
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. 
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Resonantly enhanced infrared detectors based on 
type-II superlattice absorbers

Michael Goldflam

SPIE Optics+Photonics 2017

S. Campione E.A. Kadlec S.D. Hawkins W.T. Coon T.R. Fortune
S. Parameswaran G.A. Keeler J.F. Klem A. Tauke-Pedretti E.A. Shaner
P.S. Davids L.K. Warne J.R. Wendt J.K. Kim D.W. Peters

SAND2017-8308C



Outline

• Infrared detection
• Type-II Superlattices

• Resonant detector structures
• Single color

• Two-color

• Summary

SPIE Optics+Photonics 2017

1 2 1 2 1



Outline

• Infrared detection
• Type-II Superlattices

• Resonant detector structures
• Single color

• Two-color

• Summary

SPIE Optics+Photonics 2017

1 2 1 2 1



Infrared Detection
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Type-II Superlattices
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• Lower absorption coefficient than MCT

• Easily controllable bandgap

• Wafer uniformity

• Predicted lower predicted dark current 

than MCT.

• Lower absorption coefficient than MCT

• InAs/(In)GaSb

• InAs/InAsSb

• InGaAs/InAsSb
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Detector structure
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Dark Current: ����� ∝ �

• Thick structures absorb more but have higher 
dark current.

• Enhance field in detector using resonant 
structures → increase absorption/QE.

• Enable higher operating temperature.
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M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).
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Detector structure
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Resonant detector: Fabry-Pérot
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Coupled Resonances
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• Employ coupled resonances: Fabry-
Pérot cavity with metal nanoresonator.

• Variable response in fixed detector by 
modifying nanoantenna only.

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).

Majority of “lost” absorption is in the nanoantenna



Measured Quantum Efficiency
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• QE>55%: 4-5x improvement compared to 
non-resonant detector. 

• Similar to conventional filter but improves 
performance

• Temperature independent spectral 
response: lower cooling requirements.

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).



Resonance Wavelength Modification
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Nanoantennas enable a fixed detector stack to be resonant at multiple 
wavelengths without changing detector itself.
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Tailored resonance
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• Double FWHM of resonance.

• Polarization dependent response.

• Enables improved QE over a broader 
range of frequencies.



Two-Color Detection
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Conclusion

• Demonstrated significant gains in 

QE with reduction in absorbing 

volume.

• Control of detector response 

with integrated filter.

• Potential for two color detectors 

and tailored resonances.
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Loss Mechanisms
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Measured Quantum Efficiency
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2100 nm
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• QE>55%: 4-5x improvement compared to non-
resonant detector.

• Temperature independent spectral response that 
matches with simulated response.

M. D. Goldflam, D. W. Peters et al.,  Appl. Phys. Lett. 109 (25), 251103 (2016).



Supercell: Broadened Resonance
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Double FWHM of resonance.

Polarization dependent response.



Broadened resonance
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Polarization dependent response.

Enables improved QE over a 
broader range of frequencies.



Electromagnetic Crosstalk Analysis
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En
er

gy

Type-II Superlattice

Energy 
Gap

1 2 1 2 1 2 1

Mini-
Bands

Valence 
Band Edge

Conduction 
Band Edge

Bulk Semiconductor

STM of a InAs/GaSb T2SL

Type-II Superlattices (T2SLs)

We use InAs/InAsSb T2SLs for the absorber

• Change bandgap by changing layer 
thicknesses

• Engineer/optimize intrinsic properties 
• Performance is predicted to surpass HgCdTe, 

the current industry standard for IR detection
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