
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Secure Distributed Membership
Tests via Secret Sharing

David Zage, david.zage@intel.com1

Helen Xu, hxu@sandia.gov

Thomas Kroeger, tmkroeg@sandia.gov

Bridger Hahn, bhahn@sandia.gov

Nolan Donoghue, npdonog@sandia.gov

Thomas Benson, thomas.benson@tufts.edu

1 Work performed while at Sandia National Laboratories

SAND2017-8294C

Providing Data Security and Availability?

Data security and availability for operational use are frequently seen as
fundamentally opposing forces.

Encryption is fragile:
Tools like homomorphic encryption are a start but most encryption algorithms
are at best assumed to be secure, and often in reality just delayed release.

Secret Sharing Provides Provably Secure Systems
Archives that distribute data with secret sharing can provide information
theoretic data protections and a resilience to:

1. malicious insiders,
2. compromised systems, and
3. untrusted components.

We are developing ways to functionally use secret
shares without reassembly.

2

Background: Shamir Secret Sharing

3

Shamir’s Secret Sharing (SSS) provides a data protection that goes far beyond
just splitting the data into parts. It is information theoretically secure and uses
points on a polynomial curve to securely encode sensitive data.

Example:
Any 3 of 5 Secret S = 1234

1. Create a polynomial of degree 2 by generating 2
random coefficients

f(x)= S+ 166x + 94x2

2. Generate 5 points along that curve:

f(1)=1494; f(2)=1942; f(3)=2578;

f(4)=3402; f(5)=4414

Any three points enables a user to solve for S. With one

or two points you know nothing more than when you had

none; S is one of infinite possible Y-intercepts.

An infinite number of
polynomials of degree 2 exist

through 2 points.

NOTE: S = f(0)

Distributed Archive Using Secret Sharing

4

Google

E-Bay Amazon

R1

R2

R3 R4

R5

5 Companies want to share a list of
bad IP address securely so that if any
one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

OracleFacebook

....

....

....

....
....

Distributed Archive Using Secret Sharing

5

Google

E-Bay Amazon

R1

R2

R3 R4

R5

5 Companies want to share a list of
bad IP address securely so that if any
one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:
1) U encodes its new IP address as 5

points on a polynomial curve.

OracleFacebook

....

....

....

....
....

U

f(1)=1494
f(2)=1942
f(3)=2578
f(4)=3402
f(5)=4414

.

..

..
f(0)=<Secret IP>

Distributed Archive Using Secret Sharing

6

Google

E-Bay Amazon

R1

R2

R3 R4

R5

5 Companies want to share a list of
bad IP address securely so that if any
one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:
1) U encodes its new IP address as 5

points on a polynomial curve.
2) U sends a point to each repository,

e.g. R2 (2, 1942) R3 (3, 2578)…

OracleFacebook

....

....

....

....
....

U

.

. .

.

. U

f(1)=1494
f(2)=1942
f(3)=2578
f(4)=3402
f(5)=4414

.

..

..
f(0)=<Secret IP>

Distributed Archive Using Secret Sharing

7

Google

E-Bay Amazon

R1

R2

R3 R4

R5

5 Companies want to share a list of
bad IP address securely so that if any
one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:
1) U encodes its new IP address as 5

points on a polynomial curve.
2) U sends a point to each repository,

e.g. R2 (2, 1942) R3 (3, 2578)…

At this point if U erases that data it
exists NOWHERE.

OracleFacebook

....

....

....

....
....

U

.

. .

.

.

Distributed Archive Using Secret Sharing

8

Google

E-Bay Amazon

R1

R2

R3 R4

R5

5 Companies want to share a list of
bad IP address securely so that if any
one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:
1) U encodes its new IP address as 5

points on a polynomial curve.
2) U sends a point to each repository,

e.g. R2 (2, 1942) R3 (3, 2578)…

At this point if U erases that data it
exists NOWHERE.

BUT : To use this data, you would
query 3 repositories and reassemble
the actual list.

OracleFacebook

....

....

....

....
....

U

.

. .

.

.

Lagrange Interpolation

9

Lagrange Interpolation allows for the recovery of the original function using
a set of known points.
Given the set of points (y1...yn) we determine f(j) as:

Where Li(j) is defined as follows:

Everything to compute Li() is publicly know e.g. X1=1

Our secrets are in the values of y1….yn which is what we
must protect.

10

Google E-Bay

R1 R2 R3

Facebook

....
....

Serial Interpolation

Using Lagrange Interpolation serially across the archive, we can use our data
while preserving information theoretic data protections.

For example we could calculate S serially as follows:

Since our goal is to never see S ever recreated in one spot again we need
to modify our calculations to protect the points (y1…yn) from being
disclosed and protect S from being the result.

To do this we mask our calculations with a Nonce.

Example SIF use

11

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = L1(x)f(1) + N and
send s1 to R2

R1

R2

R3 R4

R5

s1

U
= L1(0) +N

User U, wants to test if address Z is on our list of addresses

Example SIF use

12

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = L1(x)f(1) + N and
send s1 to R2

3) U sends q=Z+N to R3

R1

R2

R3 R4

R5

s1

U
= L1(0) +N

q

User U, wants to test if address Z is on our list of addresses

Example SIF use

13

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate g1 = L1(x)f(1) + N and
send g1 to R2

3) U sends q=Z+N to R3

4) R2 calculates s2 = L2(x)f(2) + s1
sends s2 to R3

R1

R2

R3 R4

R5

s1

s2

U
= L1(0) +N

q

User U, wants to test if address Z is on our list of addresses

Example SIF use

14

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = L1(0)f(1) + N and
send s1 to R2

3) U sends q=Z+N to R3

4) R2 calculates s2 = L2(0)f(2) + s1
sends s2 to R3

5) R3 calculates s3 = L3(0)f(3) + s2

6) R3 For all entries where s3==q
send TRUE to U

else
send FALSE to U

R1

R2

R3 R4

R5

s1

s2

T/F

U
= L1(0) +N

s3

q

User U, wants to test if address Z is on our list of addresses

Security Analysis

Model: Honest-but-curious participants

 Participants send correct protocol responses

 Perform extra calculations

 Not allowed to aggregate information not normally seen (no
collusion)

By SSS, each repository is unable to calculate other shares

 Not enough points on the curve

By nonces, each partial share is protected

 In essence, a one-time pad

However, collusion during reconstruction can allow for data
exposure.

15

Byzantine Adversaries

 Assumes less than k adversarial nodes
 Behave arbitrarily and are only limited by cryptographic constraints

 We consider a (multiplicative) cyclic group C of order p
 Assume discrete logarithm problem is hard

 We propose cSIF, which is secure given at most k-1
adversaries

16

Example cSIF use

17

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gL1(x)f(1) + N and
send s1 to R2

R1

R2

R3 R4

R5

U

User U, wants to test if address Z is on our list of addresses

s1 = gL1(0)+N

Example cSIF use

18

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gL1(x)f(1) + N and
send s1 to R2

3) U sends q=gZ+N to R3

R1

R2

R3 R4

R5

U

q

User U, wants to test if address Z is on our list of addresses

s1 = gL1(0)+N

Example cSIF use

19

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gL1(x)f(1) + N and
send s1 to R2

3) U sends q=gZ+N to R3

4) R2 calculates s2 = gL2(x)f(2) ○ s1
sends s2 to R3

R1

R2

R3 R4

R5
s2

U

q

User U, wants to test if address Z is on our list of addresses

s1 = gL1(0)+N

Example cSIF use

20

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gL1(x)f(1) + N and
send s1 to R2

3) U sends q=gZ+N to R3

4) R2 calculates s2 = gL2(x)f(2) ○ s1
sends s2 to R3

5) R3 calculates s3 = gL3(x)f(3) ○ + s2

6) R3 For all entries where s3==q
send TRUE to U

else
send FALSE to U

R1

R2

R3 R4

R5
s2

T/F

U

s3

q

User U, wants to test if address Z is on our list of addresses

s1 = gL1(0)+N

Byzantine Security Analysis

 Assuming the discrete log is hard, colluding repositories
cannot recover the original share values.

 Other security guarantees are covered by SSS

21

Conclusions

 Usable security is challenging
 Data security and availability seen as opposing forces

 SIF and cSIF provide mechanisms for set membership using
secured and distribute data without revealing the original
 SIF defends against Honest-but-curios adversaries

 cSIF defends against Byzantine adversaries

 Looking to extend SIF to provide information theoretic
protection against Byzantine adversaries

22

