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lon-Containing Polymers )

polymers with covalently-bonded ionic groups

ionomers W " Y
P(E-AA) Gb 0 O O
+ P(S-SS) sof) +

two main classes of ionomers

* dry (melt): no solvent

* hydrated: with water




Nanoscale Phase Segregation )
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ionomer melts hydrated PEMs
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lonic Aggregates in lonic Polymers

“ionomer peak”

* ubiquitous

 low wavevector peak in scattering
 from inter-aggregate scattering
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PSS with Zn*? Nafion in water
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Proton Exchange Membranes h

Electron Flow
a

ion-selective membranes Hytaer
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Applications of lonomers: Batteries? rh) i
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Issues with current electrolytes in Li-ion batteries:

« organic solvents * solvent free PEO + salt

e PEO + lithium salts + solvent « conductivity dominated by anions
- need containment  salt concentration at electrodes
. flammable! « extra heating

electrolyte
g . 3
e —+— Lt — 3
= &l
- ()
X € An -

ionomers as next generation electrolytes?
e safer: no solvent
e serve as electrolyte & separator
e less packaging
* improved electrochemical stability
* higher efficiency: single ion conductors




Questions ) e
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* What do ionic aggregates look like, exactly?

« What’s the dependence on polymer architecture?

* How do ion association and aggregate morphology

affect dynamics?

Hydrophilic
Hydrophobic Polymer Domains
Polymer Domains (Nanochannels)

Difficult to measure local
structure/dynamics experimentally.

Can simulations resolve issue?



Rest of the Talk ) e
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« melts of precise poly(ethylene-co-acrylic acid) (pAA)
* morphology and comparison to X-ray

« CG model dynamics A

« dynamics and comparison to QENS

* hydrated, sulfonated Diels-Alder polyphenylengs (SDAPP)

« morphology and cluster analysis ol ateval
* 7 O {3

H+




Model Materials: Precise lonomers @i

PE backbone with precisely spaced carboxylic acid functional groups
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Wagener group, University of Florida




Atomistic MD Simulations

* Variations in:
» cation type; today: H or Li*
* neutralization level = % COO-M* vs COOH
* spacing length: p9, p15, p21

 All atom L-OPLS force-field
« 80-200 polymers, 81, 90, or 84 backbone
carbons/polymer
« ~ 64 A box, total of ~25,000 atoms
* NVT ensemble, 150°C -> well above Tg
 LAMMPS
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Morphology: Li-neutralized pAA ) s,
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P9AA-100%Li
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Bolintineanu et al, ACS Macro Lett, 2013




Morphology: Li-neutralized pAA ) i
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POAA-10%Li POAA-43%Li PO9AA-100%Li

| TYPE Il (stringy) TYPE Il (stringy) TYPE Il
(fully percolated)
021AA-43%L i

TYPE |
(compact, isolated)

COIOrmg by cluster Bolintineanu et al, ACS Macro Lett, 2013




Closer look at aggregates ) .

PO9AA-10%Li POAA-43%Li PO9AA-100%Li

VUt QU @o

Two mechanisms of aggregate formation:
1. Counterion-oxygen association = dominant at moderate to high neutralization

2. Hydrogen-bonded networks = dominant at low neutralization
14




Direct Comparison to X-ray Scattering
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« excellent agreement in peak positions
« good agreement in peak shapes



X-ray Scattering Doesn’t Determine Morphologym) i,
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need simulations or imaging!

p21AA-56%Zn P9AA-43%Li P9AA-24%Cs
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Sandia

Quasi-Elastic Neutron Scattering ) e

wy Energy transfer
FE =hw = h(wr—w;)
Momentum transfer

P =hQ =h(k;—k;)

incoherent, inelastic: sensitive to self-motion of hydrogens

G,(r,t): given an atom was at r=0 at time / \
t=0, the probability that the atom is atr / \

at time t \ .\r= e
\ /
’I“SlIl T
from MD: S(Q,t) /G Q )dr hRN

J Seap(Q,w)e “"tdw

from QENS: S(Q,t) =

[ R(Q, w)ettdw




Acid Copolymers s o )

n
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excellent agreement between QENS and MD

amorphous halo: Q = 1.35 A"
relevant length scales:

ionomer peak: Q= 0.3 — 0.6 A




Fit S(Q,t) to Two KWW Functions

_( t )ﬁslow _( t )Bfast
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= One stretched exponential relaxation cannot fit data, two needed
= Extract time scales t and stretching parameters 3
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Dvnamics from KWW )
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Dvnamics from KWW )

p9AA | Slower: structural dynamics of
Structural p15AA 7 the chain

dynamics P21AA ; Highly composition
1 PE | sensitive
Length scale dependent
0.01 4
] Fast: local dynamics that are
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Local dynamics (vibrations, Iibrations, etc.)
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increasing acid content slows dynamics




Acid aggregates rearrange )
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p21AA: one chain

t=0.1ns ~

3 LA
A Q%

next: Li ionomer dynamics
t=1ns X s ( | P21AA-38%Li: MD and QENS
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Rest of the Talk 7 =,
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* melts of precise poly(ethylene-co-acrylic acid) (pAA)
» atomistic simulations
* morphology and comparison to X-ray {\MV\/}
« dynamics and comparison to QENS
* coarse-grained simulations

* hydrated, sulfonated Diels-Alder polyphenylenes (SDAPP)

o atomistic simulations i
O O Q O




SDAPP Membranes 3
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Through Plane Conductivity of 14-48B at 80 c
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« high thermomechanical stability RH (%)

* high conductivity
SDAPP IEC = 3.4 meq/g
Nafion IEC = 0.9 meq/g

Fujimoto, C., Hickner, M., Cornelius, C. & Loy, D. Macromolecules
38, 5010-5016 (2005); Tang, Z. et al., J Electrochem Soc 161,
A1860-A1868 (2014) 24




SDAPP Simulations 7 =,
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« o _ | short SDAPP chain
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& qgga < P 59. o %‘:@ g red = oxygen
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H,;0O* H,0
70 chains # sulfonic acids/monomer=S=1,2,4
3 monomers/chain # waters/sulfonic acid = A =3, 5, 10
LOPLS-AA, improvements for aromatics
TIP4P/2005 water model
25




Cluster Morphologies )
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S = 1 sulfonic acid/monomer

increasing water




Cluster Morphologies )
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A=3

increasing sulfonation level

How do we better characterize percolated morphologies?



New Clustering Algorithm )
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A. Rodriguez and A Laio, Science 344, 1492 (2014)

base on density as well as distance
* identify cluster centers
« atoms are in the same cluster as their nearest neighbor with a higher density




SDAPP Clusters 7 =,
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Distance-based
algorithm

Density-based
algorithm

Increasing hydration level Increasing sulfonation level

density-based algorithm resolves differences in percolated systems




Cluster Size and Shape 7 =,
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Summary

« simulation reveals ionic aggregate morphologies
 MD agrees with x-ray

« atomistic MD in agreement with QENS for acid
copolymers/ionomers
« chains dynamics slowed by aggregates

 MD for SDAPP
» density-based algorithm for more
information on percolated clusters
 jon transport will depend on cluster shape

P*

ACSM@(; 10 Letters

3835
g8
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Macromolecules

Future work: continued correlation of dynamics with morphology




