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Type-ll Superlattices ~ 1

* InAs/(In)GaSb
* InAs/InAsSb

* InGaAs/InAsSb

(Easily controllable bandgap \

* Wafer uniformity
* Predicted lower predicted dark current

than MCT.
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Type-Il Superlattices Sonci

* InAs/(In)GaSb
* InAs/InAsSb
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Detector structure () e

————————————

(0 Thick structures absorb more but have higher\
Air dark current.

Air

* Enhance field in detector using resonant
structures - increase absorption/QE.

\° Enable higher operating temperature. Y

Absorption « e~ %*

Dark Current: Jgifs X W

Contacts
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Detector structure () e
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Resonant detector: Fabry-Pérot s
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Coupled Resonances () e

Resonant
Nanoantenna

N
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* Employ coupled resonances: Fabry-
Pérot cavity with metal nanoresonator.

* Variable response in fixed detector by
modifying nanoantenna only.
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Resonance Wavelength Modification
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Nanoantennas enable a fixed detector stack to be resonant at multiple
wavelengths without changing detector itself.
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Tailored resonance Narel.
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* Polarization dependent response.

* Enables improved QE over a broader
\ range of frequencies. y
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Absorption

Two-Color Detection
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Conclusion Natoral
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* Demonstrated significant gains in
QE with reduction in absorbing
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volume.

e Control of detector response
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with integrated filter.

e Potential for two color detectors

and tailored resonances.
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Conclusion Natoral

* Demonstrated significant gains in
QE with reduction in absorbing
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Loss Mechanisms
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Measured Quantum Efficiency Naorel_
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Supercell: Broadened Resonance Natoel
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Double FWHM of resonance.

Polarization dependent response.
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Broadened resonance Moo

T T T T T T T
100 i " T T " 60 F —— Absorber { g0 100 T
Supercell
- - o 80 ——— Total B
= X \’3 —— Absorber
~ <
c c w
S ] S S 5
o B = =
(] = [o] e.
n 8 E o
< 1 8 g g
= < 20 X <
8 b = 650 = w
- —4—Db= nm © —_
(@] ©
= ——b =850 nm ° o 20
——b =950 nm ~ =
0 ) ) b = 1359 nm
1 11 12 0 n 1 n 1 n 1 n 1 n 1 n 1 n 1 N 0 0
8 ° 0 80 85 90 95 100 105 11.0 11.5 120
Wavelength (um)
Wavelenagth (11m) Wavelength (1um)
lIlC

4 )
Double FWHM of resonance.

Polarization dependent response.

Enables improved QE over a
broader range of frequencies.

10.5 um

SPIE Optics+Photonics 2017




Sandia

Electromagnetic Crosstalk Analysis et
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Type-ll Superlattices (T2SLs)
Type-Il Superlattice

Bulk Semiconductor
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We use InAs/InAsSb T2SLs for the absorber

* Change bandgap by changing layer
thicknesses

* Engineer/optimize intrinsic properties

* Performance is predicted to surpass HgCdTe, iI I - |

the current industry standard for IR detection STM of a InAs/GaSh T2SL |
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