SAND2017-8294C

Secure Distributed Membership
Tests via Secret Sharing

David Zage, david.zage@intel.com?
Helen Xu, hxu@sandia.gov

Thomas Kroeger, tmkroeg@sandia.gov
Bridger Hahn, bhahn@sandia.gov

Nolan Donoghue, npdonog@sandia.gov

Thomas Benson, thomas.benson@tufts.edu

@ENERGY DNISA

Mattonal Nuclear Securfty ;
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
e

a own
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
1 Work performed while at Sandia National Laboratories

Providing Data Security and Availability?

Data security and availability for operational use are frequently seen as
fundamentally opposing forces.

Encryption is fragile:
Tools like homomorphic encryption are a start but most encryption algorithms
are at best assumed to be secure, and often in reality just delayed release.

Secret Sharing Provides Provably Secure Systems
Archives that distribute data with secret sharing can provide information
theoretic data protections and a resilience to:

1. malicious insiders,

2. compromised systems, and

3. untrusted components.

We are developing ways to functionally use secret
shares without reassembly.

Background: Shamir Secret Sharing) .,

Shamir’s Secret Sharing (SSS) provides a data protection that goes far beyond
just splitting the data into parts. It is information theoretically secure and uses
points on a polynomial curve to securely encode sensitive data.

Example: NOTE: S =1(0)
Any 3of 5 Secret S =1234 ¥ f

1. Create a polynomial of degree 2 by generating 2
random coefficients
f(x)= S+ 166x + 94x?
2. Generate 5 points along that curve:
f(1)=1494; f(2)=1942; {(3)=2578;
f(4)=3402; f(5)=4414

Any three points enables a user to solve for S. With one

. . An infinite number of
or two points you know nothing more than when you had polynomials of degree 2 exist

none; S is one of infinite possible Y-intercepts. through 2 points.

3

Distributed Archive Using Secret Sharing® &=

5 Companies want to share a list of
bad IP address securely so that if any Google

one has a breach the list isn’t exposed.

E-Bay

I

Facebook Oracle

Each company hosts a repository for
points on the curves.

lmazon

Distributed Archive Using Secret Sharing® .

5 Companies want to share a list of
bad IP address securely so that if any

one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:
1) U encodes its new IP address as 5
points on a polynomial curve.

f(0)=<Secret IP>

Google g = f(1)=1494

= £(2)=1942
R1 B

= f(3)=2578

= f(4)=3402
= f(5)=4414

imazon

-l

E-Bay

I

Facebook Oracle

Distributed Archive Using Secret Sharing® .

5 Companies want to share a list of f(0)=<Secret IP>
bad IP address securely so that if any Google }% 1 11)=1491
one has a breach the list isn’'t exposed. R1 B O

= f(3)=2578

= f(4)=3402
= f(5)=4414

&
I

Facebook Oracle

Each company hosts a repository for
points on the curves.
User (U) at Google wants to insert:
1) U encodes its new IP address as 5
points on a polynomial curve. E-Bay
2) U sends a point to each repository,
e.g. R2 (2, 1942) R3 (3, 2578)...

Distributed Archive Using Secret Sharing® .

5 Companies want to share a list of
bad IP address securely so that if any

one has a breach the list isn’t exposed.

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert:

1) U encodes its new IP address as 5
points on a polynomial curve.

2) U sends a point to each repository,
e.g. R2 (2, 1942) R3 (3, 2578)...

At this point if U erases that data it
exists NOWHERE.

Google

R1 B

U

&
I

Facebook

-l

E-Bay

Oracle

Distributed Archive Using Secret Sharing® .

5 Companies want to share a list of
bad IP address securely so that if any Google

one has a breach the list isn’'t exposed. ML @

Each company hosts a repository for
points on the curves.

User (U) at Google wants to insert: ‘ﬂ‘
1) U encodes its new IP address as 5

points on a polynomial curve. E-Bay
2) U sends a point to each repository,

e.g. R2 (2, 1942) R3 (3, 2578)...

R4 B
At this point if U erases that data it
exists NOWHERE.

Facebook Oracle

Amazon

BUT : To use this data, you would
query 3 repositories and reassemble
the actual list. 8

7| Netora

Lagrange Interpolation

Lagrange Interpolation allows for the recovery of the original function using

a set of known points.
Given the set of points (y,...y,) we determine f(j) as:

i=1
Where L)) is defined as follows:
N (@ —m) _ (-m) (-w) G-w) (G—an)
Lz (.7) T 1§E[§n (asz _ xm) B (:1:@ — :1;1) (:1:1 - flfi—l) (5(}2 - :Ui_|_1> (.’L“@ - .’L”T)

m1
Everything to compute L) is publicly know e.g. X,=1

Our secrets are in the values of y,....y,, which is what we

must protect.
9

Serial Interpolation &,

Using Lagrange Interpolation serially across the archive, we can use our data
while preserving information theoretic data protections.

For example we could calculate S serially as follows:

S=f0)=Li(0)-yn 4+ L2(0)-y2 4+ Ls(0)-ys

R1 g R2 B

Google E-Bay

Facebook

Since our goal is to never see S ever recreated in one spot again we need
to modify our calculations to protect the points (y,...y,) from being
disclosed and protect S from being the result.

To do this we mask our calculations with a Nonce.

Example SIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s7 = L,(x)f(1) + N and
send s7to R2 S I

11

Example SIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s7 = L,(x)f(1) + N and
send s7to R2 S I

3) U sends g=Z+N to R3

Example SIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate g7 = L,(x)f(1) + N and
send g7 to R2 S I

3) U sends g=Z+N to R3

4) R2 calculates s2 = L,(x)f(2) + s1
sends s2to R3

Example SIF use UL

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s7 = L,(0)f(1) + N and
send s7to R2 S I
3) U sends g=Z+N to R3

4) R2 calculates s2 = L,(0)f(2) + s1
sends s2 to R3

T/F
“R5 g

P o

9

5) R3 calculates s3 = L(0)f(3) + s2 32

6) R3 For all entries where s3==q
send TRUE to U
else
send FALSE to U

Security Analysis UL

Model: Honest-but-curious participants
= Participants send correct protocol responses
= Perform extra calculations

= Not allowed to aggregate information not normally seen (no
collusion)

By SSS, each repository is unable to calculate other shares

= Not enough points on the curve

By nonces, each partial share is protected

= |n essence, a one-time pad

However, collusion during reconstruction can allow for data
exposure.

15

Byzantine Adversaries

= Assumes less than k adversarial nodes

= Behave arbitrarily and are only limited by cryptographic constraints

= We consider a (multiplicative) cyclic group C of order p

= Assume discrete logarithm problem is hard

= We propose cSIF, which is secure given at most k-1
adversaries

Example cSIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gt1®f(?1)+N gnd
send s7to R2 S1I

17

Example cSIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gt1®f(1) +N gnd
send s7to R2 S1I

3) U sends g=g4*N to R3

Example cSIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gt1®f(1) +N gnd
send s7to R2 S1I

3) U sends g=g4*N to R3

4) R2 calculates s2 = gt2®f2 o s1
sends s2to R3

Example cSIF use

User U, wants to test if address Z is on our list of addresses

1) U creates a nonce N, a privately held
random number.

2) U & R1 calculate s1 = gt1®f(1) *N and “R1 B
send s7to R2 S1I
3) U sends g=g4*N to R3 U

4) R2 calculates s2 = gt2¥12) o s1

H T/F
sends s2 to R3

1 ~R5 g

5) R3 calculates s3 = g-3f3) o + s2 S2

6) R3 For all entries where s3==q
send TRUE to U
else @
send FALSE to U
S3
20

Byzantine Security Analysis) .,

= Assuming the discrete log is hard, colluding repositories
cannot recover the original share values.

= QOther security guarantees are covered by SSS

Conclusions) 2=

= Usable security is challenging
= Data security and availability seen as opposing forces
= SIF and cSIF provide mechanisms for set membership using
secured and distribute data without revealing the original

= SIF defends against Honest-but-curios adversaries
= cSIF defends against Byzantine adversaries

= Looking to extend SIF to provide information theoretic
protection against Byzantine adversaries

