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Planning measurements: batch (non-sequential) design
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Planning measurements: sequential design
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Sequential experimental design is relatively less developed

Batch experimental design:
@ Linear: Fisher information matrix (e.g., A-, D-optimal)
@ Nonlinear: advances beyond linearization and Gaussianization

@ Information-based experimental design [Lindley 56]

Greedy (myopic) design:
@ Repeated application of batch design [Solonen 12, Drovandi 14, Kim 14]
e But it is not optimal

Dynamic programming:
o Fully optimal description (has 1. feedback, 2. forward looking)

o Very difficult to tackle generally
@ Thus far limited to discrete variables, special problem and solution
structures, simple objectives [Carlin, Bradley 98, Brockwell 03, Berry 02]
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Objective and scope

Objective:

[llustrate mathematical framework and numerical tools to find optimal
sequential experimental designs in a computationally feasible manner

Scope:
@ Use models to guide real experiments (simulation-based OED)
Finite number of experiments
Nonlinear and expensive physical models
Continuous parameter, design, and data spaces of multiple dimensions
Bayesian treatment of uncertainty

Non-Gaussian distributions

Information measure objective (design for parameter inference)
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Formulation

Core components of general sequential design formulation

Experiment: Kk =0,..., N — 1, total N experiments; N < oo

State: xx = [Xk,b, Xk,p] all information needed for optimal future designs
o Belief state: xy p current state of uncertainty

@ Physical state: x , deterministic design-relevant variables

Design: dx = pk(xx)
seek good policy m = {uo, 1, .- un—1}

Observations: yj distributed according to likelihood f(y« |6, d)
(e.g., yk = G(0,dk) + €, with € Gaussian)

System dynamics: xx1 = Fi(x«, Yk, dk) state evolution
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Formulation

Sequential design exhibits a closed-loop behavior

10bservations Yk

Design dj, System dynamics
xk—f—l - fk(xk7yk7dk)

State xy,

Policy (controller)
M
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Formulation

The sOED problem: find optimal policy that maximizes
the expected total reward

Stage reward: gy (xk, y«, dk) Terminal reward: gy (xy)

The sequential optimal experimental design (sOED) problem:

Find 7* where

N—
= argmax E, NG Z (X Vi b (xk)) + gn (xwv)
T={p0,-..,ttN—1} k=0

s.t. Xk+1 = ]:k(Xk7yk7dk)7vk
Mk(xk) € Dy, Vxk, k

Difficult to solve directly, involves optimization of a functional
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The sOED problem in dynamic programming (DP) form

Re-express using Bellman's Principle of Optimality [Bellman 53]

Dynamic programming form (Bellman equations): (e.., [Bertsekas 05])

J(xk) = max By, xe.de 18 (k5 dics i) + i (Fr(Xis dies i)
k k
In(xv) = gn(xn)
k=0,...,N—1; J(xx) are value functions

A set of smaller tail subproblems
Optimal policy functions implicitly in argmax: d; = pj(xk)

“Curse of dimensionality”: exponential scenario growth from recursion

Large body of approximate methods: approximate dynamic programming
(e.g., [Bertsekas 96, Kaelbling 96, Sutton 98, Powell 11])
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Formulation

Batch (non-sequential) design is a special case of the
sOED problem, and thus suboptimal

@ Has no feedback

@ Designs all experiments concurrently as a batch

e Finds optimal designs (vectors) rather than a policy

Optimizer
(controller)

Design dp

dy

Experiment 0

dn_1

Experiment 1

Experiment N — 1

N-1

Observations yo

{dy,....dy_1} = argmax B, .\ ldows Z 8k (Xk; Yk, di) + &gn (xn)

doy--ydy—1
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Formulation

Greedy (myopic) design is a special case of the sOED
problem (DP form), and thus suboptimal

@ Uses feedback
o Considers the next experiment only

@ Has no future effects

J(xk) = dTeangnyk,dk [gk(xkv}/kadk)‘i‘JkJr , ka)/k))]

In(xn) = gn(xn)

subject to xx11 = F(xk, Yk, dk)
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Formulation

Sequential Bayesian inference

For the k-th experiment:
likelihood prior

——f—
f(ykl0, di, k) £(6]1x)
f(ykldk, k)
——

evidence

posterior

——~—
f(0)yk, di, k) =

0 — parameters to infer
Ix — information from previous experiments, Ik = {do, yo, ..., dk—1, Yk—1}

Conceptually: belief state is posterior random variable xk,» = 6|/x

do, Yo
—

di,
—

PDF
PDF
PDF

(4 0 0

Huan & Marzouk (Sandia & MIT) JSM, Baltimore, MD August 2, 2017 12 / 24



Formulation

Information gain objective for parameter inference

We choose to use total information gain at end of all experiments
(Kullback-Leibler (KL) divergence from final posterior to prior)

gk(xk, dk, yk) = reflects experimental cost
f(x
en(w) = Dia(FOms)l|F(x0)) = / f(XNﬁb)m[ (Xn.b)
H

f(Xo’b)

| as

Corresponding system dynamics:
@ Belief state: Bayes' Theorem
f(ykl®, di, I ) f (xk,b)
f(ykldk, Ik)

f(Xkt1,6) =

@ Physical state: physical process
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Numerical Methods

Represent a policy using one-step lookahead form
One-step lookahead policy representation: (e.g., [Bertsekas 05])

Pk (xk) = argmax Ey, 1%, [gk(Xk,Yk, di) + i1 (F (ks i dk))]
k€D

Approximate value functions using linear architecture:

Jk(x) = r duc(xi)

¢k features (selected from heuristics), ryx weights

Approximate value iteration (backward induction with regression):
Je(x) = P{dmea% Ey, xi.di 8k (ks dies yie) + Tr1 (Fie(xk,s dka)/k))]}
k k

Start with Jy(xy) = gn(xn), and proceed backwards k = N —1,...,1

P: regression operator, samples from exploration and exploitation
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Numerical Methods

Belief state representation

Conceptually: belief state is posterior random variable

How to numerically represent it ...
o for general non-Gaussian continuous random variables
@ in a finite-dimensional manner
@ to easily perform Bayesian inference repeatedly in evaluating

Jk(xk) = 73{ max Ky, . q, [gk(Xk, dies yie) + 1 (Fr(xk, dk,)/k))”
deDk

Traditional approaches:
@ Gaussian approximation and model linearization
@ Gridding or functional approximation of its PDF or CDF
e Non-parametrics (with particle filter, MCMC)

Often expensive and some do not scale well to multiple dimensions. We
seek an approach that can quickly perform many Bayesian inferences.
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Numerical Methods

Transport map transforms distributions (e.g. [villani o8])

fe(€)

fl(z)

& ~ reference distribution, z ~ target distribution

Equivalence in distribution ¢ g T(z)

Knothe-Rosenblatt (KR) map: defined by conditional distributions, is
triangular and monotone, exists and is unique [Rosenblatt 52, Carlier 10]
Easy to construct from samples: convex optimization problem

Target joint distribution for fast approx Bayesian inference
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Numerical Methods

Final algorithm

© Set parameters
@ Initial exploration
© Make joint map

Q lterate to refine ...

(a) Exploration
(b) Exploitation

(c) Approximate value iteration

© Extract final policy parameterization
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1D source inversion problem: problem settings

e s (et d —nnl?)
T V2m2 /03 + DY) 2(4) (0.3 + Dt)

@ 2 experiments
e 0~ N(0,22) starting location: 5.5
@ Strong wind blows to the right after first experiment

@ Quadratic movement penalty
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1D source inversion problem: case 1
advantages of sOED over greedy design

Greedy design does not account for future wind conditions

Expected reward: greedy (0.07), sOED (0.15)

15 15
1 - i 1 *

= 05 !! = 05 '.' '
OF  « o e 0 PR

—0.5 - —0.5
217 0.75-05-0.25 0 0.25 0.5 21-0.75-05-0.25 0 0.25 0.5
dp do
greedy design sOED
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1D source inversion problem: case 2
advantages of sOED over batch design

A more precise instrument available only if prior variance < 3

Batch design does not have feedback

Expected reward: batch (0.15), sOED (0.26)

3 3
2 2
1 1 . 2 .
= - s »
0 0 i,
~1 -1 g
—2 -2
=1.5 —1 —0.5 0 0.5 =1.5 —1 —0.5 0 0.5
dp do
batch design sOED
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2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
102
L 8 6 ;
4
121 | 7.5 ) ;
10} 1F7 59 >
—2
8r 1H 65 -4 N
6 1 ° :
. a 6 R AR 0%
4b i o
5l 1 B55
0 B 5
20 15
_al |
S — .
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2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Conclusions and Future Work

Conclusions

e Formulated the sequential optimal experimental design (sOED)
problem rigorously (has 1. feedback, 2. forward looking)

o best achievable in theory
o difficult to solve in practice

(future work: tradeoffs)
@ Developed new numerical methods to solve the SOED problem in a

computationally-feasible manner, using

e approximate dynamic programming
e transport maps

@ Demonstrated computational effectiveness on realistic applications

Huan & Marzouk, “Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming,”
arXiv: 1604.08320, 2016.
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Conclusions and Future Work
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