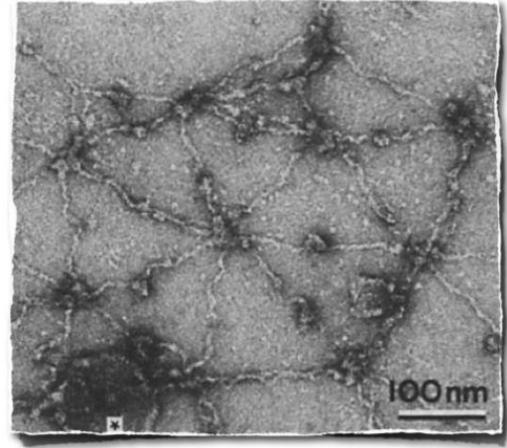
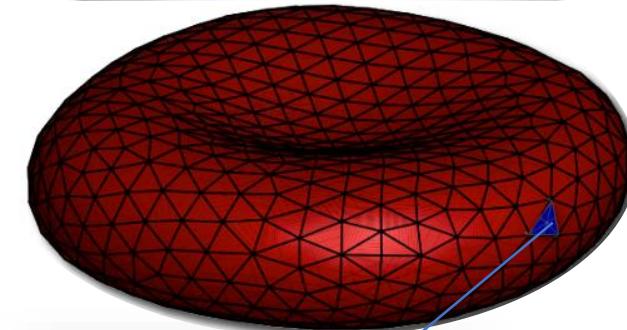
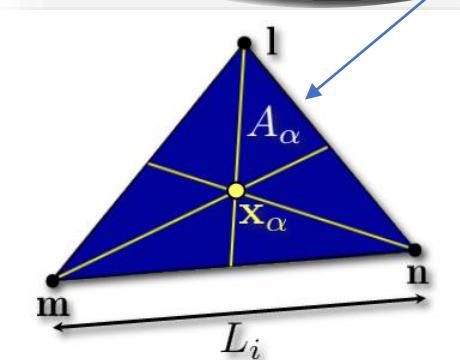
$$\nu_{LB} = \left(\tau - \frac{1}{2} \right) c_s^2 \Delta t$$

- Pseudo-sound-speed:**

$$c_s = \frac{\Delta r_{LB}}{\sqrt{3} \Delta t_{LB}}$$

- Recovers the macroscopic properties:**

Method: Spectrin-link method for the RBC membrane



- The SL model for deformable RBC membranes is inspired by the **physiological structure of the RBC membrane**.
- **Course-graining** procedure to match material properties and enable dense suspension simulations.
- **The total Helmholtz free energy of the RBC membrane:**

$$E\{x_n\} = E_{in-plane} + E_{bending} + E_{volume} + E_{area}$$

- $E_{in-plane} = \sum_{i \in S} V_{WLC}(L_i) + \sum_{\alpha \in \Pi} C/A_{\alpha}$, (compressional + repulsive)
- $E_{bending} = \sum_{adjacent \alpha, \beta} k_{bend} [1 - \cos(\theta_{\alpha\beta} - \theta_0)]$
- E_{volume} and E_{area} introduce constraints to the total volume and total area of the RBC
- **SL forces:** $\mathbf{f}_n = -\frac{\partial E\{x_n\}}{\partial x_n}$.
- **Update according to Newton's equation of motion:**

$$\frac{dx_n}{dt} = \mathbf{v}_n; \quad M \frac{d\mathbf{v}_n}{dt} = \mathbf{f}_n + \mathbf{f}_n^{LB} + \mathbf{f}_n^{PP}$$

Vertices: $x_n, n \in 1, \dots, N$

Link lengths: $L_i = |x_m - x_n|, i \in 1, \dots, S$

Triangle centers: $x_{\alpha} = \frac{1}{3}(x_m + x_n + x_l), \alpha \in 1, \dots, \Pi$

Triangle Area: $A_{\alpha} = \frac{1}{2}|(x_m - x_l) \times (x_n - x_l)|$

Liu et al., J. Cell Bio., 104:528–536, March 1987.

Li et. al, Biophysical J., 88, 2005.

Dao et. al, Mat. Sci. Engr. C-BioS., 26, 2006.

Pivkin & Karniadakis, Phys. Rev. Lett., 101, 2008.

Reasor, Clausen & Aidun, J. Num. Meth. Fluids, 14, 2010.

Method: Langevin dynamics for NPs

- By treating each NP as a point particle, the NP dynamics can be described via the Langevin Equation:

$$m_i \frac{d\mathbf{u}_p^i}{dt} = \mathbf{C}_p^i + \mathbf{F}_p^i + \mathbf{S}_p^i$$

- Three driving forces:

Conservative force:

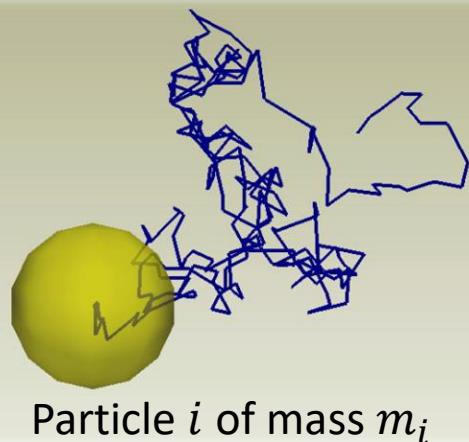
$$\mathbf{C}_p^i = -\frac{dU_{total}^i}{d\mathbf{r}_p^i}$$

Frictional force:

$$\mathbf{F}_p^i = -\zeta[\mathbf{u}_p^i(t) - \mathbf{u}(\mathbf{r}_p^i, t)]$$

(Stokes' drag law: $\zeta = 3\pi\rho v d_p$)

Local fluid velocity



Particle i of mass m_i

Stochastic force \mathbf{S}_p^i (source of the Brownian effect)

$$\begin{cases} \overline{\mathbf{S}_{p,\alpha}^i(t)} = 0 \\ \overline{\mathbf{S}_{p,\alpha}^i(t) \mathbf{S}_{p,\beta}^j(t')} = 2k_B T \zeta \delta_{ij} \delta_{\alpha\beta} \delta(t - t') \end{cases}$$

the Cartesian component of \mathbf{S}_p^i exhibit a Gaussian distribution of zero mean

Demonstration of the fluctuation-dissipation theorem

Method: Langevin dynamics for NPs

- Two critical time scales:

1) Brownian relaxation time scale 2) LB time scale

$$\tau_r = \frac{m}{\zeta} = \frac{m}{3\pi\rho\nu d_p}$$

$$\tau_{LB} = \frac{\mathcal{L}^2 \nu_{LB}}{\mathcal{L}_{LB}^2 \nu}$$

\mathcal{L} : physical length
 ν : physical viscosity
 $\mathcal{L}_{LB}, \nu_{LB}$: corresponding properties in lattice units.

- The LE is conditionally solved with first-order forward Euler method:

$$\text{Velocity: } \mathbf{u}_p(t + \Delta t_{LB}) = \begin{cases} \mathbf{u}_p(t) + \frac{1}{\zeta} [\mathbf{C}_p(t) + \mathbf{S}_p(t)] + \mathbf{u}(\mathbf{r}_p, t), & (\tau_{LB} > \tau_r) \\ \mathbf{u}_p(t) + \frac{\Delta t_{LB}}{m} \{ \mathbf{C}_p(t) + \mathbf{S}_p(t) - \zeta [\mathbf{u}_p(t) - \mathbf{u}(\mathbf{r}_p, t)] \}, & (\tau_{LB} \leq \tau_r) \end{cases}$$

$$\text{Displacement: } \mathbf{r}_p(t + \Delta t_{LB}) = \mathbf{r}_p(t) + \Delta t_{LB} \mathbf{u}_p(t + \Delta t_{LB})$$

Method: Couplings

Cell-fluid coupling

- **Standard bounce-back (SBB)**
- The distributions of the LB node at the end point of a LB link is adjusted by

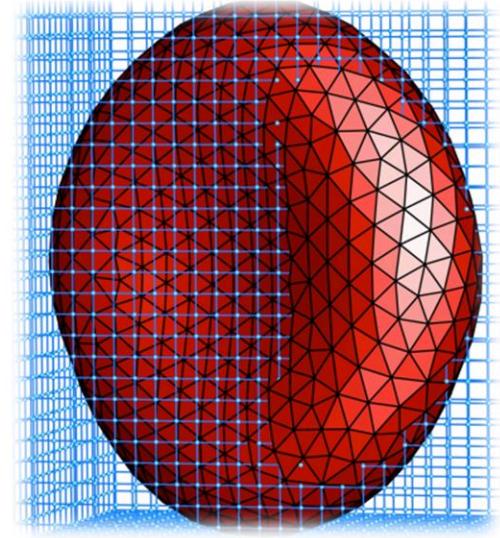
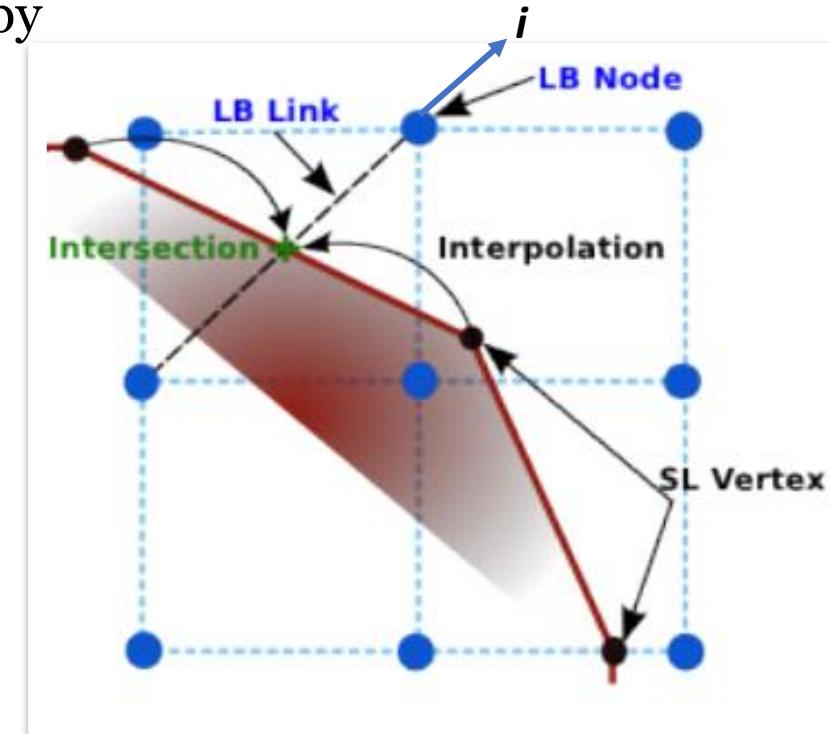
$$f_i(\mathbf{r}, t + 1) = f_{i'}(\mathbf{r}, t^+) + 2 \frac{\rho \omega_i}{c_s^2} \mathbf{u}_b \cdot \mathbf{e}_i$$

- The LB fluid force acting on the SL surface vertex is determined by

$$f_n^{LB} \left(\mathbf{r} + \frac{1}{2} \mathbf{e}_i, t \right) = -2 \mathbf{e}_i [f_{i'}(\mathbf{r}, t^+) + \frac{\rho \omega_i}{c_s^2} \mathbf{u}_b \cdot \mathbf{e}_i]$$

- Identical to no-slip boundary condition
- first-order accuracy in space due to intersection point not at midpoint

Aidun & Lu, *J. Stat. Phys.*, 81, 1995.
Aidun, Lu & Ding, *J. Fluid Mech.*, 373, 1998.
MacMeccan et. al, *J. Fluid Mech.*, 618, 2009.
Aidun & Clausen. *Annual Rev. Fluid Mech.*, 42, 2010.



Method: Couplings

NP-fluid (LD-LB) coupling

- Two stencils can be adapted to interpolate $\mathbf{u}(\mathbf{r}_p, t)$ from neighboring LB nodes.
 - 1) Trilinear method

$$w(\mathbf{r}, \mathbf{r}_p) = \prod_{\alpha \in \{x, y, z\}} \frac{|\hat{r}_\alpha - r_{p,\alpha}|}{\Delta r_{LB}} \quad (1^{\text{st}} \text{ order})$$

- 2) External boundary force (EBF) method

$$w(\mathbf{r}, \mathbf{r}_p) = \prod_{\alpha \in \{x, y, z\}} \frac{\{1 + \cos\left[\frac{\pi(r_\alpha - r_{p,\alpha})}{2\Delta r_{LB}}\right]\}}{4\Delta r_{LB}} \quad (2^{\text{nd}} \text{ order})$$

- The fluid velocity at the NP vicinity then reads

$$\mathbf{u}(\mathbf{r}_p, t) = \sum_{\mathbf{r} \in N_c} w(\mathbf{r}, \mathbf{r}_p) \mathbf{u}(\mathbf{r}, t)$$

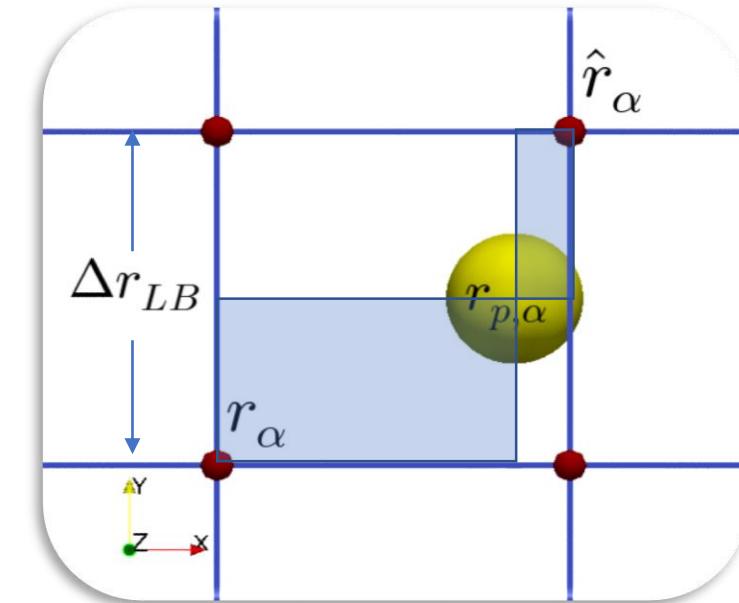
- Fluid force in LD, including frictional force and the stochastic force, are then obtained as

$$\mathbf{F}_p^f = \mathbf{F}_p + \mathbf{S}_p = -\zeta [\mathbf{u}_p - \mathbf{u}(\mathbf{r}_p, t)] + \mathbf{S}_p$$

- To conserve momentum, the reactionary impulse density, $\mathbf{J}(\mathbf{r}) = -w(\mathbf{r}) \frac{\mathbf{F}_p^f \Delta t_{LB}}{\Delta r_{LB}^3}$, is assigned back to the neighboring LB nodes

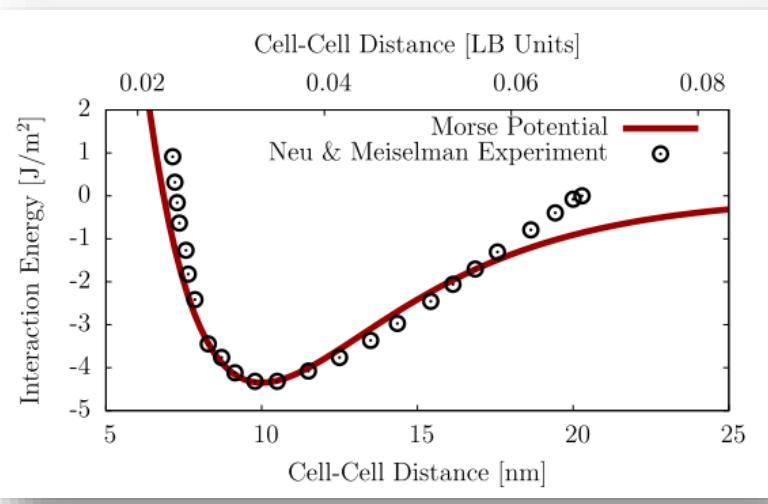
$$f_i^S(\mathbf{r}, t) = \frac{\omega_i \mathbf{J}(\mathbf{r}) \cdot \mathbf{e}_i}{c_s^2}$$

He et. al. *J. Stat. Phys.*, 87, 1997.
 Aidun, Lu & Ding, *J. Fluid Mech.*, 373, 1998.
 Ahlrichs & Dunweg, *J. Chem. Phys.*, 111, 1999.
 C. S. Peskin, *Acta Numer.*, 11, 2002.
 Wu & Aidun, *Int. J. Numer. Methods Fluids*, 2008.



Method: Couplings

NP-Cell Interactions



- Mimic the way of cell-cell interaction through Morse potential with a cut-off distance at $r_e = 0.5d_p$
$$U_M(r_{pc}) = D_e \left[e^{2a(r_{pc}-r_e)} - 2e^{-a(r_{pc}-r_e)} \right], \quad (r_{pc} \leq r_e)$$
- Here r_{pc} denotes a particle-cell distance instead of a cell-cell distance.
- A search algorithm is implemented to efficiently locate the closest RBC triangulation with respect to each NP.

NP-NP interactions

- Standard Lennard–Jones potential is employed to resolve the NP-NP interaction forces

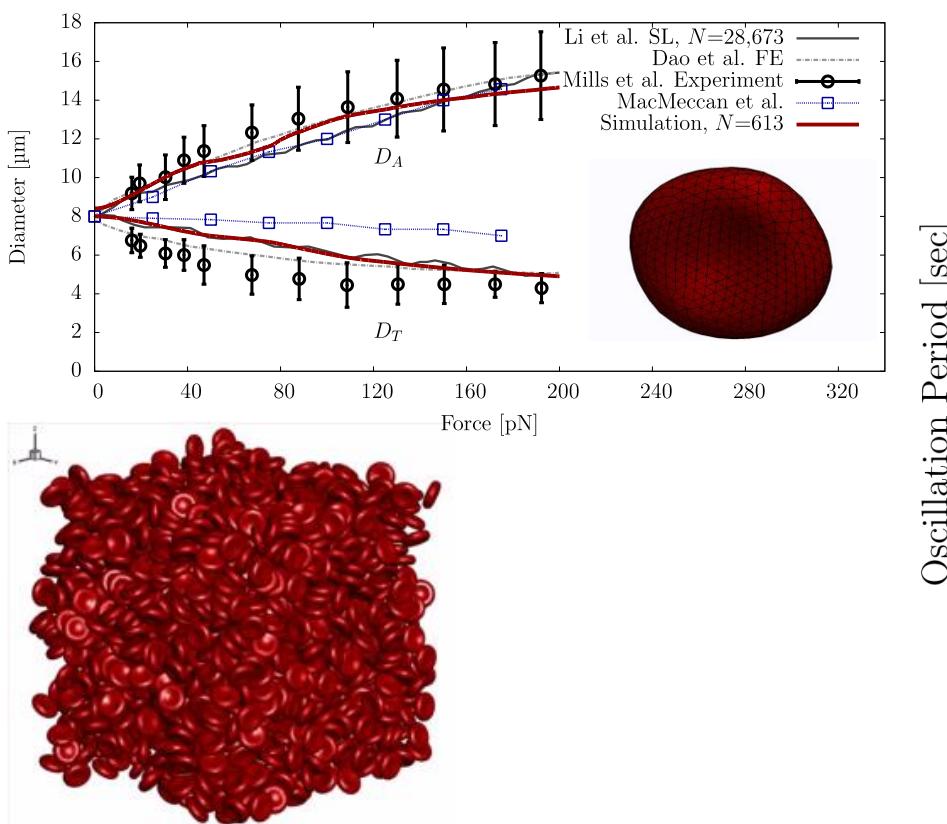
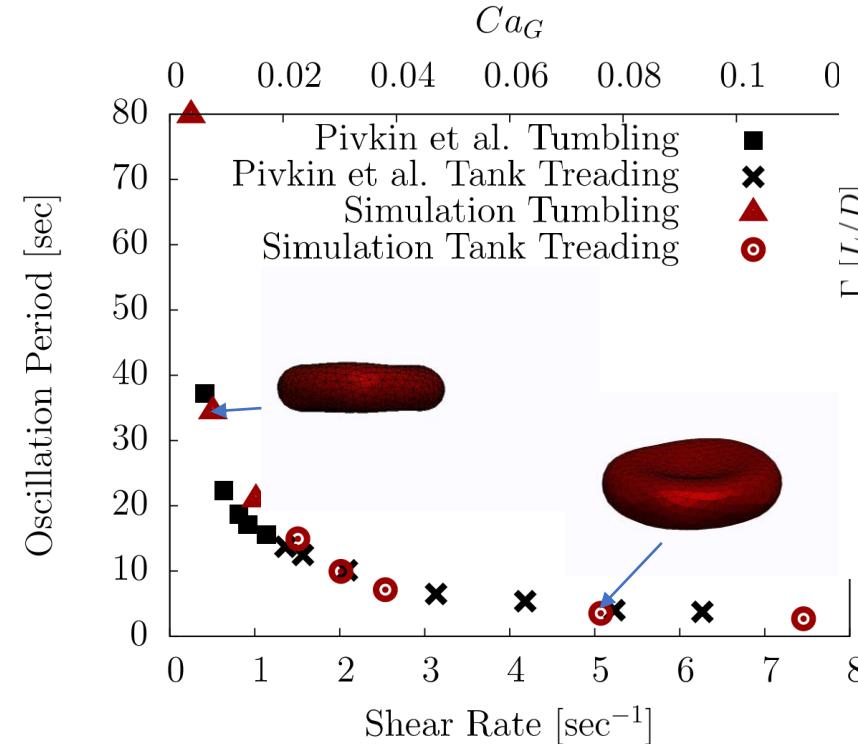
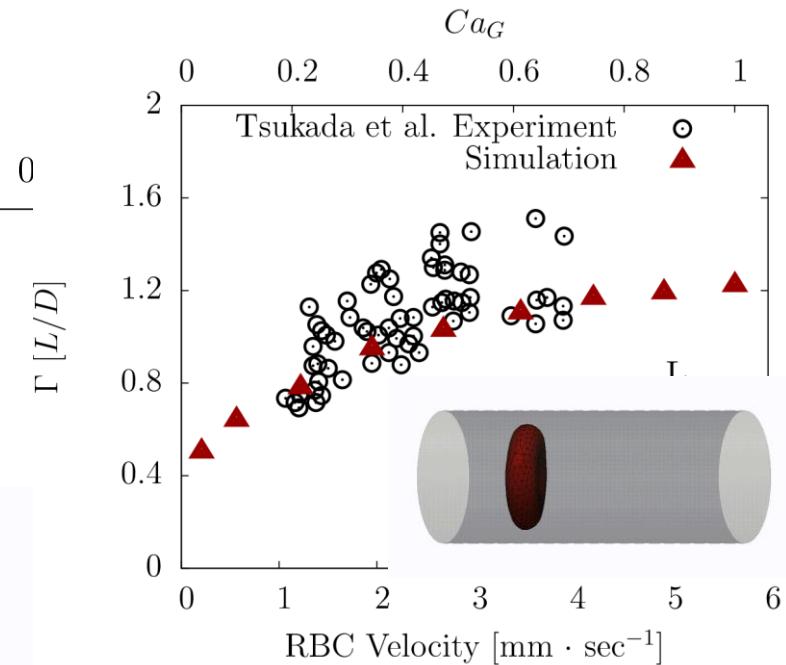
$$U_{LJ}(r_{ij}) = 4\epsilon \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right], \quad (r_{ij} \leq 3.0\sigma)$$

$$U_{total} = U_M + U_{LJ} + U_{other}$$

Jones, *Proc. R. Soc. London. Ser. A*, 106, 1924.
Neu & Meiselman, *Biophys. J.*, 83, 2002.
Liu et. al., *Int. J. Num. Meth. Fluids*, 46, 2004.

Verification: LB-SL coupling

- The LB-SL coupling has been extensively validated with experiments and benchmark cases, proved to be successful to capture both single RBC dynamics and rheology of dense suspensions of RBCs.

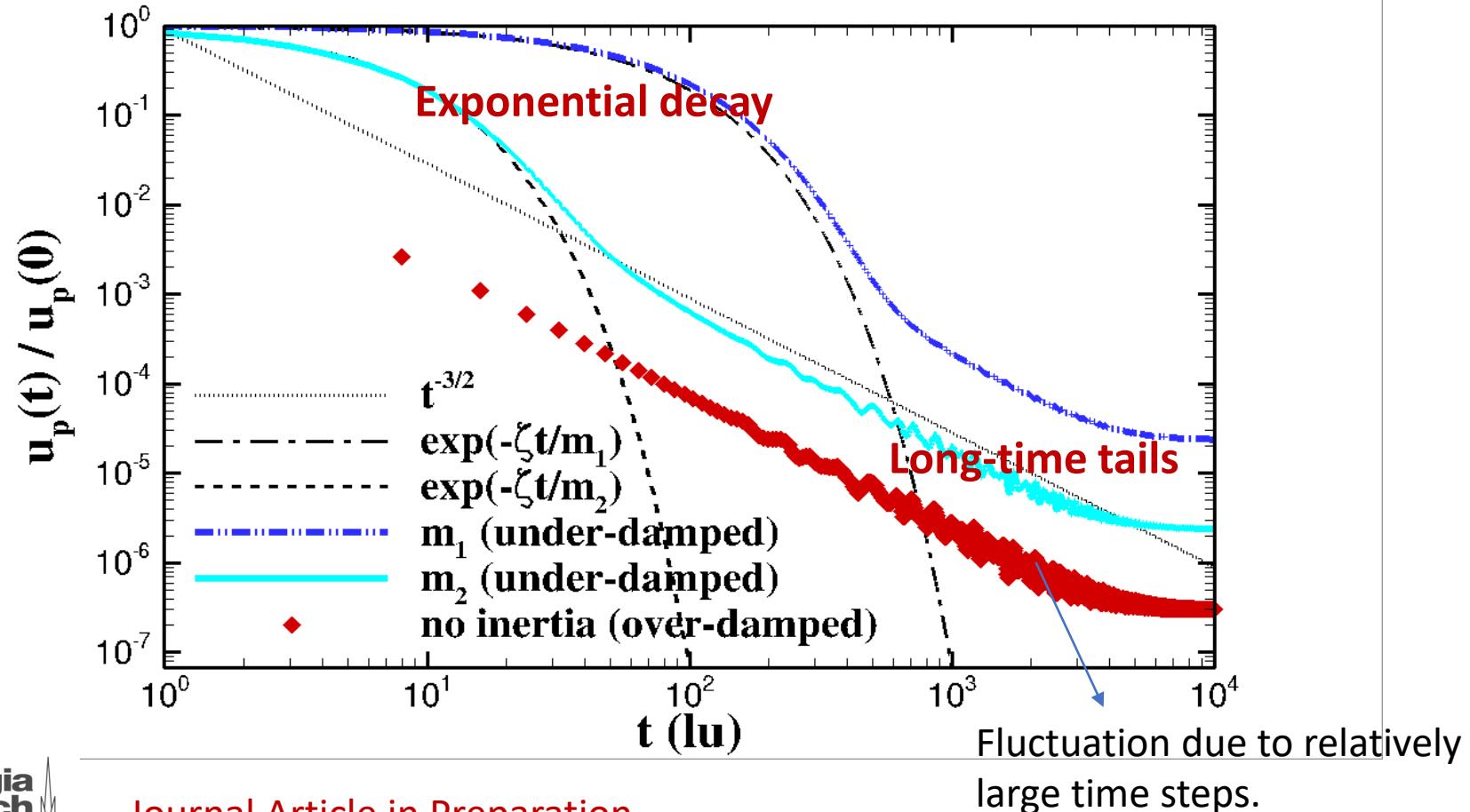


- This work hereby intends to demonstrate the validity of the LB-LD coupling.

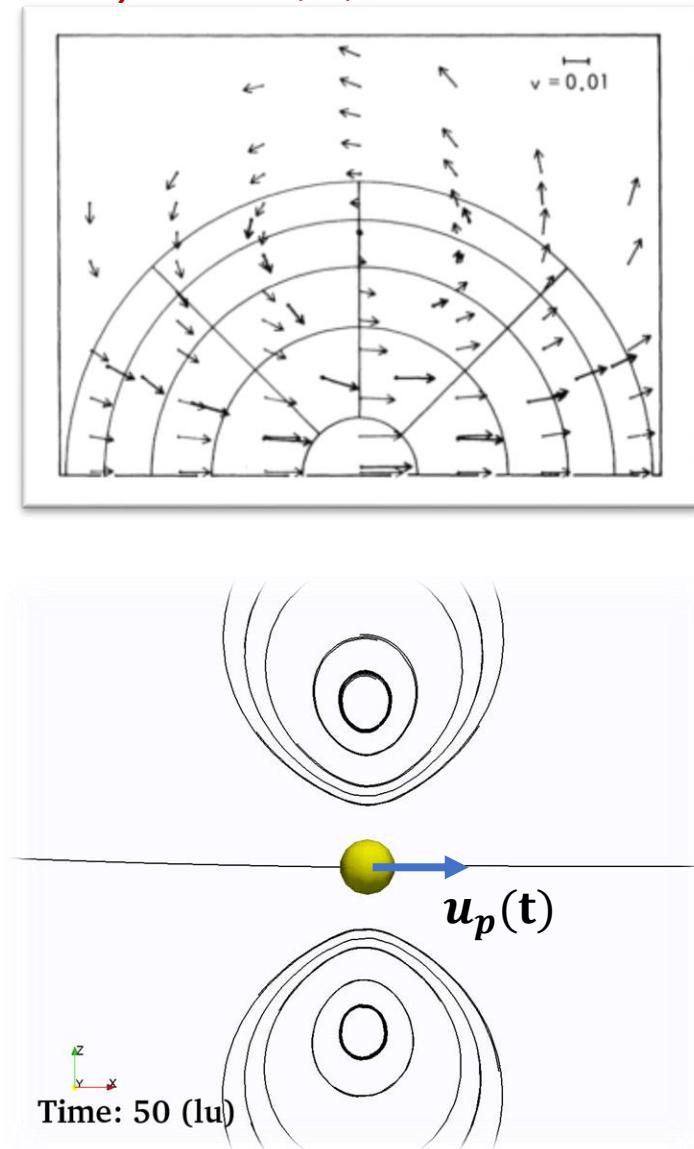
Verification: LB-LD coupling

Velocity relaxation of a single particle

$m_1 = 29.3, m_2 = m_1/10, \zeta = 0.48, u_p(0) = 0.01$ all in lattice units (lu); simulation performed in a 100^3 cube with periodic BCs in all directions.



Alder & Wainwright,
Phys. Rev. A, 1, 1970.



Verification: self-diffusion of a single particle

- Stokes-Einstein relation

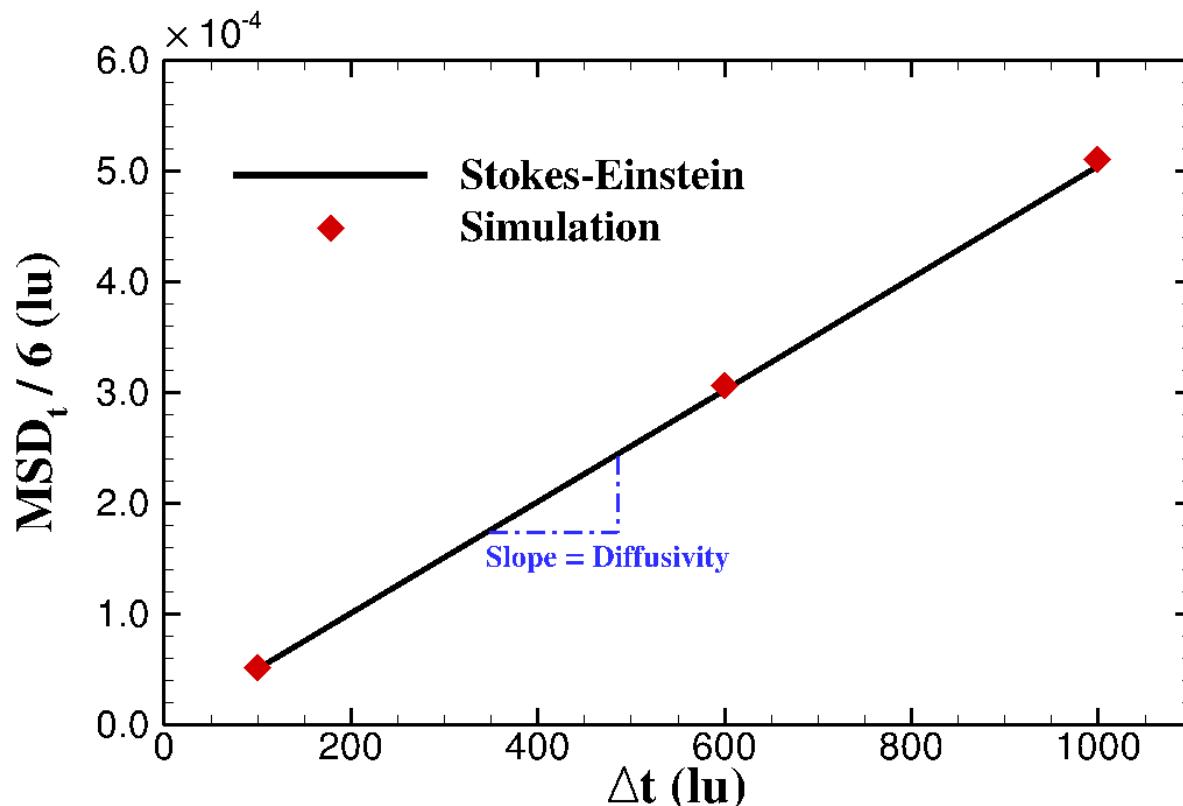
$$D_{theo} = \frac{k_B T}{\zeta}$$

where $\zeta = 3\pi\rho v d_p$.

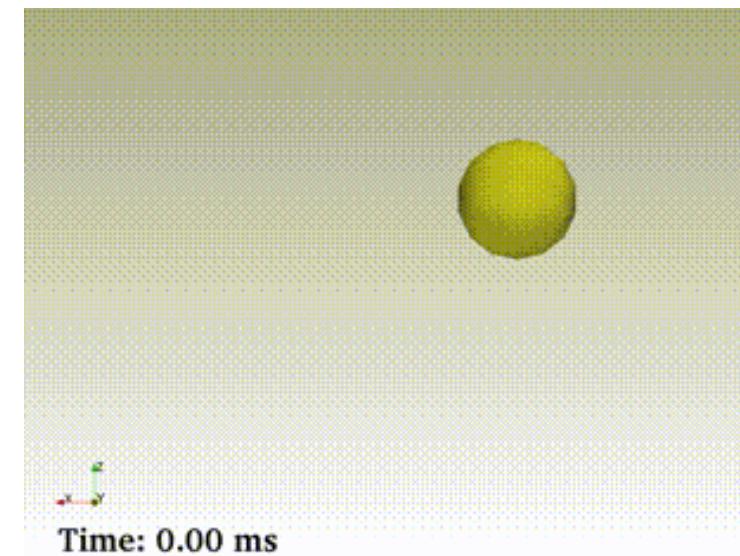
- Measure the diffusivity through mean squared displacement

$$D_{sim} = \lim_{\Delta t \rightarrow \infty} \frac{MSD_t}{6\Delta t}$$

where $MSD_t = \overline{\Delta r^2(t)}$.



100 nm particle self-diffusion in blood plasma at body temperature 298 K



Journal Article in Preparation.
Einstein, *Ann. Phys.*, 322, 1905.

Verification: self-diffusion of a single particle

- Stokes-Einstein relation

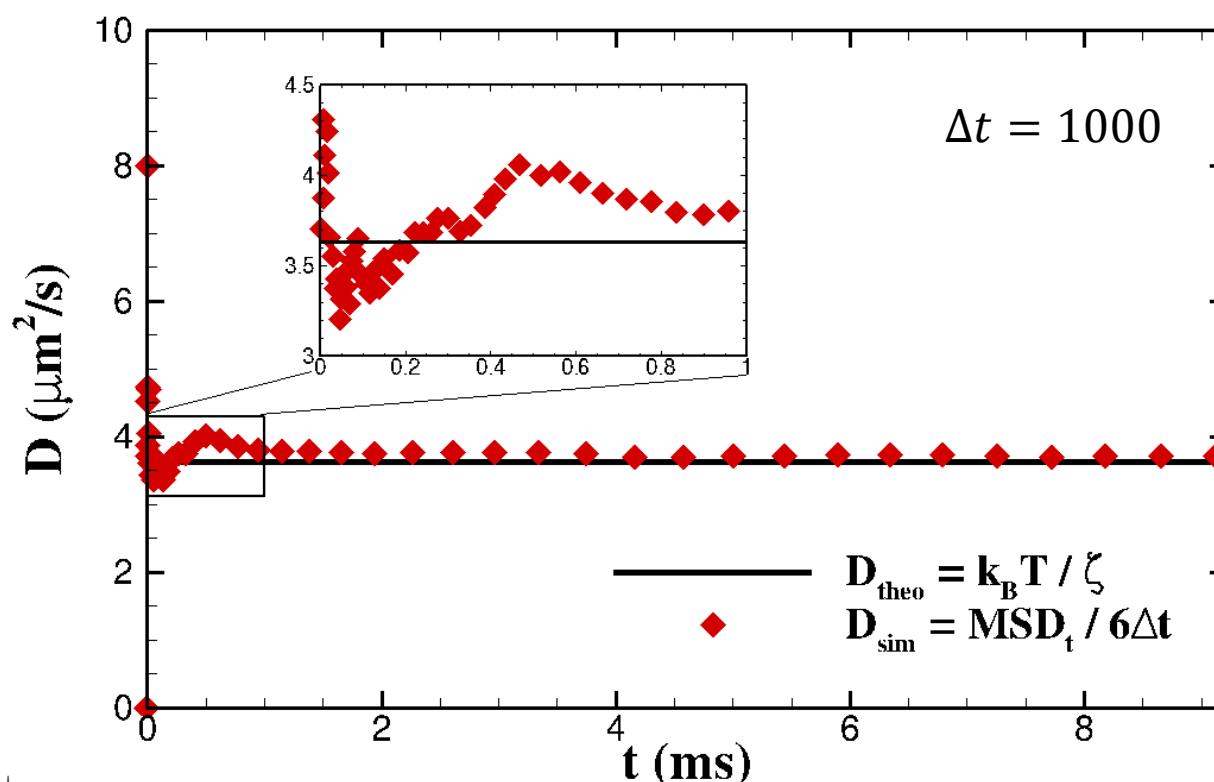
$$D_{\text{theo}} = \frac{k_B T}{\zeta}$$

where $\zeta = 3\pi\rho v d_p$.

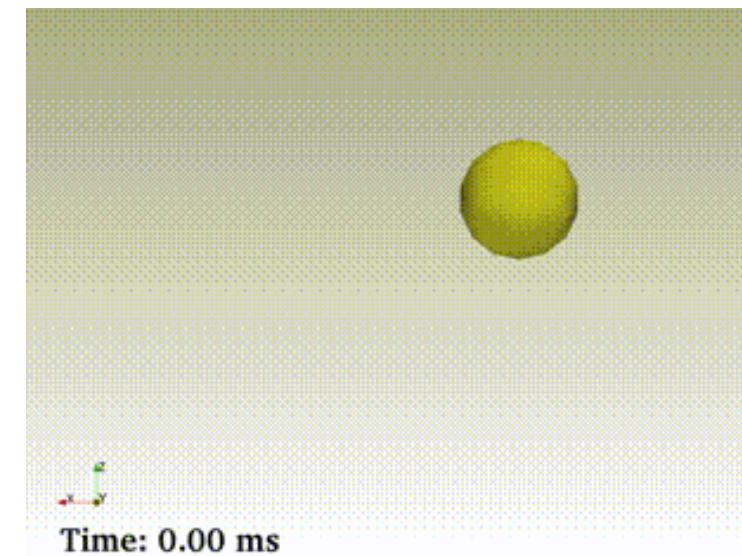
- Measure the diffusivity through mean squared displacement

$$D_{\text{sim}} = \lim_{\Delta t \rightarrow \infty} \frac{MSD_t}{6\Delta t}$$

where $MSD_t = \overline{\Delta r^2(t)}$.



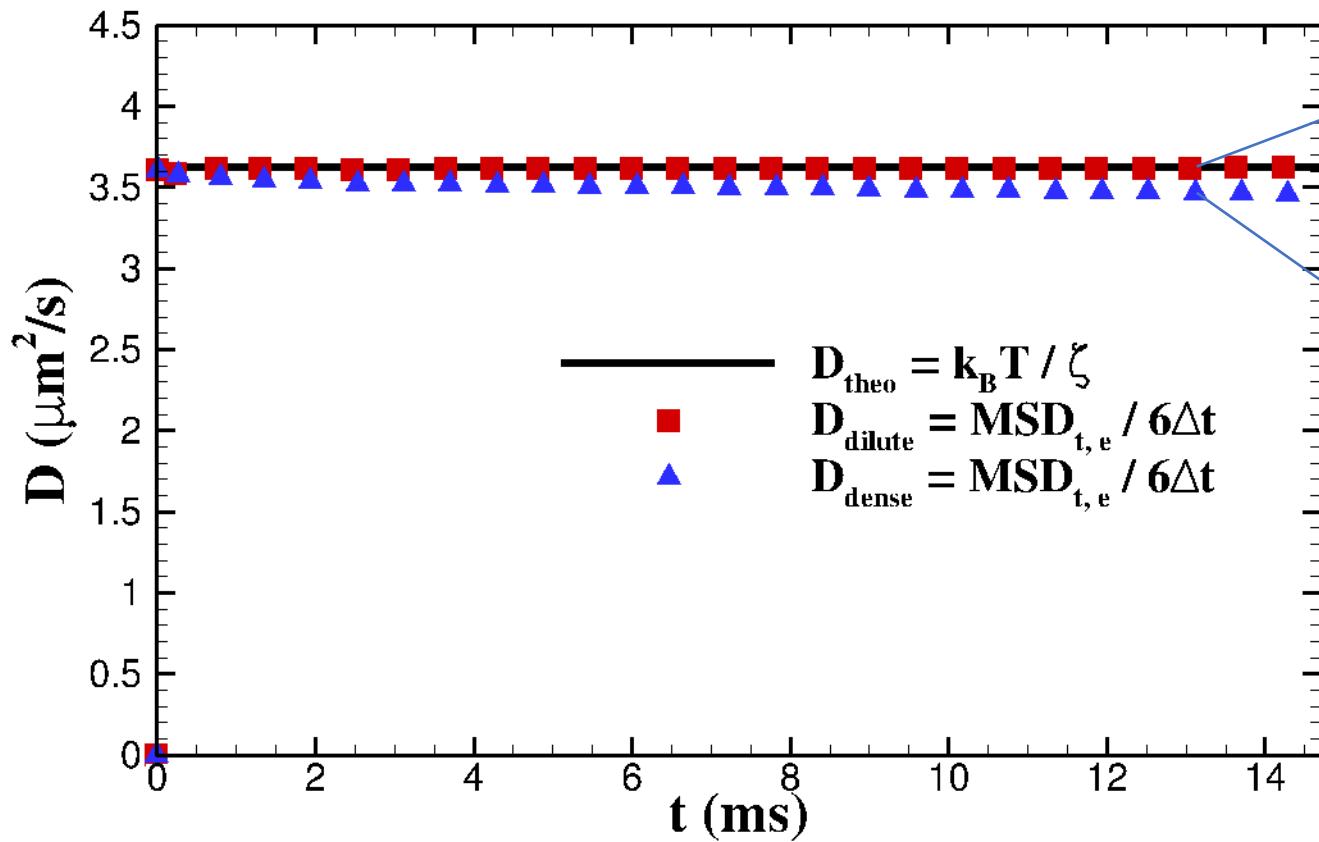
100 nm particle self-diffusion in blood plasma at body temperature 298 K



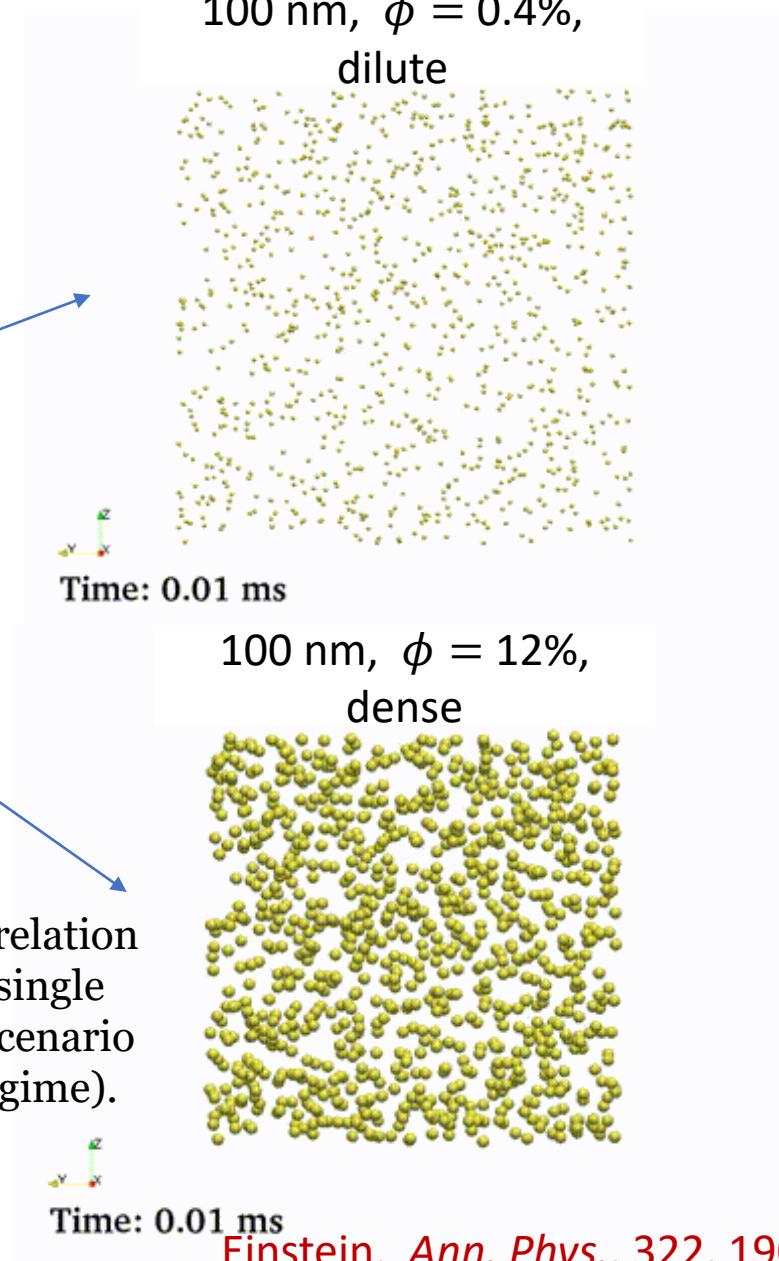
Journal Article in Preparation.
Einstein, *Ann. Phys.*, 322, 1905.

Verification: dispersion of a particle swarm

For dilute suspensions of nanoparticles, the **calculated diffusivity matches well with the theoretical counterpart** given by Einstein's relation.

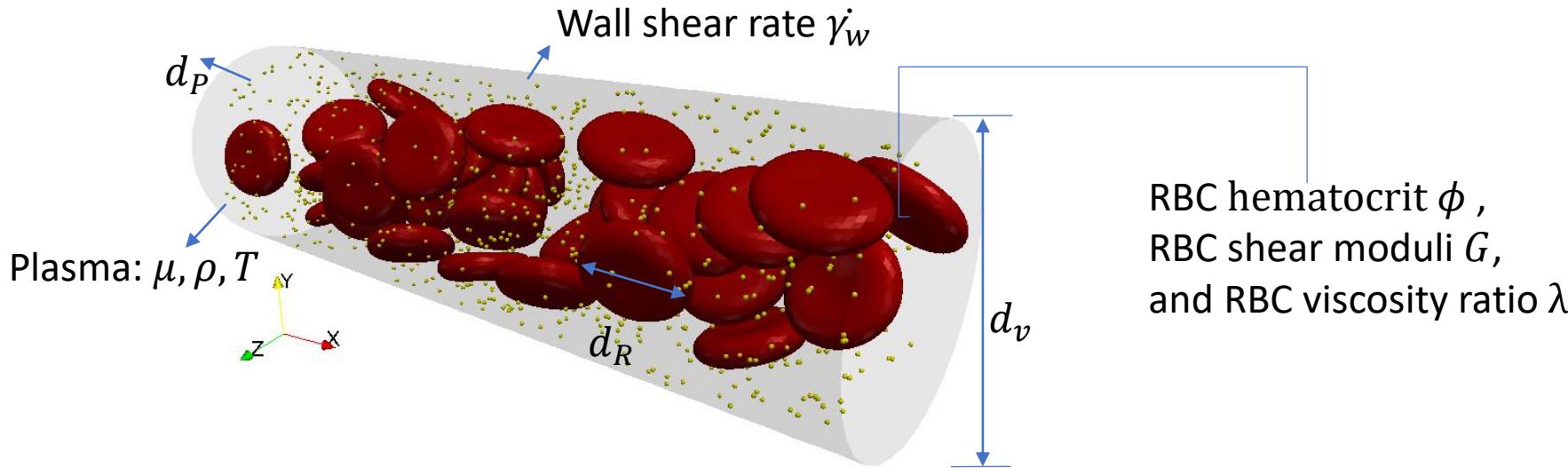


Einstein relation
assumes single
particle scenario
(dilute regime).



Application to NP diffusion in a capillary vessel

- **Non-dimensional Parameters:**



$$D_{rr}^* = \Phi (d_v^*, \phi, Pe, Ca_w)$$

Normalized Radial diffusivity:

$$D_{rr}^* = \frac{D_{rr}}{\dot{\gamma}_w d_p^2}$$

Confinement ratio: $d_v^* = \frac{d_v}{d_R}$

RBC hematocrit ϕ

NP Peclet number: $Pe = \frac{3\pi\mu\dot{\gamma}_w d_p^3}{4k_B T}$

RBC capillary number: $Ca_w = \frac{\mu\dot{\gamma}_w d_R}{2G}$

Application to NP diffusion in a capillary vessel

- $D_{rr}^* = \Phi(d_v^*, \phi, Pe_{NP}, Ca_{RBC})$

- **Confinement ratio:**

$$d_v^* = 2.0 \sim 5.0; (d_v = 16 \sim 40 \mu\text{m})$$

- **Hematocrit:**

$$\phi = 0\% \sim 20\%; \text{ (capillaries)}$$

- **NP Peclet number:**

$$Pe_P = 0.0 \sim 43.1;$$

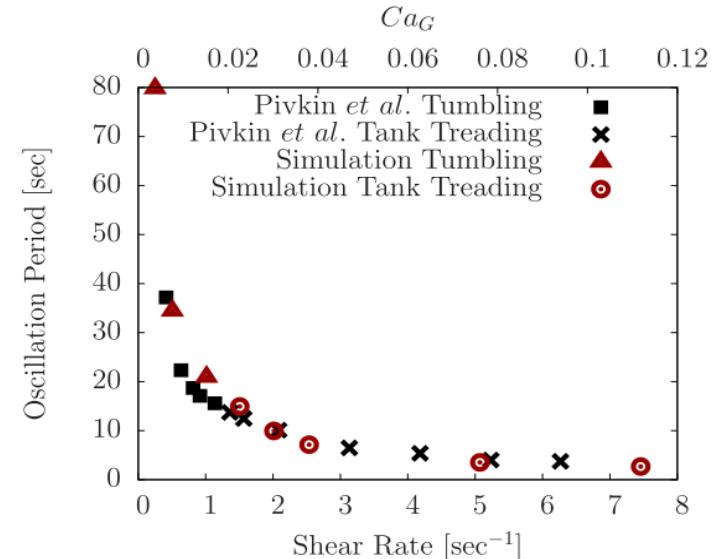
(Brownian diffusion dominant \rightarrow RBC-enhanced diffusion dominant)

- **RBC Capillary number:**

$$Ca_w = 0.04 \sim 0.37;$$

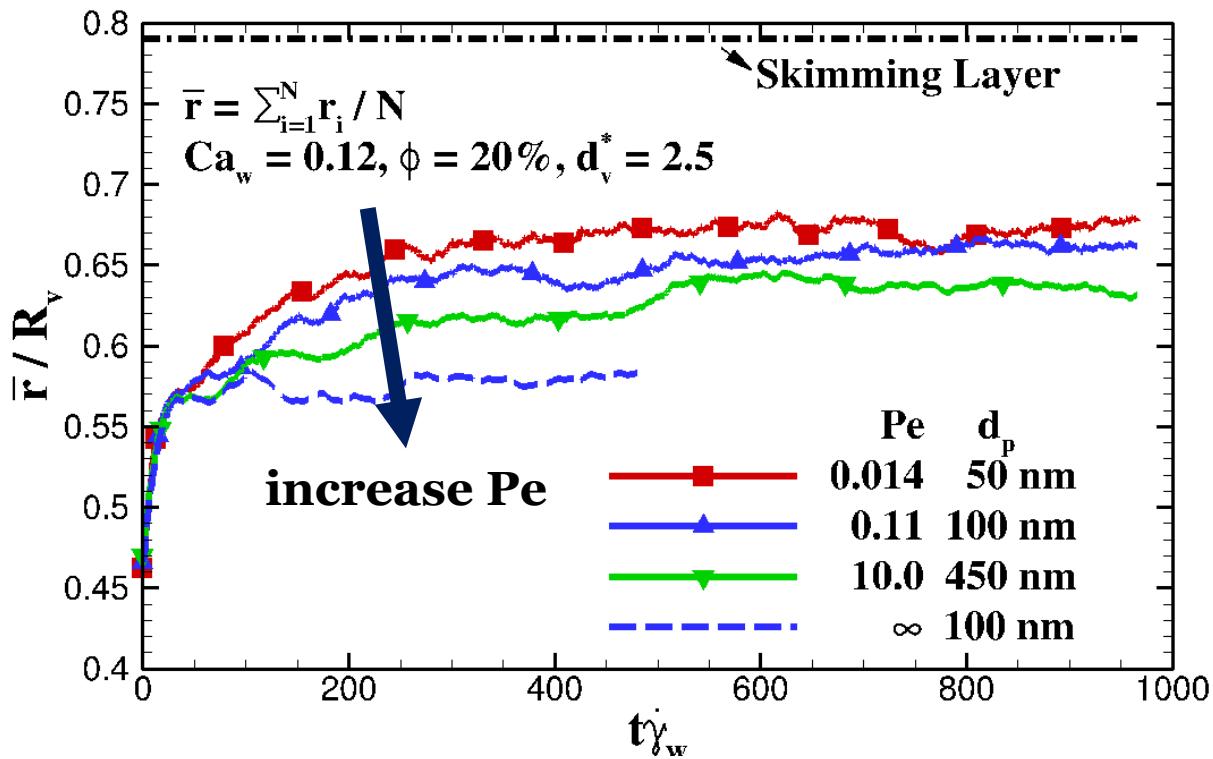
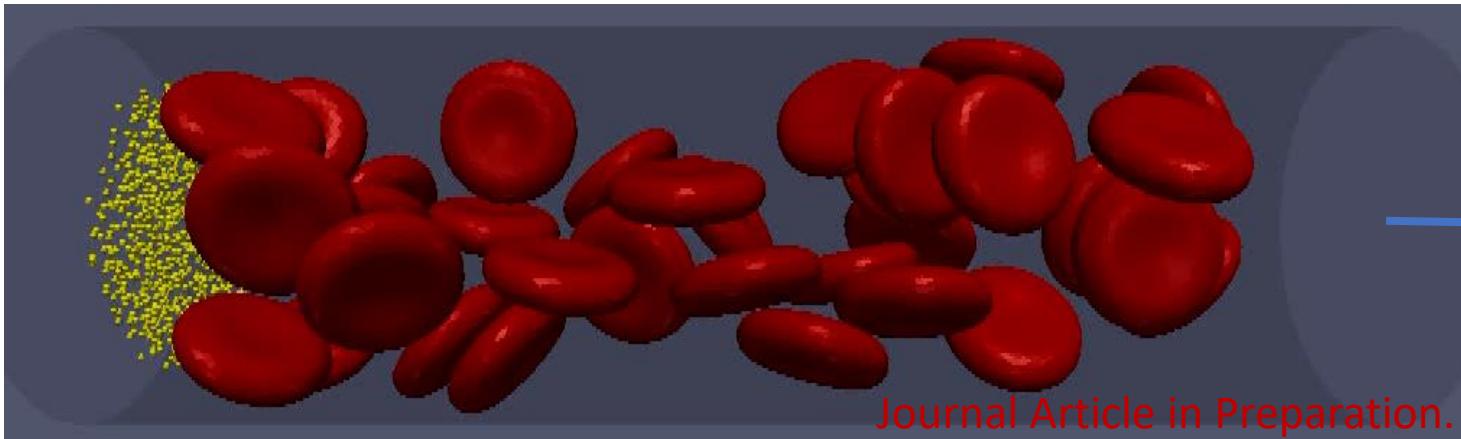
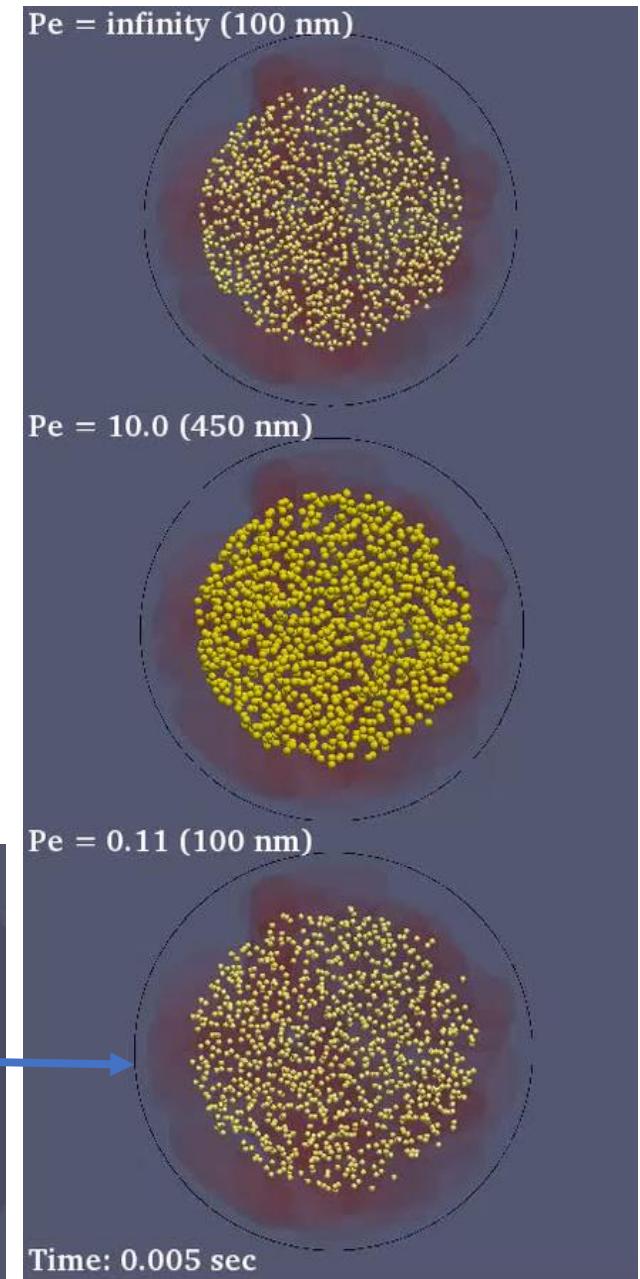
(tumbling \rightarrow tank-treading)

- $d_v^* = 2.5, \Phi = 20\%, Ca_w = 0.12$ are fixed with $Pe_P = 0.01, 0.1, 10.0$ and ∞ to **study the effect of Peclet number on NP diffusion.**



Application to NP diffusion in a capillary vessel

$$Pe = \frac{3\pi\mu\dot{\gamma}_w d_p^3}{4k_B T}$$



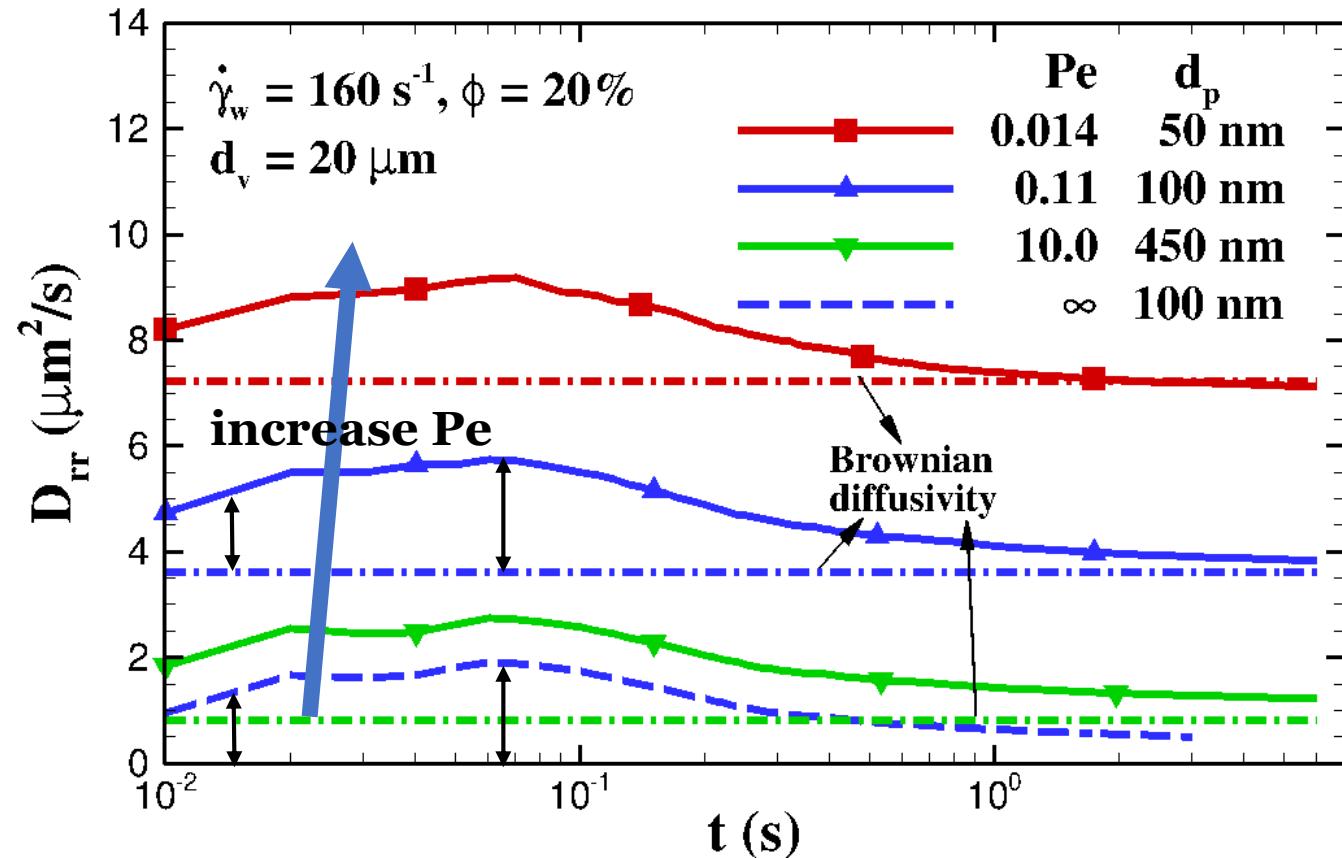
Application to NP diffusion in a capillary vessel

Observations:

- $Pe \uparrow \rightarrow D_{rr} \uparrow$
- Brownian diffusivity is **linearly added (no coupling)** to the RBC enhanced diffusivity
- At equilibrium:
- For $0 \sim 100$ nm particles, **Brownian diffusion is dominant**;
- For > 450 nm particles, **RBC enhanced diffusion is competing with Brownian diffusion**.

$$D_{rr} = \frac{MSD_t(\Delta r^2)}{2\Delta t} \quad (\Delta t = 1000)$$

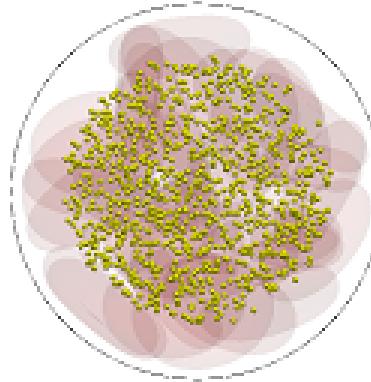
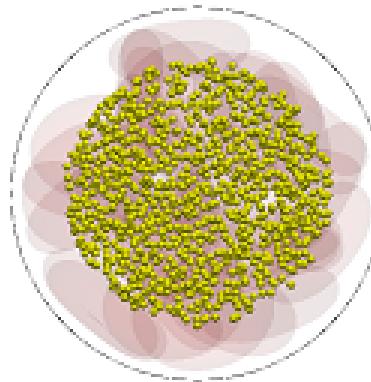
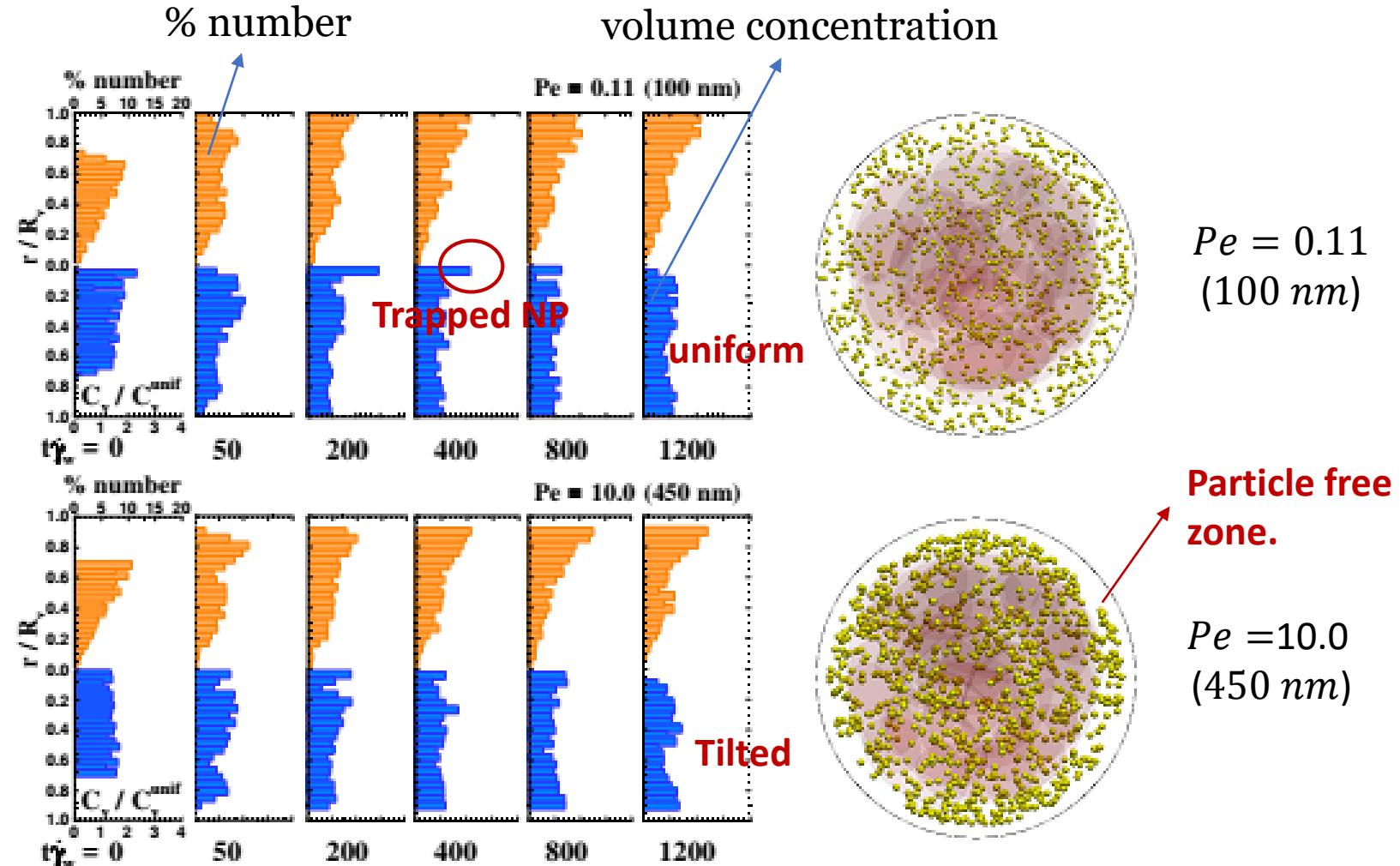
$$D_{Brwn} = \frac{k_B T}{3\pi\rho v d_p}$$



$$Pe_p = \frac{3\pi\mu\dot{\gamma}_w d_p^3}{4k_B T}$$

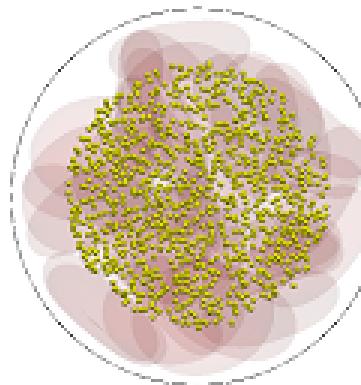
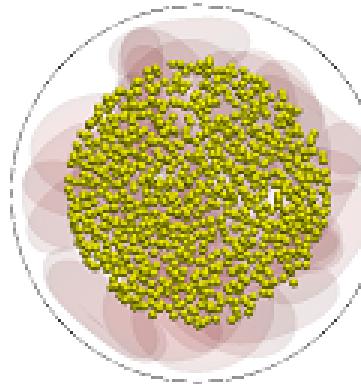
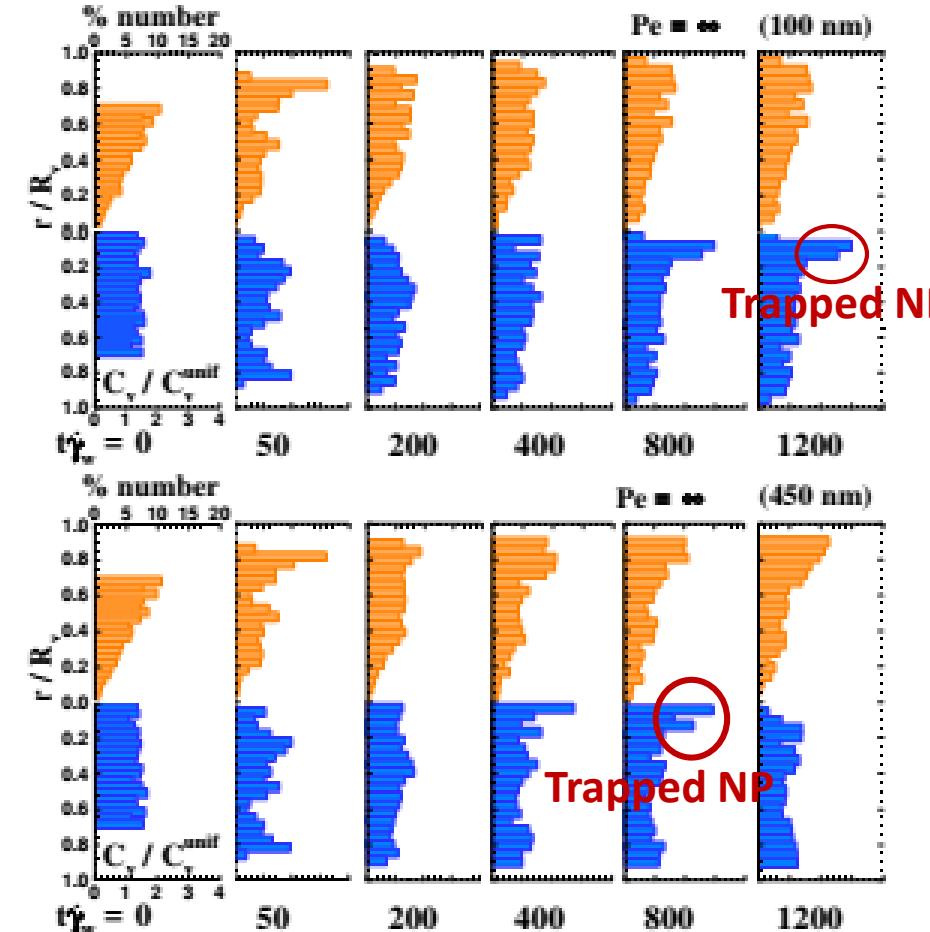
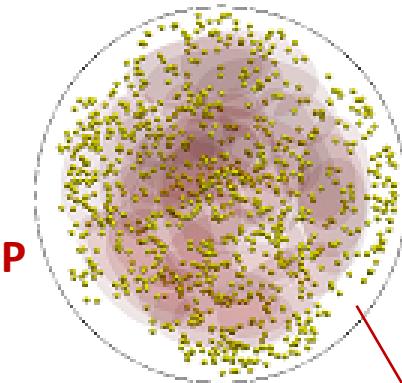
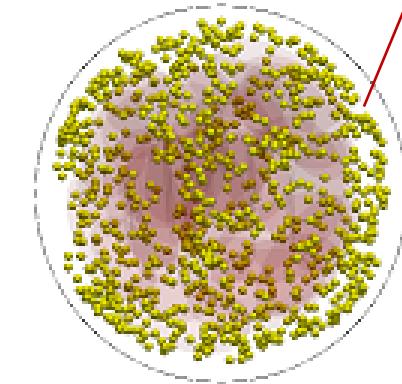
Application to NP diffusion in a capillary vessel

“Turn on”
Brownian effect,
yielding both
Brownian
diffusivity and
RBC-enhanced
diffusivity



Application to NP diffusion in a capillary vessel

“Turn off”
Brownian effect,
yielding purely
RBC-enhanced
diffusivity.



$Pe = \infty$
(100 nm)

Particle free
zone.

$Pe = \infty$
(450 nm)

Conclusion

- A lattice-Boltzmann based multiscale simulation approach for simulating nanoparticle transport in cellular blood flow has been developed and proved to be successful.
- Particles of low Pe tend to have higher averaging radial displacement owing to higher averaging radial diffusivity; Brownian effect contributes the major differences.
- Particles of high Pe could yield “particle free zone” near the wall due to low Brownian effect.
- Small particles (< 100 nm) are easier to be trapped in RBC-concentrated regions; Brownian effect is critical for NPs to bypass RBCs.

Thanks for your attention!