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1. GOAL

Create an efficient computational tool capable of predicting the complex, nonlinear response
of truss lattices containing extremely Iarge numbers of beams and nodes.

2. MOST SIGNIFICANT TECHNICAL ACHIEVEMENT(S)

Performed my visiting technologist experience at Sandia National Labs in Livermore,
California working on the Schwarz Alternating Method for multiscale problems. Extended the
existing Schwarz theory for quasistatic problems to work for dynamic problems. Tested the
method in a small Matlab code and large high performance finite element code, Albany, to test
and improve the performance of the existing implementation, and suggested future work to
improve performance further.

3. ACTIVITIES AND ACCOMPLISHMENTS

The Schwarz Alternating Method (subsequently referred to as Schwarz) is a technique that
was originally developed to compute the solution to the Poisson equation in irregularly shaped
domains, but was later extended to work for more general elliptic partial differential equations,
and is largely used as a preconditioner for iterative linear solvers. However, more recently, a
team at Sandia has extended the Schwarz theory to show that it can work for nonlinear PDEs,
including those of hyperelasticity (REFERENCE).

The equations for hyperelastic solid mechanics can be derived from minimizing the total
potential energy of the system
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over all functions in 1-11 al) that satisfy the essential boundary conditions, where F = 17(p is the
deformation gradient, B is the body force, and T is the prescribed traction on the boundary. The
proof in the paper makes the assumption that the functional (P[v] is strictly convex. Furthermore,
the proof relies on the fact that during the Schwarz iterations, the deformation mapping in one
Schwarz domain can be naturally extended to the entire domain using the deformation mapping in
the remaining fields. For example, in a two-domain Schwarz iteration, the deformation mapping
of the entire domain can be written as

Page 1 — Revised 08/2016

SAND2018-8583R



(p(x), f vi(x) if x E 1 
1""

21 1 rm

402 (X) if X E 122 V21) — —
u

where 121 and n2 are the two Schwarz domains

Figure 1. An Example of overlapping Schwarz regions. (REFERENCE)

While this is true in the continuous case, this cannot always be done in the discrete case.
For example, if the two discretizations of 121 and n2 (denoted by SP- and SP- respectively) are non-
conforming, writing the deformation mapping in this manner does not result in a conforming
mapping, meaning the function is not in 1/1(12) and is not admissible. However, this detail is
disregarded in the actual implementation and use of the Schwarz method, as the non-conforming
error is assumed to be negligible. However, if ST- and SP- are conforming discretizations (i.e. SP- U
SP- = Sh c Hi (n)) then the extension of the deformation mapping from one Schwarz domain to
the entire body is valid.

Even though the proof was done with the intention of applying this to quasistatic
hyperelasticity problems, it is really a proof of the Schwarz method for general convex functionals.
It is well known that viscoplasticity and dynamics can be formulated in a variational framework
using an incremental potential of the form:

on [v(n+1), z(n+1)] :,

f A (F(n+1) , z(n+1)\ _) RB • (p(n+l) + D (z(n+l) , z(n)) + K (tp(n+l) , tin) , ip(n))dy
n
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where Z are the internal variables, D is the incremental dissipation potential, K is the potential
associated with the variational integrator, and the superscripts (n) and (n+1) denote the variables
at the current and next time step respectively. Another way of writing the potential is as a sum of
potentials

on [tp(n+1), z(n+1)] := 0 [v(n+1)1 + D(z(n+1)) + K(1)(71+1))

Given that the hyperelastic, dissipation, and dynamic potentials are convex, the resulting
incremental potential is also convex. Assuming that the hyperelastic potential is convex (this is
assumed for the quasistatic case already) and the dissipation potential is convex (which is a
reasonable assumption), the only thing left to show is the dynamic incremental potential is convex.
For the case of the energy-preserving Newmark integrator (with y = 1/ 2), the incremental
potential can be written as
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with the usual Newmark update formulas for ip(n) and ij)(71). This is quadratic in (p(n+l), so it is
clearly a convex function of v(n+1).

Just as it was desirable to use non-conforming discretizations in each Schwarz domain, it
is desirable to use different time steps or different time integrators in each Schwarz domain. The
theory outline above does not guarantee convergence or accuracy of using different time steps or
different integrators in different domains, as the incremental functional depends on the integrator
and time step, but some 1D test cases show that this can be done is certain cases without the
introduction of significant error.

In order to test the Schwarz method for dynamic problems, I simulated a dynamic tension
pull test on an Aluminum dog-bone specimen. The Aluminum was modeled using a finite
deformation J2 plasticity model based on (REFERENCE). The Newmark integrator with [3 = 1/4
and y = 1/2 was in both domains. The gauge section of the specimen was modeled using composite
10-node tetrahedral elements (REFERENCE), while the ends were meshed with hexahedral
elements.
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Figure 2. Tension specimen decomposed into the two Schwarz domains meshed with hexahedral
and tetrahedral elements (left) and the equivalent plastic strain of the pulled tension specimen

(right).

The tension specimen was pulled such that the gauge section exhibited necking (see Figure 2).
The simulation was performed using the Schwarz method outlined above and with a standard
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single-domain method. Both methods showed excellent agreement, suggesting that the Schwarz
method did not introduce any significant errors

4. PLANNED ACTIVITIES

Over the next quarter, l will resume work on the TrussQC method and focus on using higher
order interpolation and new energy summation techniques to reduce the locking phenomena
seen in previous fracture toughness simulations. This will require using new mesh data
structures and meshing techniques to create higher order triangle and tetrahedral elements.

5. VISITING TECHNOLOGIST EXPERIENCE(S)

Start Date

COMPLETED

End Date

Visiting Technologist
NASA Center or

R&D Lab

Experience
Activities and Relevance to Research

Goals
06/19/2017 08/25/2017 JPL This project will focus on performing

experiments on a variety of lattice samples to
investigate how the microstructure affects the
fracture toughness of the macroscopic
material. The constituent material, relative
density, and the unit cell topology will be
varied between samples. Results will be
compared with existing theory for fracture
mechanics of lattice materials and
computational simulations. These
experiments will help with the validation of
TrussQC.

Start Date

PLANNED

End Date

Visiting Technologist
NASA Center or

R&D Lab

Experience
Activities and Relevance to Research

Goals
5/1/2018 8/3/2018 Sandia National

Labs
I will work on muitiscale modeling of dynamic
problems using the Alternating Schwarz
Method. I will work on some theory and also
implementation and testing of the method
using Sandia' finite element code, Albany.

6. ISSUES / CONCERNS

N/A

7. REFERENCES

Use the Insert Citation" button to add citations to this document.
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