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Abstract—Man-in-the-middle security systems recklessly and
needlessly compromise authentication to gain access to informa-
tion that the enterprise already has. The enterprise already has
the session keys and should use them. Moreover, these systems
necessitate the deployment and trust of a wildcard root certificate
that enables the authentication as any domain. If compromised,
this certificate enables attackers to validly authenticate as any
domain, potentially for years.

This paper presents the design, implementation and use of
LOCKS (Locally Operated Cooperative Key Sharing). LOCKS
enables local clients to share their session keys with the enterprise
security monitoring systems to enable DPI without subverting
authentication. LOCKS uses a modified cryptography library to
enable the sharing of SSL session keys with a trusted agent.
The agent works closely with the network monitoring system
to enable real-time deep packet inspection of SSL encrypted
traffic. This approach provides is fundamentally more secure than
MITM introspection systems in widespread use. We discuss use
of LOCKS in a diverse operational environment and the lessons
learn. We show that the impact on latency is less that MITM and
negligible when considered with normal traffic variations. Finally
we show that our modified bro IDS system is able to perform
real-time decryption and DPI with only a moderate impact on
performance.

I. INTRODUCTION

Transport Layer Security (TLS) and Secure Sockets Layer
(SSL) are the current standards for encrypting internet traffic.!
Due to privacy and security concerns, the use of encryption
for web-based communication has increased dramatically. This
trend, led by internet giants such as Google, Facebook and
Netflix, is expected to result in 30-40x increase in global
SSL traffic between 2012 and 2018 [1]. Although encryption
is critical for online safety and privacy, it complicates the
defense of enterprise networks. Many techniques exist to
identify adversaries within network traffic metadata, but deep
packet inspection provides the most thorough analysis and best
protection against attacks. To enable deep packet inspection on
SSL traffic, many enterprises have deployed man-in-the-middle
(MITM) proxies. These systems abuse SSL’s authentication
credentials to enable access to encrypted data. Additionally,
MITM system necessities the trust and deployment of a wild-
card certificate that can authenticate as any domain and has a
typical lifespan of years. With this credential, a malicious actor
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I'This report uses the term SSL when referring to both TLS and SSL.

can masquerade as any website, falsely authenticating to users
who believe they are protected. Enterprises are stuck with a
trade off between breaking SSL’s authentication and/or seeing
into their network.

Removing the user from participating in their own security
and blinding their authentication is a fundamental step back-
wards. Everything that is needed to monitor encrypted traffic
already exists within the enterprise, and the misuse of SSL
authentication is unwarranted. We designed a system where
users can share their SSL session keys with an escrow agent,
using a modified web browser. Our system, LOCKS (Locally
Operated Cooperative Key Sharing), enables the decryption of
encrypted sessions without the security risks associated with
MITM. Clients share their ephemeral encryption keys with a
local secure agent. These keys can then be used to decrypt
traffic in real-time, or they can be archived for use later if
events warrant an investigation. Figure 1 provides a high-level
overview of the LOCKS architecture. The client represents a
machine operating within an enterprise. When the client visits
amazon.com over SSL, their browser will send their ephemeral
session keys to the escrow agent as soon as the handshake
completes (if sharing is enabled). This provides the capability
to perform real-time deep packet inspections of SSL traffic.
The process is transparent to the user and gives the enterprise a
finer grained control over their introspection policies compared
to MITM.
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Fig. 1: Architecture diagram for LOCKS system.

A. Benefits

LOCKS has both security and performance advantages over
existing encrypted traffic monitoring solutions. By coopera-
tively sharing keys with a local escrow, it is possible to enhance
enterprise cyber protection by:



e Removing the need for a single master certificate that
could be used to forge valid certificates

o Allowing the existing SSL protocol to operate as
designed. Secure communications is a challenging
problem. The many changes and updates to the SSL
protocol have shown how subtle issues can easily
weaken the security assurances users have. To this
end our approach focused on leaving the existing SSL
protocol untouched.

e Providing users the freedom to choose whether to
share keys for sensitive websites like banking and
healthcare.

e Improving performance by removing the MITM
proxy’s decryption and re-encryption step from client-
to-server data path.

e Removing the ability for an attacker to use a compro-
mised MITM device to to modify or spoof traffic.

e Enabling a much richer set of enterprise policies,
ranging from just recording keys and only decrypting
during an investigation to complete real-time monitor-
ing and many way-points in between.

B. Evaluations and Lessons

LOCKS has been evaluated within an enterprise environ-
ment. This allowed us to obtain cross-platform performance
characteristics in a variety of network settings. We detail our
findings and the metrics we developed for accurately evaluating
our monitoring system in a production environment.

We demonstrate that the deployment of a cooperative
key sharing system in an enterprise enviornment provides
increased security with little additional overhead. We show that
LOCKS outperforms MITM in our networking bechmarks and
only moderately impacts packet loss (compared to a non-DPI
system) while maintaining a System Usability Score of 85.6.

The rest of this paper is organized as follows: Section II
provides analysis of alternative approaches and related work.
The architecture and design of LOCKS is presented in Section
III. We discuss the experimental results of LOCKS’s evaluation
in Section IV and present the lessions learned during our
evaluation in Section V.

II. BACKGROUND AND RELATED WORK

Here we present some background on the SSL protocol.
We then discuss how many IDS systems are using man-in-the-
middle techniques to enable inspection of encrypted traffic. We
then present a survey or related research.

A. Secure Sockets Layer (SSL)

Because the primary use case for the LOCKS is inspecting
SSL traffic, we will give a brief overview of the SSL protocol.
The goal of this section is to help readers understand how
LOCKS fits into the SSL channel.

At a high level, SSL creates a secure connection between
two parties over an insecure network. It provides assurances of
privacy, integrity and authenticity. It is this privacy protection

that makes it difficult for security monitoring to examine the
traffic. Figure 2 illustrates the process of how two clients set
up a secure channel and communicate. For our work we used
TCP as a reliable transport but nothing in our design prevents
its use on SSL variants that use UDP.

e The client connects with the server sending client-
hello.

e The server sends its response (server-hello) with a
digital certificate that has been signed by a third party
notary, known as a certificate authority.

e The client uses this digital certificate to verify the
identity of the server, ensuring that the certificate is
valid and has not been revoked.

e The server may request a digital certificate from the
client to verify the client’s identity.

e The client and server cooperatively establish session
keys. These keys are are used to encrypt and validate
all information between the client and server. They
are only applicable for a single SSL session and
periodically are rotated.

e  Using these keys the client and server now share data
that is encrypted to provide privacy, and has a message
authentication code (MAC) that assure integrity.
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Fig. 2: SSL handshake network diagram.

The session keys are symmetric keys, meaning that the
client and server must have the same set of keys in order to
communicate. Many cipher suites separate decryption from in-
tegrity checking, necessitating two sets of keys: the encryption
key and the MAC key. However, newer cipher suites combine
the decryption and integrity calculation into a single step with
a single key.

These session keys are temporal and don’t live beyond this
session. They are intended only as a means to provide privacy
and integrity for this specific payload. Once this session is
done they have no other values. By contrast the keys used for
authentication typically live for years. They have the ability



to provide proof that you represent a specific domain. Usually
this is quite restricted an only allows a certificate to represent
something like * .bank.com. Unfortunately, MITM systems
that we will explain next require every system in an enterprise
to trust a cert whose domain is a complete wildcard (e.g. *).

B. SSL Introspection

The most common form of SSL introspection is to use
a man-in-the-middle proxy. This proxy is positioned between
two communicating parties, and relays the messages back and
forth as shown in Figure 4.

@ | mim

Client = |« Server
Proxy

(Bank.com)

All Clients must
Install MITM certificate

Fig. 3: Diagram of MITM introspection.

Instead of having a secure end-to-end connection to the
server, the client negotiates a secure connection with the MITM
proxy, which uses a generated certificate to masquerade as the
server. The MITM proxy then negotiates a secure connection
with the server. The MITM proxy proxies the data between
these two connections.

By breaking the end-to-end connection, two SSL connec-
tions, one between the client and proxy and one between the
proxy and server, are setup, in serial, for every end-to-end
connection. This introduces a delay during the initial setup,
and can cause confusing error messages if the MITM proxy
is unable to setup a proper SSL connection to the server. This
dual-connection proxying also increases end-to-end latency of
data as the MITM proxy must decrypt the data coming in
from one connection, and re-encrypt it to send it on the other
connection.

This interdiction also introduces a number of security
concerns. Since the client only ever interacts with the MITM
proxy, it doesn’t receive the real SSL certificate from the end
server. It receives a certificate that has been generated by a
certificate authority on the MITM proxy. This means that the
client must rely on the proxy to properly validate the server’s
certificates.

Moreover the MITMs certificate must have the ability
to authenticate as any possible web server. Accepting such
a certificate throughout your enterprise creates a significant
vulnerability if an adversary were to gain access to this
certificate. Moreover authentication certificates run for years
while session keys run for hours.

The MITM proxy provides an attractive target for attackers.
If an attacker can compromise the MITM proxy, they can
intercept and modify any traffic passing through the proxy.

Even if the attacker is only able to obtain the MITM’s private
key, they could still decrypt all traffic to and from the proxy
and could inject traffic into the end-to-end sessions.

Beyond simply intercepting or modifying existing traffic,
an attacker with access to the MITM proxy can use the proxy’s
ability to masquerade as other servers to generate their own
certificates for arbitrary sites that will be accepted as valid by
the clients that make use of the MITM proxy.

C. Related Work

Jarmoc [2] discusses attacks on MITM interception proxies.
Although this work does not discuss new ways to handle
encrypted traffic, it does detail many of the dangers associated
with MITM proxies. MITM proxies are a high value targets
due to their access of sensitive data and critial certificates.
Because MITM proxies disrupt authentication to introspect en-
crypted traffic, there are a variety of unintended consequences.
These include weaker encryption, transitive trust and key pair
caching attacks.

Vulnerabilities on MITM boxes, including CVE-2012-3372
have been exploited in the wild [3]. These exploitations
reinforce the weaknesses of MITM proxies, their exposure to
attacks, and the risk they pose to an enterprise.

In 2004, Blue Coat Systems Inc. [4] (a major developer
of MITM proxy systems) filed US Patent 7543146 B1 for a
protocol in which a client, upon requesting a secure connection
via a MITM proxy, receives a request from the proxy for a
certificate indicating whether or not it consents to monitoring
of its connection by the MITM proxy. This modification to
the protocol increases the level of privacy available to the user
since they can withhold consent. However, this proposed pro-
tocol does not address the security issues caused by the MITM
proxy breaking the end-to-end secure connection between the
client and the destination server.

Naylor et al. [S] proposes an extention to TLS called Multi-
Context TLS (mcTLS) to address the privacy and security
issues caused by MITM proxies. In mcTLS, every party in the
connection is assigned a privilege level (endpoint, read/write,
read, or none) and middleboxes are provided with read and
write keys (half of which is generated by each endpoint in
order to ensure that both parties consent to the assigned
privilege level) based upon their privilege level. A TLS record
is broken into sections based upon content, encrypted, and has
a MAC key appended by the endpoint. Every middlebox with
read access can decrypt the data and checks the MAC key for
unauthorized modifications. One with write access can make
modifications and generate and append a new MAC key to
the record. This protocol increases security by restoring the
end-to-end authentication and encryption of TLS and provides
both the client and server with fine-grained control over their
level of privacy. However, use of mcTLS requires all endpoints
and middleboxes to support the modified protocol and has
increased overhead due to the need to generate and distribute
read and write keys to the appropriate middleboxes.

Sherry et al. [6] proposes a new protocol for monitoring
encrypted traffic and Judson Wilson [7] proposes a modifica-
tion to the TLS protocol in order to monitor encrypted traffic.
Sherry et al. [6] also introduces an extended handshake for the



encrypted connection, which adds penalties of up to 97 sec-
onds. While these approaches enable SSL monitoring without
MITM proxies, they require either new protocols entirely, or
modifications to the existing protocol. These protocols should
be thoroughly analyzed by the security community before they
are safely deployed in an operation setting. Additionally, im-
plementations of these protocols should be vetted for security
vulnerabilities. Because LOCKS does not modify the existing
SSL protocol (we are simply sharing the existing session keys
within the enterprise), we leverage a protocol designed and
analyzed by cryptography and security experts.

While LOCKS is specifically not designed to share session
keys outside of the enterprise, the notion of session key sharing
has been previously explored. Goh et al. [8] details an covert
exfiltration attack where the ephemeral keys are shared with a
party outside of the enterprise.

Finally, the issues of intercepting encrypted traffic has been
quite active in the press. Our system here focuses on supporting
security monitoring for consenting party. We do not advocate
a “Keys Under Doormats” approach [9]. Rather, we believe
every user is a part of the entire enterprise security solution.
LOCKS enables willing parties to participate in enterprise
security.

III. ARCHITECTURE

LOCKS is designed to perform deep packet inspection
(DPI) on decrypted SSL network traffic in an enterprise envi-
ronment. Many enterprise networks use the SSL MITM attack
in order to inspect encrypted web traffic traveling across their
network borders. LOCKS provides SSL DPI while avoiding
SSL MITM, leading to better performance and increased
security.

The goal of LOCKS is to leave the SSL connection com-
pletely intact while enabling client support of DPI as desired
(or as the enterprise policy specifies). As seen in Figure 4, our
system is comprised of 5 main players: the client endpoint,
LOCKS, IDS (Bro), a network proxy and the server endpoint.

First, the client endpoint initiates an SSL connection with
the server endpoint via TCP connection’. Once the TCP
handshake is negotiated (through the proxy), our client can
initiate the SSL handshake directly to the server endpoint. As
soon as the session keys are generated on the client endpoint,
the keys are shared with the LOCKS registrar, before any
additional information is sent on the SSL connection. We have
modified the NSS security library within Firefox to share the
SSL session keys.

Once the keys have been registered, they are stored in
the LOCKS database and pushed to the IDS. Depending on
the network architecture, the IDS can either decrypt traffic
inline (as an intrusion prevention system), decrypt traffic in
monitoring mode (not inline), or simply watch the encrypted
traffic and use the keys only for post-event forensics.

A. Cooperative Key Sharing

The SSL session keys are generated frequently by the
client endpoint. Visiting a website may initiate 10 new SSL

2We acknowlege that SSL connections can also use UDP with DTLS
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Fig. 4: LOCKS network flow diagram.

connections. Because these SSL connections happen often
and are protecting sensitive information, keys must be shared
securely and efficiently.

One solution is to encrypt the keys using the public key of
the escrow server. Public-private key encryption incurs greater
overhead than symmetric key encryption but does not have
the additional overhead associated with the derivation of the
shared symmetric key.

Using SSL to send the session keys incurs overhead during
the initial session setup. However, this can be ameliorated by
reusing the SSL session to send multiple key pairs to the
escrow server. The logistics of this, including where to track
this session within the SSL library and how long to keep it
around, are outside the scope of this effort.

B. Selectively-Providing Keys

In addition to ensuring the keys are securely received by
the agent, we are exploring ways for the client to easily specify
which keys they wish to share. It is important that the end user
is aware of the consequences for sending keys that protect
sensitive personal information. While the escrow server can
have a blacklist configured for sensitive domains, the user
is better positioned to know which domains they consider
sensitive.

C. SSL Flow Regulation

Due to their position between the clients and servers,
MITM proxies are well-positioned to guarantee that they can
intercept all traffic. LOCKS, however, does not mandate a
specific network configuration to provide the same guarantee.

The nature of SSL mandates that LOCKS needs to, at
mimimum, permit the SSL handshake to pass through to ensure



that the client and server can agree upon the keys. Once the
keys have been agreed upon, the client can then register the
keys with the escrow server.

However, after the SSL handshake has finished, the client
and server may communicate before the network security
monitor can decrypt the traffic. There are a few ways to handle
this situation. These include:

e  whitelist- allow for encrypted traffic to friendly do-
mains

e  blacklist- only block encrypted traffic to malicious
domains

e [PS- block all encrypted SSL traffic until it is de-
crypted

e forensics- store the keys for post event forensics

A firewall between the client and server can drop encrypted
traffic until the appropriate keys have been received by the
escrow server. This configuration has some requirements that
can make it awkward to deploy in practice. For a firewall to
selectively drop encrypted SSL traffic, it needs to be able to
discern encrypted SSL traffic from unencrypted SSL traffic.
Assuming that each encrypted SSL record is in its own
distinct TCP packet, it’s possible for a firewall to do byte-
level matching to determine whether or not the packet contains
an encrypted record and drop it. However, if encrypted SSL
records are included in the same TCP packet as the SSL
handshake, it is impossible to only drop the encrypted traffic
without doing substantial packet manipulation. Future versions
of SSL are looking to increase this mixture of encrypted and
plaintext SSL records in the same TCP packet [10]. Beyond
the protocol issues, the firewall needs to provde some method
for the escrow server or the network security monitor to
dynamically whitelist flows. There are systems available like
OpenFlow that can ease this approach [11].

Instead of having the firewall drop encrypted traffic by
default, it’s possible to have the network security monitor
blacklist traffic once it has seen the SSL handshake proceed.
This has the benefit of allowing the network security moni-
tor, which is doing deep-packet inspection and has a better
understanding of SSL, to discern when a given flow should
be stopped from proceeding. However, this method has both
timing and protocol issues. There will be a delay between when
the network security monitor discovers that the flow should
be stopped, and when the firewall actually implements the
rule to drop the flow’s packets. During this time period, it’s
possible for the client and server to continue communicating.
The longer this delay, the more traffic can be exchanged,
negating the benefits of the blacklist. Even if the blacklist
timing issue didn’t exist, this method also presumes that the
traffic is going to be received in order. If due to loss, nefarious
or innocuous, the packet signifying the SSL handshake has
finished gets lost or delayed, the client and server will still have
generated the session keys and may have sent a large quantity
of encrypted data that the remote side is collecting in the TCP
receive buffer. By the time the network security monitor has
received the notification that the handshake is complete and can
institute the blacklist, the client or server has already received
the encrypted traffic.

By placing the network security monitor inline to the
packet stream (e.g. via IPS mode), it would be possible to
stop flows at the exact moment they need to be stopped. They
can also drop the encrypted packets received out-of-order to
mitigate the protocol issues with blacklisting. However, this
inline packet system could introduce performance problems
into the network traffic and could provide an attack vector for
DoSing the network by attacking the IPS itself.

The last option is to simply let all traffic through. Until
the escrow server had the key, the network security monitor
would buffer the encrypted data for the SSL connection. Once
the key was available, the IDS could decrypt the buffered data.
If the key was never made available, the IDS could generate
an alert, and possibly archive the data. This option prevents
sites from guaranteeing that they can intercept and decrypt all
their traffic, and may delay the response slightly if the IDS
discovers a problem. However, it is the only option that can
be implemented without a corner case like the above, which
end up devolving into this form of interception anyway.

IV. EVALUATION

We evaluated LOCKS from three different perspectives:
the impact LOCKS has on the client latency, the usability
of LOCKS for end users, and the impact LOCKS has on
sites’ existing DPI infrastructure. In all test cases LOCKS
did better than MITM but the differences was rather small
when compared with the standard deviations. Our user testing
provided a positive user experience that showed little change
for users. Our Bro system saw increased overhead as it
performed full packet decryption but was still able to achieve
reasonable performance.

A. Download Latency

Browser latency is always a concern of users and develop-
ers. LOCKS requires a browser to share the session key as an
SSL session is setup.

To measure the impact of locks on this communication
latency we ran tests to download files that were 100 Kilobytes
and 10 Megabytes. We did this both from a local web server
and also from a web server hosted on an Amazon web services
(AWS) instance. These comparison tests give us a sense of the
effect of LOCKS in a variety of environments.

We set up our tests to run through similar network paths
with MITM and LOCKS being the only difference. Figure 5
shows how this path looked for both tests. All browsers were
pointed at our IDS proxy to provide a common starting point
for timing and IDS monitoring. In the LOCKS case this system
had a bro instance running IDS and decrypting the traffic.
From this proxy, the packets were routed to a corporate HTTP
proxy and then a Blue Coat IDS system with or without MITM
interception. After the Blue Coat system packets were routed
to their target server. This setup ensured a comparable path
for packets in both tests, ensuring the same number of hops
and isolating the differences to the method used for handling
inspection of SSL traffic.

By capturing network packets (PCAPs) we were able
to measure the how long each download took. Specifically,
we measured the difference between the timestamps of the



| IDSProxy || HTTP Proxy

Fig. 5: Test Architecture for Browser Latency Testing

Blue Coat
(MITM or
No MITM)

| Web Server
(Local or Cloud)

TABLE I: Browser Latency for Local Server

Mean Std. Dev. Min. Median Max.
Small | MITM 1.78 1.28 0.94 1.50 7.90
File LOCKS 1.62 1.40 0.68 I.18 6.26
Large | MITM 2843 | 5.56 2122 | 26.74 58.95
File LOCKS | 27.06 | 4.34 20.48 | 25.72 46.07

initial SYN packet of the connection and the ACK packet
acknowledging the final data of the download. This provided a
reasonable measurement for how long it took to complete this
download. We ran each test a total of 100 times and dismissed
the five worst values as outliers.

Table I shows the results of the tests running to the
webserver in the same network. From these tables, we can
say that on average LOCKS performs better than MITM in all
cases, but the difference in the two methods is minor when
compared with the variation in network latency.

Table II contains results for the test case with a webserver
hosted on the cloud. As in the previous test, the LOCKS
system created roughly the same browser latency as MITM
interception.

To enable a side-by-side visual comparison of these tests
we created box and whisker diagrams that show our latency
results for each set of tests, Figures 6—7. Each box shows
the middle third for the observed values, the line in that box
represents the median, and the bars above and below show
the fifth and ninety-fifth percentiles. From these results, we
again show that the differences between LOCKS, MITM and
no deep packet inspection are negligible when compared to
the typical variations in network behavior.
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Fig. 6: Downloads from local server

TABLE II: Browser Latency for Cloud Server

Mean Std. Dev. Min. Median Max.
Small | MITM 20.77 1.05 19.33 | 20.54 26.07
File LOCKS | 20.67 | 0.60 19.34 | 20.65 22.97
Large | MITM 80.79 | 7.71 74.87 | 78.77 117.98
File LOCKS | 7894 | 6.34 31.42 | 7877 97.93
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Fig. 7: Downloads from cloud server

B. LOCKS Usability Testing

To evaluate our user experiences, we used the System
Usability Scale (SUS) created by John Brooke from Digital
Equipment Corporation in 1986 [12]. The SUS evaluates the
subjective ease of use as perceived by individual users through
10 multiple choice questions. Each question is answered on
a 1 through 5 scale, where 1 is Strongly Disagree and 5 is
Strongly Agree. These answers are combined to give a scalar
result. While the final questionnaire results range from O to
100, they are not a percentile ranking. Based upon a fair bit of
research, a score above 68 is considered to be above average,
and a score below 68 is below average. Figure 8 shows how
SUS scores are translated to a normalized percentile.

Percentile Rank

‘ "FDCB A
SUS Score

Fig. 8: Normalized percentile for SUS scores

A survey of initial alpha users produced an average score
of 85.6. This correlates to a normalized percentage of around
97%. This implies that, given previous research and calibration,
only 3% of software products are easier to use than our
product, and 97% are less easy to use. (According to the
chart above, this means we get an A). Note that the Ease of
Installation question is separate from the SUS. The average
Ease of Installation response was a 5.25 out of 7 points
maximum (where 7 is Very Easy and 1 is Very Difficult).

C. Measuring Impact On DPI

The benefit of LOCKS is that it augments existing DPI
solutions with the ability to inspect SSL encrypted sessions. To
measure LOCKS’ impact on these DPI solutions, we compared
the performance of the Bro IDS both with and without SSL
decryption enabled.



We setup a testbed on a controlled network consisting of a
client, a machine running a Squid proxy and Bro, and a web
server with the same benchmark as was used in the latency
measurements. We used the traffic shaping tools available in
Linux to vary the bandwidth between nodes and ran multiple
browser instances to vary the number of simultaneous clients.

To gauge the effect of decryption on Bro, we made use of
the included “capture loss” facility [13]. As a passive monitor,
Bro reconstructs the SSL sessions from the network traffic.
Bro tracks events like ACK for packets it did not see, and
other similar gaps in the traffic flows, and uses this to estimate
the loss rate it saw. This loss rate tells us how much traffic,
that transitted between the clients and servers, was dropped
before it was seen by the sensor. In testing, our testbed did not
induce any monitoring loss, and since all our traffic was routed
through the host running Bro, the only way for monitoring
packet loss to be introduced was if Bro was not able to keep
up with the traffic being generated.

The nature of handling, and decrypting, SSL sessions is
embarassingly parallel. As more flows are added, they can be
handled by simply adding more resources to handle them. Bro
has its own limitations on scalability and, to avoid measuring
the limitations of Bro’s scalabilty, we took advantage of the
embarassingly parallel nature of SSL decryption to measure
the effect on a single Bro instance [14]. As the Bro instance
becomes less able to handle the workload without introducing
loss, we can gauge, with the limitations laid out by Weaver
and Sommer, how a cluster of Bro instances would handle a
scaled up workload.

The effect of LOCKS was measured by independently
varying the number of clients and the bandwidth of the
connection being monitored by Bro. The number of clients
was varied from 10 to 50 performing downloads in parallel in
steps of 10 clients. The connection bandwidth was varied from
100 Mbps to 400 Mbps in steps of 100 Mbps.

Figure 9 shows a sample of the results of these mea-
surements. For this test, 40 clients performed downloads in
parallel through a connection whose bandwidth was throttled at
different rates. As shown in the figure, the decryption enabled
by LOCKS (blue, solid line) puts enough additional load on
Bro to increase the packet loss it induces as compared to
a system not running LOCKS (red, dashed line). To negate
these losses will either necessitate increasing the computational
resources available to Bro, or to accept the small additional
loss.

D. Weaknesses

Although LOCKS outperforms existing SSL DPI tech-
niques, it is not without flaws. LOCKS is dependent on a few
large systems working together, namely Bro, OpenSSL, NSS
and Firefox. Firefox, the web browser we modified to share
session keys with the LOCKS server, uses Network Security
Services (NSS) for its SSL implementation. Bro, on the other
hand, uses OpenSSL. While these two libraries are functionally
equivalent, they both require modification to integrate with
LOCKS.
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Fig. 9: Packet loss vs. Traffic bandwidth for 40 parallel clients

E. Protocol Complexity

The TLS standards are relatively complex, and ensuring
that the semantics for all possible uses can be rather diffi-
cult. For example, in the standard usage, there is a single
client/server handshake, and after that, all subsequent messages
are application data that would be decrypted, with a final
message to indicate the connection is being closed. However,
nothing in the protocol says that this must be the case. For
example, it’s possible to do a second handshake routine after
the first one to renegotiate session parameters.

To make matters worse, new versions of TLS get released
periodically (1.3 is currently in development), that add or
deprecate ciphers, and can make changes to the protocol
semantics, in both obvious and subtle ways. As an example,
when TLS 1.1 was released, it changed the CBC-mode ci-
pher text message to include an explicit initialization vector,
whereas in TLS 1.0 and earlier, the IV was simply the last
block from the previous message. Supporting older cipher
suites (using the previous last block as an IV) requires adding
buffering capabilities to the IDS system in order to enable
successful decryption of traffic using these older cipher suites.
Additionally, newer GCM mode ciphers that combine the
encryption and MAC keys into one key are becoming more
popular. This makes it impossible to allow decryption without
modification.

The net effect of this is that with each new release of a TLS
standard, or even with new releases of HTTP daemons and
clients who may use different ciphers or have different TLS
usage patterns, there may be new ciphers or new semantics
that the LOCKS IDS/IPS will need to be updated to handle.
Presumably, these will be relatively infrequent, but the result
may be a lag time during which new browsers may not work
with the system.



FE. Distribution

Unlike MITM, LOCKS requires new software on each
client that is part of the enterprise. This means that it is
necessary to support Linux, Windows, OSX, Android, iOS
and any other operating systems in use within the network.
We used Firefox for our proof of concept, which has cross-
platform support, but other software packages that use SSL
may ship with a custom network stack. This means that those
vendors will have to rewrite their software to support LOCKS
deployments.

Fortunately, most software packages use SSL linked li-
braries that can be replaced relatively easily. Distribution
management systems within the enterprise will need to be
continuously updated with the latest SSL libraries, modified
for use within LOCKS.

G. Maintainence

To use the LOCKS design, a custom version of an SSL
library is necessary. In the case that we only wish to introspect
on Firefox browser traffic, then we will need a custom version
of NSS. The custom SSL library will export the information
about a given TLS flow to the Key Escrow server, where Bro
can then use that information to decrypt the session.

This has the benefit of making the LOCKS concept easy
to integrate into Firefox itself (e.g. it could be part of the
preferences), and can make it work more effectively (e.g.
Firefox could stop processing SSL until it passed the key
information to the LOCKS server). Unfortunately, this means
that with every new release of Firefox, the LOCKS component
will need an update. Based on the 2014 Firefox release
schedule, it looks like releases happen at least once a month,
which makes this endeavor somewhat difficult.

V. LESSONS LEARNED

Deploying LOCKS within an enterprise environment pro-
vided valuable insight into the necessities and pitfalls of a SSL
DPI system.

A. Browser support

Adapting a browser to share keys went smoothly. Firefox
uses the NSS security library for SSL, and we were able to
easily modify NSS to share session keys with our trusted
server upon generation. Although we statically linked NSS
to Firefox for our implementation, it should be possible to
dynamically link a modified NSS version for existing browsers.
This would enable LOCKS to support other programs that
utilize dynamically linked NSS for thier SSL connections,
without having to recompile the application.

Instead of modifying NSS, it is also possible to leverage
the browser’s built-in SSL debugging support. This feature
allows the user to set an environment variable in order to save
information to allow for an external program to decrypt the
SSL connection. With a few well-crafted hooks, it might be
possible to enable key sharing without modifying the browser.

B. Cipher suite complexities

While MITM systems can limit the cipher suites available,
LOCKS systems leave the user in control of the SSL hand-
shake. As result, this approach must support a broader range
of ciphers.

There are some situations where it may be more efficient to
drop support for specific cipher suites. Some block ciphers re-
quire packet buffering for successful decryption across packets.
This can be done on the decryption appliance, but we may wish
to limit these ciphers if the buffering congests the network.

Additionally, some of the cipher suites use one key for
both integrity and privacy. With these ciphers it’s not possible
to split out privacy and integrity. Authenticated encryption (e.g.
AES-GCM) uses the same key for encryption and integrity. If
we wish to only decrypt the session (without the ability to
modify traffic), it may be desirable to require cipher suites to
support separate encryption and integrity keys.

While it is possible for us to block ciphers that we do not
wish to support, we cannot gracefully terminate the connection
in these conditions.

C. Key ldentification and Verification

Once the keys are registered with the key escrow, it can be
challenging to determine the correct key for a given stream or
which stream the key belongs to.

1) Protocol Quintuple: In the simple case, it’s possible
to use the quintuple of: source address, destination address,
source port, destination port and protocol. However, in an
enterprise setting, this may not be sufficient. This may be
affected by internal networks that are NATed or by eventual
port re-use by a client and server. The NAT problem can be
worked around by deploying NSMs at each internal network
so the quintuple is the same as the clients. The quintuple re-
use issue can be ameliorated by using timestamps to narrow
down the possible keys for a given flow.

2) Session IDs/Session Tickets: It is also possible is to use
the session IDs or session tickets. Session IDs and tickets are
used by many SSL clients and servers to reduce the latency
of connection setup when a client is reconnecting to a given
server. Sessions with the same IDs or tickets will not use the
same session keys, as these are generated using a combination
of the session-specific randoms, and the original negotiated
password. To successfully use either, the NSM would need
to generate the new keys for a given session using the new
client and server randoms, along with the previously negotiated
password specified via the session id or ticket. Future versions
of SSL plan to make this session resumption even more
prevalent.

3) Client/Server Randoms: Given the dependency of the
session keys on the client and server randoms as well as their
preservation across NAT configurations, these are a reasonable
candidate to use to match a given session with the registered
session keys. These randoms implicitly include timestamps, if
constructed as per the protocol, giving them a natural resistance
to accidental reuse. Another benefit is that they are constructed
by both the client and the server, meaning that an attacker
needs to control both in order to produce duplicate session
matches.



D. Key Verification

Once a key has been selected, or multiple keys if collisions
were present, it can be good to verify that a given key is
correct. If a given session has the MAC key registered, or is
using a ciphersuite that doesn’t require a ciphersuite, it is easy
to verify the decryption. If the ciphersuite requires a MAC key,
and it is not registered, it’s possible to run entropy analysis
heuristics in an attempt to validate the decryption. However, a
determined attacker may be able to create valid-looking data,
even in the face of invalid decryption.

Note, single packet handshakes in TLS 1.3 may make this
more difficult.

VI. FUTURE WORK

While our study has shown that such a key escrow system
can be implemented with modest effort and minimal user
impact, there are several areas that warrant further exploration.
Many of the weaknesses and pitfalls of LOCKS can be
resolved with a new protocol or an extension to SSL. In
the future, we would like to explore the proper protocol
for encrypted traffic DPI. More practically, we are exploring
hands-on ways to deploy such a system within a broader user
base to enable better enterprise protections.

Additionally, LOCKS enables a very broad range of pos-
sible enterprise policies. These could vary widely from “must
be used at all times” to “keys are only used after the fact for
post-event forensics”. There are a broad range of deployment
options we believe should be explored.

Moreover, the session keys themselves are a very sensitive
thing to store. There exists a broad range of other ways to store
data among multiple parties [15] that could provide significant
policy values here. One could envision a system where the
service to access a users keys required two separate parties
consenting, the same way most retail stores require two people
to refund a customer with cash.

VIL

The successful use of LOCKS has shown that this ap-
proach can be an effective way to enable security monitoring
on encrypted traffic. Many of the limits and difficulties we
encountered were not due to issues in our architecture or
difficulties with deployment. Instead, these challenges involved
minor items in the SSL protocol. We believe a key conclusion
we can draw from our work in developing LOCKS is the need
for an extension to the SSL protocol that consciously supports
users sharing their session keys with a trusted monitoring
party. The prevalence of man-in-the-middle systems has shown
that there is a clear need for introspection. Such an extension
would go a long way towards reliving the danger from current
approaches and also bringing this important issue to the table
for standards groups to provide a safe and secure solution for
enterprise security monitoring.

CONCLUSION
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