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STEM images (a) dark and (b) bright field images of Sn and Ti electrodes, (i-0) bright field images of Sn lithiation process at a current density
of 1 mA cm. The presented images were taken every 15 minutes. Each image is no STEM exposure to electron beam during Li cycling and the
total electron dose of < 10.14 e A-2 with image acquired every 3 minutes throughout lithiation.
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STEM bright field images of Sn/TiO,electrodes. Each image is no STEM exposure to electron beam during Li cycling and image
acquired every 3 minutes throughout lithiation. The corresponding time of the image on the each image and the prime symbol ()
represent minutes.
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Electrochemical TEM Platform

The Center for Integrated Nanotechnologies (CINT) has successfully
designed a microfabricated liquid cell [3] that can operate with quantitative
femtoampere-level current control over 10 ultramicroelectrodes while
imaging within a TEM [4]. The electrodes are patterned onto a 50 nm SiN_
membrane window, with a constant fluud gap around 150-200 nm.
Microsphere lenses are used to align the individual top and base of the
platform to overlap the 30 um diameter membrane windows. Liquid 1s
loaded post assembly of the two platform parts by pumping solution into a
fluid fill port and allowing capillary forces to fill the cell, then the openings
are capped and epoxy sealed. Battery materials are well suited for
investigations 1n this platform for structural changes at electrode surfaces,
deposition/stripping, intercalation mechanisms, and solid-electrolyte
interphase (SEI) formation with 1 nm spatial resolution. This quantitative
approach allows for coupled structural information with features observed in
the electrochemical data [3].
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Electrochemical TEM Liquid Platform [2]. (a) Representative schematic of the platform base, inset is the platform top set
on the base. (b) SEM image of an electrode design over the SiN membrane window, scale bar represents 40 um. (c)
SEM image of the electrode tips on the SiN membrane, scale bar represents 4 um. (d) Image of the sealed platform wire
bonded to a chip carrier that connects to a 16 lead electrical feed through TEM holder. Cross-sectional schematic of the

(e) platform operating within the TEM, (f) alignment sphere between the top and base units next to the seal ring, (g) metal
\electrodes exposed on the base unit, and (h) buried poly-Si traces on the base unit. /

CINT User Proposal to Access the Platform

CINT 1s a Department of Energy/Office of Science Nanoscale Science Research
Center (NSRC) operating as a national user facility devoted to establishing the
scientific principles that govern the design, performance, and integration of
nanoscale materials. Through its Core Facility in Albuquerque and Gateway to
Los Alamos Facility, CINT provides open access to tools and expertise needed
to explore the continuum from scientific discovery to the integration of
nanostructures into the micro- and macro world. User proposals are accepted 1n
the months of March and September, active user proposals last a duration of 18
months. Proposals entail a 2 page description of the proposed research project,
impact of the research, experimental outline, details on user’s contribution, and
details on CINT’s contribution. The user proposals are evaluated by a team of
external reviewers on the merit of the proposal in relation to nanoscience and
potential impact on the community.
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