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Ion-Containing	Polymers
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polymers with covalently-bonded ionic groups

ionomers

two main classes of ionomers

• dry (melt): no solvent

• hydrated: with water



Nanoscale	Phase	Segregation
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Ionic	Aggregates	in	Ionic	Polymers
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“ionomer peak”
• ubiquitous
• low wavevector peak in scattering
• from inter-aggregate scattering

Yarusso & Cooper, Macromolecules, 1983

Nafion in water

Schmidt-Rohr, K. & Chen, Q. Nat Mater 7, 75–83 (2007)

PSS with Zn+2



Proton	Exchange	Membranes
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ion-selective membranes
typically in water

• water purification
• fuel cells

Nafion™



Applications	of	Ionomers:	Batteries?
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• organic solvents
• PEO + lithium salts + solvent

• need containment
• flammable!

• conductivity dominated by anions
• salt concentration at electrodes
• extra heating

• solvent free PEO + salt

Issues with current electrolytes in Li-ion batteries:

ionomers as next generation electrolytes?
• safer: no solvent
• serve as electrolyte & separator
• less packaging
• improved electrochemical stability
• higher efficiency: single ion conductors



Questions
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• What do ionic aggregates look like, exactly?

• What’s the dependence on polymer architecture?

• How do ion association and aggregate morphology  

affect dynamics?

Difficult to measure local 
structure/dynamics experimentally.

Can simulations resolve issue?



Rest	of	the	Talk
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• melts of precise poly(ethylene-co-acrylic acid) (pAA)
• morphology and comparison to X-ray
• CG model dynamics
• dynamics and comparison to QENS

• hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)
• morphology and cluster analysis



Model	Materials:	Precise	Ionomers
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PE backbone with precisely spaced carboxylic acid functional groups

p9AA –43%Li

Precise	spacer	
length	(p9,	p15,	
p21)

Counterion	
type	(Li+,	Na+,	
Cs+,	Zn2+)

Neutralization	
level

Wagener group, University of Florida

Total	scattering;
predominantly	
counterions	in	
ionomer	peak

M.	E.	Seitz	et	al.,	J.	Am.	Chem.	Soc. 2010,	132,	8165-8174.	
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Atomistic	MD Simulations
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• Variations in:
• cation type; today: H or Li+ 

• neutralization level = % COO-M+ vs COOH
• spacing length: p9, p15, p21

• All atom L-OPLS force-field
• 80-200 polymers, 81, 90, or 84 backbone 

carbons/polymer
• ~ 64 Å box, total of ~25,000 atoms

• NVT ensemble, 150°C à well above Tg

• LAMMPS



Morphology:	Li-neutralized	pAA

12

Bolintineanu et al, ACS Macro Lett, 2013

p9AA-100%Li



p21AA-43%Li

Morphology:	Li-neutralized	pAA
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coloring by cluster

p9AA-10%Li p9AA-43%Li p9AA-100%Li

Bolintineanu et al, ACS Macro Lett, 2013

TYPE II (stringy) TYPE III
(fully percolated)

TYPE I
(compact, isolated)

TYPE II (stringy)



Closer	look	at	aggregates
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Two	mechanisms	of	aggregate	formation:
1.	Counterion-oxygen	association	à dominant	at	moderate	to high neutralization
2.	Hydrogen-bonded	networks	à dominant	at	low neutralization

p9AA-10%Li p9AA-43%Li p9AA-100%Li



Direct	Comparison	to	X-ray	Scattering
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X-ray	Scattering	Doesn’t	Determine	Morphology
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p21AA-56%Zn
Type 1

p9AA-43%Li
Type 2

p9AA-24%Cs
Type 3
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Buitrago, C. F. et al. Macromolecules 48, 1210–1220 (2015).

need simulations or imaging!



Quasi-Elastic	Neutron	Scattering

17

incoherent, inelastic:  sensitive to self-motion of hydrogens

Gs(r,t): given an atom was at r=0 at time 
t=0, the probability that the atom is at r 
at time t H r = 2π/Q

S(Q, t) =

Z
Gs(r, t)

r sin(Qr)

Q
dr

S(Q, t) =

R
S
exp

(Q,!)ei!td!R
R(Q,!)ei!td!

from MD:

from QENS:



Acid	Copolymers
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excellent agreement between QENS and MD

amorphous halo:  Q ≈ 1.35 Å-1

ionomer peak: Q ≈ 0.3 – 0.6 Å-1
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Fit	S(Q,t)	to	Two	KWW	Functions
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§ One stretched exponential relaxation cannot fit data, two needed
§ Extract time scales t and stretching parameters b



Dynamics	from	KWW
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Dynamics	from	KWW
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Slower: structural dynamics of 
the chain

Highly composition 
sensitive
Length scale dependent

Fast: local dynamics that are 
insensitive to composition 
(vibrations, librations, etc.)
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increasing acid content slows dynamics



Acid	aggregates	rearrange
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p21AA: one chain

t = 0
t = 0.1 ns

t = 1 ns

Middleton et al, Macromolecules 49, 9176 (2016)
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next: Li ionomer dynamics



Rest	of	the	Talk
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• melts of precise poly(ethylene-co-acrylic acid) (pAA)
• atomistic simulations

• morphology and comparison to X-ray
• dynamics and comparison to QENS

• coarse-grained simulations

• hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)
• atomistic simulations



SDAPP	Membranes
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• high Tg
• high modulus
• high thermomechanical stability
• high conductivity

Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D. Macromolecules
38, 5010–5016 (2005); Tang, Z. et al., J Electrochem Soc 161,
A1860–A1868 (2014)

SDAPP IEC = 3.4 meq/g
Nafion IEC = 0.9 meq/g



SDAPP	Simulations
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short SDAPP chain

yellow = sulfur
red = oxygen
cyan = carbon
white = hydrogen

70 chains
3 monomers/chain

# sulfonic acids/monomer = S = 1, 2, 4 
# waters/sulfonic acid = l = 3, 5, 10

H3O+

LOPLS-AA, improvements for aromatics
TIP4P/2005 water model



Cluster	Morphologies
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S = 1 sulfonic acid/monomer

increasing water

l = 3 l = 5 l = 10



Cluster	Morphologies
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l = 3

increasing sulfonation level

S = 1 S = 2 S = 4

l = 3

How do we better characterize percolated morphologies?



New	Clustering	Algorithm
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base on density as well as distance
• identify cluster centers
• atoms are in the same cluster as their nearest neighbor with a higher density

A. Rodriguez and A Laio, Science 344, 1492 (2014)



SDAPP	Clusters
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density-based algorithm resolves differences in percolated systems



Cluster	Size	and	Shape
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R2
g = �1 + �2 + �3 2 = 1� 3(�1�2 + �1�3 + �2�3)/R

4
g

S = 1, l = 3, k2= 0.4

S = 4, l = 10, k2= 0.05

Abbott and Frischknecht, Macromolecules 50, 1184 (2017)



• simulation reveals ionic aggregate morphologies
• MD agrees with x-ray

• atomistic MD in agreement with QENS for acid 
copolymers/ionomers

• chains dynamics slowed by aggregates

• MD for SDAPP
• density-based algorithm for more 

information on percolated clusters
• ion transport will depend on cluster shape

Summary

31

Future work: continued correlation of dynamics with morphology


