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Abstract—Power systems can become unstable under transient
periods such as short-circuit faults, leading to equipment damage
and large scale blackouts. Power system stabilizers (PSS) can be
designed to improve the stability of generators by quickly regu-
lating the exciter field voltage to damp the swings of generator
rotor angle and speed. The stability achieved through exciter field
voltage control can be further improved with a relatively small,
fast responding energy storage system (ESS) connected at the
terminals of the generator that enables electrical power damping.
PSS are designed and studied using a single-machine infinite-
bus (SMIB) model. In this paper, we present a comprehensive
optimal-control design for a flexible ac synchronous generator
PSS using both exciter field voltage and ESS control including
estimation of unmeasurable states. The controller is designed
to minimize disturbances in rotor frequency and angle, and
thereby improve stability. The design process is based on a
linear quadratic regulator of the SMIB model with a test system
linearized about different operating frequencies in the range 10
Hz to 60 Hz. The optimal performance of the PSS is demonstrated
along with the resulting stability improvement.

I. INTRODUCTION

Dynamic response in power systems can become unstable,
leading to equipment damage and large scale blackouts. Power
system stabilizers (PSS) improve the dynamic response of
generators by modulating the exciter field voltage. The exciter
field in a generator links the mechanical power of the rotor
to the electrical power transmitted and used by the grid. A
PSS takes measurements of the system states, including the
rotor speed, rotor angle, and field voltage of the generator,
and calculates a control signal for the reference field voltage
that improves the stability of the generator. PSS implemen-
tation allows generators to operate at higher power output,
over longer, weaker transmission lines, thereby improving the
profitability of the capital investment.

Two strategies are employed in this paper to further improve
generator dynamic stability: low-frequency power transmission
and energy storage power damping. Low-frequency high-
voltage ac (LF-HVac) transmission has recently been proposed
as an alternative solution to conventional 60-Hz HVac and the
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high-voltage direct-current (HVdc) approaches for bulk power
transfer. LF-HVac transmission not only retains the ability
of using existing ac devices, reliable protection scheme, and
multi-terminal structure from the 60-Hz HVac but also provide
better voltage regulation and system stability [1]. In addition,
LF-HVac approximates the high power transfer capability of
HVdc transmission if the operating frequency is sufficiently
low [2]. Energy storage systems (ESS) can also be used to
improve the performance of PSS and further stabilize the grid.
An ESS co-located with a generator enables additional control
over the power transferred to the grid and modulating its power
can improve the dynamic response of the system [3].

This paper investigates the intersection of both of these
strategies, along with modern control for PSS, to evaluate
the improvement of system stability when they are employed
together. The closed-loop optimal design includes a linear
quadratic regulator (LQR) [4] and a reduced order observer
to account for the difficulty in measuring states such as the
quadrature transient terminal voltage of the generator. The
proposed analysis can be extended to multi-machine systems.

In the remainder of this paper, Section II describes the
structure of the system under consideration and its state space
model. Section III elaborates on the design of the optimal
closed-loop controller as well as the reduced-oder observer
for the PSS. The simulation result and the discussion about
the system responses under various operating parameters are
shown in Section IV. Section V completes the paper with a
conclusion.

II. SYSTEM MODELING

In [5] a PSS is designed using a simple model of a single
machine oscillating with an infinite bus (SMIB). The PSS, with
ESS enhancement, is designed and studied through a modified
SMIB model in Fig. 1. This model uses an ideal bus, defined
to have constant voltage Vinf at angle 0◦, to represent the
grid. Connected to this bus, by way of a transmission line, is
a generator with scalar terminal voltage V1 at angle θ. The in-
ternal voltage leads the voltage at the infinite bus by the angle
δ. For simplicity of designing optimal controllers, generator
parameters such as voltage and current are translated from
the three-phase sinusoidal abc frame into the synchronously
rotating frame with direct and quadrature components.
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Fig. 1. The model of a single electric machine connected to a infinite bus
with PSS and ESS.

The following notation is used throughout this paper:
∆E

′
q perturbed quadrature-axis transient voltage of the gen-

erator,
∆δ perturbed rotor angle,
∆ω normalized perturbed rotor angular velocity;
∆Efd d-axis component of the perturbed field voltage in the

excitation coil,
∆Pess perturbed power supplied (+) or absorbed (-) by the

ESS,
KA machine amplifier gain,
TA machine amplifier time constant,
TM mechanical torque applied to the shaft,
T

′
do direct-axis open-circuit transient time constant of the

generator,
Vref reference steady-state value of terminal voltage,
Pref reference steady-state value of ESS power,
H shaft inertia constant of the generator,
D damping constant of the generator.

A. SMIB Model Equations

The model of SMIB system includes machine differen-
tial equations, stator equations, network equations, and ESS
equations. In the machine model, the exciter coils generate
the magnetic field that enables the spinning rotor to produce
electrical voltage on the stator coils. These electromagnetic
dynamics are represented in (1). The limits placed on Efd

represent safety restrictions on the field voltage and are strictly
imposed. The stator equations (2) govern how energy in
the rotor is transferred from and to the stator, while the
network equations (3) represent the power transfer across the
transmission line between the generator and the infinite bus.
The first order response dynamics, energy function, and power
limits of the ESS are shown in (4). This adaptation of the ESS
model from [6] ignores reactive power, auxiliary power, and
the dynamic converter model. ESS energy limits are an output
of simulation to be used as design requirements for a practical
ESS, and charge/discharge power limits are held constant and
is strictly imposed in simulation to explore the effect of ESS
power saturation on the controller’s performance.
Machine equations [5]:

δ̇ = ∆ωpuωs,

ω̇pu =
1

2H

[
TM − (E

′

qIq + (Xd −X
′

d)IdIq +D∆ωpu)
]
,

Ė
′
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1

Tdo
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′
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Fig. 2. Block diagram representing the system shown in Fig 1.

Stator equations [5]:

XqIq − Vd = 0,

E
′

q − Vq −X
′

qIq = 0. (2)

Network equations [5]:

ReId −XeIq = Vd − Vinfsinδ,
XeId +ReIq = Vq − Vinfcosδ. (3)

Energy storage equations [6]:

Pess =
Pref

1 + sTess
,

Ėess = Pess,

Pess,min ≤ Pess ≤ Pess,max. (4)

B. State Space Model

Based on (1) - (4), the linearized state-space model of the
SMIB is shown in (5) and (6), where K1-K6 are given from
[5] and new coefficients Kp, Kq , and Kv are given in [3]. The
values of these coefficients depends on the reactances Xq , Xd,
X

′

d, and Xe as well as the shaft inertial constant H . While
the reactances are each proportional to the operating frequency,
H is proportional to the operating frequency squared [5]. The
block diagram of the system is shown in Fig. 2, which is the
combination of the classical PSS model and the integrated ESS
model. Besides the only control input ∆Vref in the classical
SMIB model, (5) has another control input ∆Pref , which is
the perturbed reference power of the ESS. The saturation limits
on the field voltage Efd and ESS power Pess are imposed. The
state space output z is a 4× 1 vector that represents the four
measurable states. As ∆E

′

q is assumed to be unmeasurable in
this design, the first column of the C matrix is zeros.
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III. OPTIMAL CONTROLLER DESIGN

A. The LQR Optimal Controller

A closed-loop controller is designed to improve the stability
of the SMIB systems by changing the eigenvalues of the open-
loop system to desired values. This controller is designed to
minimize a performance index, which is chosen based on the
specific requirements of the system and its application. In this
paper, the performance index in (7) is defined to minimize the
disturbances in rotor frequency ∆ω or angle ∆δ as well as
the control inputs ∆Vref and ∆Pref :

L =
1

2

∫ ∞
0

[
(∆δ)2 + (∆ω)2 + r1(∆Vref )2 + r2(∆Pref )2

]
dt

(7)

Positive definite weights r1 and r2 are applied to the input
variables which enable adjustment of their relative and abso-
lute utilization by the controller. The optimal control u∗ which
minimizes (7) is determined as follows [4]:

u∗ = −Kx,
K = R−1BT S∗, (8)

where:

R =

[
r1 0
0 r2

]
, (9)

and S∗ is the steady-state solution of the matrix Ricattii
equation, which is defined as follows [4]:

Ṡ = −SA− AT S−Q + SBR−1BT S = 0. (10)

With this optimal control, the closed-loop eigenvalues are
calculated as follows:

|λI− (A− BK)| = 0. (11)

B. Reduced Order Observer Design

In practice, measuring the quadrature transient terminal
voltage of the generator is not trivial. Therefore, in this design,
it is assumed that ∆E

′

q is unmeasurable in that there is no
sensor that is able to feed data to a controller. Therefore,
∆E

′

q needs to be estimated based on the measurements of
the other states along with the system state equations in (5)
and (6). A reduced order observer used to estimate the value
of ∆E

′

q is designed as follows. Let the observer ϕ = ∆E
′

q

be a linear combination of system states that is unmeasurable
and independent of the measurements z:

ϕ = Tx⇒ ϕ̇ = Tẋ = TAx + TBu (12)

where T = [t1 t2 t3 t4 t5] is unknown and [T C]T is
nonsingular. From (6) and (12), the system states can be
determined as follows:

x =

[
T
C

]−1 [
ϕ
z

]
=
[
S1 S2

] [ϕ
z

]
= S1ϕ+ S2z. (13)

Substituting (13) into (12) yields:

ϕ̇ = Tẋ = TAS1ϕ+ TAS2z + TBu (14)

Let ϕ̂ and x̂ are the estimated values of ϕ and the system
states. From (13) and (14), their estimation errors ϕ̃ and x̃
satisfy the following equations:

˙̃ϕ = ϕ̇− ˙̂ϕ = TAS1(ϕ− ϕ̂) = TAS1ϕ̃, (15)

and:

˙̃x = S1ϕ̇ = S1TAS1ϕ̃ = S1TAx̃ = (I− S1C)Ax̃ (16)

The coefficient matrix (I−S1C)A has the following non-zero
eigenvalue:

λobs =
1

K3T
′
do

− t3
t1

K2

2H
− t4
t1

KAK6

TA
. (17)

In order to guarantee system stability when the observer is
implemented, the eigenvalue in (17) is chosen to be much
faster than the eigenvalues of the closed-loop system obtained
in the previous section.

IV. SIMULATION RESULTS

This section shows the response of a test system, as shown
in Fig. 1, without and with the designed optimal controllers
described in Section III. The effect of the operating frequency
on the response of the system under disturbances is also
included. The remainder of this section addresses the effect
of weighting factors in the performance index on the system
response.

The parameters of the test system at 60 Hz are T
′

do = 9.6
sec, KA = 400, D = 0, Xq = 2.1 p.u, Xd = 2.5 p.u, X

′

d =
0.39 p.u, H = 3.2, TA = 0.2 sec, and Tess = 0.01667 sec, Re

= 0, Xe = 0.5, Vt = 1 p.u, θt = 15◦, V∞ = 1.05 p.u, θ∞ =
0◦ [5]. These values are consistent with a high-speed water
wheel or non-condensing turbine generator with a 100 MVA
rating. The state limits are Efd,min = -0.5 p.u, Efd,max = 0.5
p.u, Pess,min = -0.1 p.u, and Pess,max = 0.1 p.u.



A. The Open-Loop System Response

At a frequency of 60 Hz the open-loop eigenvalues of the
system without any closed-loop controllers are:

λ1 = −60, λ2,3 = −2.588± j8.502, λ4,5 = −0.087± j7.114.

The eigenvalues of the open-loop system have negative real
parts; therefore, the system is stable. However, λ4 and λ5
are close zero, which means that the system might become
unstable under large disturbances. λ1 is the eigenvalue of the
ESS controller. Table I shows the settling times for the open-
loop system from 60 Hz to 10 Hz. Settling time is measured
as the time it takes for the states to enter and remain in a
2% error band. Reducing the operating frequency from 60 Hz
to 40 Hz results in shorter settling times. Settling time then
increases at 30 Hz and becomes unstable below 20 Hz.

TABLE I
OPEN-LOOP SETTLING TIME PERFORMACE

State 60 Hz 50 Hz 40 Hz 30 Hz 20 Hz 10 Hz
∆δ(sec.) 63.3655 17.0457 15.8578 35.4401 ∞ ∞
∆ω(sec.) 62.7212 17.2029 15.9886 35.5478 ∞ ∞

B. The Closed-Loop System Response

The rotor speed is assumed to have a initial disturbance of
0.12 Hz. The weighting factors of the input controls ∆Vref
and ∆Pref in (7) are chosen to be r1 = 1 and r2 = 0.01,
respectively. With the closed-loop optimal control described
in Section III.A, the eigenvalues of the 60 Hz system become:

λ1 = −52.428, λ2 = −28.245,

λ3 = −13.920, λ4,5 = −4.974± j10.537.

Since these eigenvalues are pushed further from the imaginary
axis, the stability of the system is improved.

The reduced order observer described in Section III.B is
determined by first choosing t2 = t5 = 0 and t3 = t4 = 1,
and then solving for t1 using (17). With the eigenvalue of the
observer being λobs = −300, the performance of the observer
when the operating frequency is 60 Hz is shown in Fig. 3.
The initial error between the actual and estimated values of the
quadrature transient terminal voltage of the generator becomes
zero shortly after 0.1 seconds.

Fig. 3. Observer performance.

Fig. 4. The response of states at each frequency of interest.

Fig. 5. Optimal controls.

TABLE II
CLOSED-LOOP SETTLING TIME PERFORMACE

State 60 Hz 50 Hz 40 Hz 30 Hz 20 Hz 10 Hz
∆δ(sec.) 0.8755 0.7724 0.6608 0.6490 0.5130 0.3395
∆ω(sec.) 0.9214 0.8188 0.7095 0.5875 0.5371 0.3581

With the designed reduced order observer, the response of
the states and the optimal input controls to the initial rotor
speed disturbance of 0.12 Hz at different operating frequencies
is shown in Fig. 4. The optimal control is shown in Fig. 5,
where a lower input control is needed at a lower frequency.
Table II shows the improved settling time response of the rotor
speed and angles. Compared to the open-loop response, the
closed-loop controller improves the settling time by more than
a factor of 60 at 60 Hz. It is also able to stabilize the system
at operating frequencies lower than 20 Hz while continuing to



Fig. 6. Energy Storage Response

Fig. 7. Energy Storage Response

improve the settling time.
Fig. 6 shows the response of states to the initial rotor speed

disturbance with and without the use of ESS. The ESS helps
to quickly stabilize the system after 0.5 second, compared
to more than 5 seconds when the EES is not deployed.
Fig. 7 shows the result of energy required from the ESS at
different operating frequencies to suppress the initial rotor
speed disturbance. At 60 Hz, the ESS has a peak change in
energy of 0.0119 p.u power seconds. This would mean that a
100 MVA generator at 60 Hz would require 1.19 MWs (19.8
kWh) of energy supplied/absorbed from storage to achieve this
performance. Lower frequencies require less energy reserves
to supply the desired damping. The same generator operating
at 10 Hz would only require 230 kWs (3.83 kWh) of energy
to achieve this performance.

C. The Effect of Weighting Factors in the Performance Index

This section shows the effects of adjusting the input weight-
ing factors in the LQR performance index (7). Fig. 8 shows the
response of rotor speed and angle when the weighting factor
r2 of ∆Pess increases from 0.01 as in the previous studies to
0.5, and then to ∞. The coefficients of the other components
are kept constant, and the operating frequency is 60 Hz.
Practically, this allows designers to adjust the requirements
of the energy storage system to reach a stability performance
target. Reducing r2 results in a higher deployment the ESS,
which improves the stability performance of the system. Table
III shows the settling time as r2 in (7). When compared to the
case where energy storage is not used r2 = ∞, settling time
is more than cut in half when r2 = 0.5 and halved again when
r2 = 0.01.

Fig. 8. The resulting states when r2 varies.

TABLE III
SETTLING TIME PERFORMANCE WITH REDUCED ESS CONTROL ACTION

State r2 = 0.01 r2 = 0.5 r2 = ∞
∆δ(sec.) 0.8755 1.9639 5.2233
∆ω(sec.) 0.9214 1.8569 5.3269

V. CONCLUSION

An optimal closed-loop controller is designed for PSS to
improve the stability of a generator using both the reference
field voltage and ESS power as input controls. This controller
minimizes the perturbations in rotor frequency and angle in
response to disturbances. The designed reduced order observer
is able to exactly estimate the unmeasurable state after 0.1
seconds. At 60 Hz and with the same initial rotor speed
disturbance of 0.12 Hz, the open loop-system requires 63
seconds to settle, while the proposed controller reduces the
settling time to 5.3 seconds without the use of ESS and 0.92
second with the ESS. At a lower operating frequency of 10 Hz,
the open-loop system is unstable while the closed-loop system
is stable and has a settling time of 0.34 second. With the
proposed closed-loop controller the ESS requires less energy
to be effective at low frequencies. To damp out the same
disturbance, the system operating at 10 Hz only needs 3.83
kWh of energy, while 19.8 kWh is required when the operating
frequency is 60 Hz.
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