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The problem…

§ We have a set of data from each MagLIF experiment that needs to be used to 
determine the fundamental hotspot parameters (P, T, mix, etc.)

§ Few of these parameters can be uniquely determined with a single diagnostic
§ Pressure is impossible to measure directly
§ We desire an approach to integrate multiple diagnostics simultaneously to constrain 

all of the interesting stagnation parameters
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Using Bayesian statistics, we can efficiently explore the 
parameter space and determine the pdf’s of the model 
parameters and their correlations

The goal is to estimate the probability distribution of 
the model parameters, m, given the measured data, d.
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Bayesian data analysis sees widespread 
use in a variety of applications
tokamak plasma profile estimation at 
installations such as JET and MAST

LIGO binary black hole merger analysis

Svensson et al., Plasma Phys. Control. Fusion 50 085002 (2008)
von Nessi et al., J. Phys. A46 185501 (2013) Veitch et al., Phys. Rev. D 91 042003 (2015)

integrated seismic data, E&M data, and well 
log data analysis for petroleum exploration

Gunning and Glinsky, Computers & Geosciences 30 619 (2004)

“big data” analysis such as the Google 
search engine

This technique, as 
applied to parameter 
estimation in HED 
systems, is in its 
infancy



We have developed a forward model that allows direct, 
quantitative comparison of the data with synthetic diagnostics
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1D, isobaric Hotspot

Assumptions:
• Each slice has its own independent parameters 

characterizing a 1D, isobaric hot spot surrounded by a liner
• Ideal gas EOS:
• All elements have same burn duration
• Electron and ion temperatures are equal
• Mix fraction is radially uniform and contaminant emission 

is dominated by bremsstrahlung radiation
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Using this model, we can model existing MaglIF diagnostics

6*Ballabio et al., NUCLEAR FUSION, Vol. 38, No. 11 (1998)

YDD = 3.2⇥ 1012 ± 20%
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The inversion model can be represented as graph 
Bayesian Inversion Wrapper

Input Parameters

Synthetic Observables

Physics Model

Experimental Observables



The methodology is completely general and 
very modular

§ The physics model and the synthetic 
observables (e.g. diagnostics) can be 
written to suit your application

§ Everything is implemented in python 
with an architecture supporting this 
modular philosophy
§ The model is a class
§ Each of the diagnostics are classes that 

accept an instance of the model (e.g. a 
hotspot object) as an input

§ New diagnostics can be added trivially if no 
new physics is required
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Bayesian Inversion Wrapper

Input Parameters
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Physics ModelObjective



A validation effort is underway to convince 
ourselves that the model, diagnostics, and inversion 
are accurately implemented

§ Formulating a series of tests where synthetic data is generated using the 
model to test
§ Accuracy and stability of solution
§ Correlations between parameters

§ Simple uniform plasma
§ Simple variations in single parameters
§ Variations in multiple parameters
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Initial tests with uniform plasma column are 
promising
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Initial tests with uniform plasma column are 
promising
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Pressure and mix are 
consistently low, but 
uncertainties overlap 
with “measurement”

ρR is not being determined



Correlation and principal components analysis 
shows which data and parameters and diagnostics 
contribute
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TIPC YieldsciPCDnTOF
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TIPC and crystal imager 
dominate the inversion

Temperature, mix and pressure 
are most strongly determined



Visualizing the statistics gives insight into the 
physics of the system
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pressure

m
ix

Pressure and mix fraction 
are strongly anti-correlated

Very mild correlations between other stagnation parameters

Visualizing the statistics gives insight into the 
physics of the system



Test with an axial pressure gradient is able 
recover the input with reasonable accuracy
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§ The gradual step from 1.0 
Gbar to 0.7 Gbar is closely 
recovered

§ There is a slight slope to the 
mix profile is still low, but 
true value is within the 
uncertainties



In both cases the diagnostic agreement is 
excellent
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Lets make things more interesting: 
Combined Pressure and Temperature gradients

§ Radius
§ Input: 70 µm
§ Output: 70 +/- 3 µm

§ Mix
§ Input: 3%
§ Output: 3 +/- 1.2%

§ Areal density still  
undetermined

17

Input Temperature and 
Pressure Profiles



Lets make things more interesting: 
Combined Pressure and Temperature gradients
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Diagnostic matches are excellent!



Example fully processed data for z2839
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Data:		Spherical	Crystal	Imager
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Prior PostMeasurement



Data:  Filtered Time integrated Pinhole Camera

§ TIPC values are matched 
everywhere within the uncertainties, 
except where the data is noise
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Data: X-ray and Neutron Yield
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Data:  Neutron time-of-flight

§ The inversion produces a decent match to the nTOF, but with zero uncertainty
§ Suggests that the modeled nTOF is completely determined by other diagnostics and 

is not contributing to the inversion
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Prior Post



Estimation of stagnation parameter axial profiles
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Inferred Pτ~1.7 atm-s
The lack of sensitivity to liner ρR will 
introduce a systematic bias in other 
quantities

Real variation in ρR will affect the 
inference on other quantities



Estimation of stagnation parameter axial profiles
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Inferred Pτ~1.7 atm-s
The lack of sensitivity to liner ρR will 
introduce a systematic bias in other 
quantities

Inversion didn’t handle 
asymmetric profile well



Next Steps and Future Work
§ Continue Validation effort

§ More synthetic tests with the hotspot model
§ Use synthetic diagnostics generated from a variety of GORGON simulations

§ Improve liner areal density estimation
§ Using the full nTOF spectrum with downscatter
§ Optimize filtered x-ray diagnostics for areal density
§ Include XRS3 data in the inversion

§ Improve mix determination
§ Optimize x-ray power measurements for mix
§ Synthetic tests using new diagnostics -> XRS3, neutron imaging

§ Refine MCMC algorithm and implement “multi-shoot” approach to explore 
parameter space and look for multimodality

§ Implement an iterative procedure to combat bias from the prior

26


