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Planning measurements: batch (non-sequential) design
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Planning measurements: sequential design
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Sequential experimental design is relatively less developed

Batch experimental design:

Linear: Fisher information matrix (e.g., A-, D-optimal)

Nonlinear: advances beyond linearization and Gaussianization

Information-based experimental design [Lindley 56]

Greedy (myopic) design:

Repeated application of batch design [Solonen 12, Drovandi 14, Kim 14]

But it is not optimal

Dynamic programming:

Fully optimal description (has 1. feedback, 2. forward looking)

Very difficult to tackle generally

Thus far limited to discrete variables, special problem and solution
structures, simple objectives [Carlin, Bradley 98, Brockwell 03, Berry 02]
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Objective and scope

Objective:

Illustrate mathematical framework and numerical tools to find optimal
sequential experimental designs in a computationally feasible manner

Scope:

Use models to guide real experiments (simulation-based OED)

Finite number of experiments

Nonlinear and expensive physical models

Continuous parameter, design, and data spaces of multiple dimensions

Bayesian treatment of uncertainty

Non-Gaussian distributions

Information measure objective (design for parameter inference)
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Formulation

Core components of general sequential design formulation

Experiment: k = 0, . . . ,N − 1, total N experiments; N <∞

State: xk = [xk,b, xk,p] all information needed for optimal future designs

Belief state: xk,b current state of uncertainty

Physical state: xk,p deterministic design-relevant variables

Design: dk = µk(xk)
seek good policy π ≡ {µ0, µ1, . . . , µN−1}

Observations: yk distributed according to likelihood f (yk |θ, dk)
(e.g., yk = G (θ, dk) + ε, with ε Gaussian)

System dynamics: xk+1 = Fk(xk , yk , dk) state evolution
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Formulation

Sequential design exhibits a closed-loop behavior

System dynamics
xk+1 = Fk(xk, yk, dk)

Policy (controller)
µk

State xkDesign dk

Observations yk

Huan & Marzouk (Sandia & MIT) JSM, Baltimore, MD August 2, 2017 7 / 24



Formulation

The sOED problem: find optimal policy that maximizes
the expected total reward

Stage reward: gk(xk , yk , dk) Terminal reward: gN(xN)

The sequential optimal experimental design (sOED) problem:

Find π∗ where

π∗ = argmax
π={µ0,...,µN−1}

Ey0,...,yN−1|π

[
N−1∑
k=0

gk (xk , yk , µk(xk)) + gN (xN)

]

s.t. xk+1 = Fk(xk , yk , dk), ∀k
µk(xk) ∈ Dk , ∀xk , k

Difficult to solve directly, involves optimization of a functional
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Formulation

The sOED problem in dynamic programming (DP) form

Re-express using Bellman’s Principle of Optimality [Bellman 53]

Dynamic programming form (Bellman equations): (e.g., [Bertsekas 05])

Jk(xk) = max
dk∈Dk

Eyk |xk ,dk [gk(xk , dk , yk) + Jk+1 (Fk(xk , dk , yk))]

JN(xN) = gN(xN)

k = 0, . . . ,N − 1; Jk(xk) are value functions

A set of smaller tail subproblems

Optimal policy functions implicitly in argmax: d∗k = µ∗k(xk)

“Curse of dimensionality”: exponential scenario growth from recursion

Large body of approximate methods: approximate dynamic programming

(e.g., [Bertsekas 96, Kaelbling 96, Sutton 98, Powell 11])
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Formulation

Batch (non-sequential) design is a special case of the
sOED problem, and thus suboptimal

Has no feedback

Designs all experiments concurrently as a batch

Finds optimal designs (vectors) rather than a policy

Experiment 0

Experiment 1

...

Experiment N − 1

Optimizer
(controller)

Observations y0

y1

yN−1

Design d0

d1

dN−1

{
d∗0 , . . . , d

∗
N−1

}
= argmax

d0,...,dN−1

Ey0,...,yN−1|d0:N−1

[
N−1∑
k=0

gk (xk , yk , dk) + gN (xN)

]

Huan & Marzouk (Sandia & MIT) JSM, Baltimore, MD August 2, 2017 10 / 24



Formulation

Greedy (myopic) design is a special case of the sOED
problem (DP form), and thus suboptimal

Uses feedback

Considers the next experiment only

Has no future effects

Jk(xk) = max
dk∈Dk

Eyk |xk ,dk

[
gk(xk , yk , dk) +

((((((((((
Jk+1 (Fk(xk , dk , yk))

]
JN(xN) = gN(xN)

subject to xk+1 = Fk(xk , yk , dk)
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Formulation

Sequential Bayesian inference

For the k-th experiment:

posterior︷ ︸︸ ︷
f (θ|yk , dk , Ik) =

likelihood︷ ︸︸ ︷
f (yk |θ, dk , Ik)

prior︷ ︸︸ ︷
f (θ|Ik)

f (yk |dk , Ik)︸ ︷︷ ︸
evidence

θ — parameters to infer
Ik — information from previous experiments, Ik ≡ {d0, y0, . . . , dk−1, yk−1}

Conceptually: belief state is posterior random variable xk,b = θ|Ik

θ

P
D
F d0, y0

θ

P
D
F d1, y1

θ

P
D
F

Huan & Marzouk (Sandia & MIT) JSM, Baltimore, MD August 2, 2017 12 / 24



Formulation

Information gain objective for parameter inference

We choose to use total information gain at end of all experiments
(Kullback-Leibler (KL) divergence from final posterior to prior)

gk(xk , dk , yk) = reflects experimental cost

gN(xN) = DKL(f (xN,b)||f (x0,b)) =

∫
H
f (xN,b) ln

[
f (xN,b)

f (x0,b)

]
dθ

Corresponding system dynamics:

Belief state: Bayes’ Theorem

f (xk+1,b) =
f (yk |θ, dk , Ik)f (xk,b)

f (yk |dk , Ik)

Physical state: physical process
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Numerical Methods

Represent a policy using one-step lookahead form

One-step lookahead policy representation: (e.g., [Bertsekas 05])

µk(xk) = argmax
dk∈Dk

Eyk |xk ,dk

[
gk(xk , yk , dk) + J̃k+1 (Fk (xk , yk , dk))

]
Approximate value functions using linear architecture:

J̃k(xk) = r>k φk(xk)

φk features (selected from heuristics), rk weights

Approximate value iteration (backward induction with regression):

J̃k(xk) = P
{

max
dk∈Dk

Eyk |xk ,dk [gk(xk , dk , yk) + J̃k+1 (Fk(xk , dk , yk))]

}
Start with J̃N(xN) ≡ gN(xN), and proceed backwards k = N − 1, . . . , 1

P: regression operator, samples from exploration and exploitation
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Numerical Methods

Belief state representation

Conceptually: belief state is posterior random variable

How to numerically represent it . . .

for general non-Gaussian continuous random variables

in a finite-dimensional manner

to easily perform Bayesian inference repeatedly in evaluating

J̃k(xk) = P
{

max
dk∈Dk

Eyk |xk ,dk

[
gk(xk , dk , yk) + J̃k+1 (Fk(xk , dk , yk))

]}
Traditional approaches:

Gaussian approximation and model linearization

Gridding or functional approximation of its PDF or CDF

Non-parametrics (with particle filter, MCMC)

Often expensive and some do not scale well to multiple dimensions. We
seek an approach that can quickly perform many Bayesian inferences.
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Numerical Methods

Transport map transforms distributions (e.g., [Villani 08])

z

ξ

fz(z)

T (z)
fξ(ξ)

ξ ∼ reference distribution, z ∼ target distribution

Equivalence in distribution ξ
i .d .
= T (z)

Knothe-Rosenblatt (KR) map: defined by conditional distributions, is
triangular and monotone, exists and is unique [Rosenblatt 52, Carlier 10]

Easy to construct from samples: convex optimization problem

Target joint distribution for fast approx Bayesian inference
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Numerical Methods

Final algorithm

1 Set parameters

2 Initial exploration

3 Make joint map

4 Iterate to refine . . .

(a) Exploration

(b) Exploitation

(c) Approximate value iteration

5 Extract final policy parameterization
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Results

1D source inversion problem: problem settings

yk =
s√

2π2
√

(0.3 + Dt)
exp

(
−‖ θ + dw (t)− zk+1 ‖2

2(4) (0.3 + Dt)

)
+ εk

2 experiments

θ ∼ N (0, 22) starting location: 5.5

Strong wind blows to the right after first experiment

Quadratic movement penalty
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Results

1D source inversion problem: case 1
advantages of sOED over greedy design

Greedy design does not account for future wind conditions

Expected reward: greedy (0.07), sOED (0.15)
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Results

1D source inversion problem: case 2
advantages of sOED over batch design

A more precise instrument available only if prior variance < 3

Batch design does not have feedback

Expected reward: batch (0.15), sOED (0.26)
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Results

2D source inversion problem: trajectory example #1

An example scenario:

physical state and plume belief states
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Results

2D source inversion problem: trajectory example #2

Another example scenario:

physical state and plume belief states
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Conclusions and Future Work

Conclusions

Formulated the sequential optimal experimental design (sOED)
problem rigorously (has 1. feedback, 2. forward looking)

best achievable in theory
difficult to solve in practice

(future work: tradeoffs)

Developed new numerical methods to solve the sOED problem in a
computationally-feasible manner, using

approximate dynamic programming
transport maps

Demonstrated computational effectiveness on realistic applications

Huan & Marzouk, “Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming,”
arXiv: 1604.08320, 2016.
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