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Motivation: Is There An Analogue Of
Molecular Dynamics For Electrons?

Molecular Dynamics (MD)

System of atoms or molecules
‘Integrate classical equations of motion
*Obtain thermodynamic properties

Time-Dependent Density Functional Theory (TDDFT)’
-System of electrons

‘Integrate the quantum equations of motion

Can we obtain thermodynamic properties?

'E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
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Is There A Thermal State in TDDFT? YES!

« TDDFT gives exact evolution of density (in principle...)

 Gedanken Experiment:

— Start from electronic ground state with frozen ions

— Excite the system with a time-dependent potential

— Propagate the system in time with the potential off

« System should equilibrate and density should change!

 Experimental example: The two-temperature-model is
widely used to explain fs to ps behavior of metals
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Evaluating Thermodynamic Expectations

Molecular Dynamics (MD)
‘Initialize in approximate thermal state /
‘Propagate for an “equilibration period” ¢/

-Average over system snapshots ¢/

Time-Dependent Density Functional Theory (TDDFT)
€ (3)
€ (1,4)
€ (2)
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Does Standard TDDFT Equilibrate?

Start in the ground state of 32 atoms of Al and excite
by pulsing the positions of some of the atoms

Atoms return to original positions and are then fixed
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How Will We Detect Equilibration?

Consider a DFT reference Hamiltonian H

H could be ground state or Mermin Hamiltonian

Let ‘qbn) be the eigenvectors of the ground state H

n

Plot f,, = z(pr\cpn)(qbnhpb) versus eigenvalues &;

b=1
To the movies...
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Intermission! The Plot Thickens...

Excitations clearly decay into other excitations
No signs of oscillatory return to initial state
The distribution becomes more “Fermi-like”
But, is it really going to a Fermi distribution?

What if we start with a Fermi distribution?
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Key Problem: Evaluating Thermodynamic
Expectations as Averages over Pure States?

(Original) TDDFT is a pure state theory

Many-Body Non-interacting
‘LIJ(Rl) LN Rnl t)><_) hljl (Rll t))) ey hljn(Rn; t))

Statistical mechanics is a mixed state theory
Z ="Tr (exp(—ﬁf[)) P = Z‘lexp(—ﬁf[)
(0) = Tr(P0) = 21 Z exp(—BE*)(®*|0|P%)
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The “Stochastic” Trace to the Rescue

Introduce random complex numbers zi“
‘Some distribution of magnitudes such that |Zia|2 =1

‘Random phase Zl-“ = |Zia|e—ie

M
1
Average over M samples: (f; ) = MZ fi
. i=1
Then, lim (Zlazi Yy = 5P
M—o00

Defining |0Q;) = Eziam)“)
a

lim (0[4]0:)yy = ) (@%]4|0F) lim (2720} =Tr(4)
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Evaluate Expectations As Averages
Over Correlated (Non-Stationary) States

Define “Many-Body Thermal States” |¥;) = P1/2|0;)
(0) = Tr(P0O) = Tr(P/20P1/?)

lim ((0,|P1/201/2|0,)),,

M—o0

M—o00

|¥;) is normalized on average and can be made
individually normalized (Modine and Hatcher,

AJCP 142, 204111 (2014))
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Mapping Many-Body To TDDFT:
The Independent Particle Approximation

MB quasiparticles «——— TDDFT eigenvectors
o By —— |by) ey

Quasiparticles do not interact
a\ — ;T T
R AT
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Construct TDDFT States that Approximate
the “Many-Body Thermal States™

If n is the number of electrons, a TDDFT state is
a set of n orthornormal wavefunctions

Use non-orthogonal representation |{s;), ..., |U,)

Oap = (Pa|Up) |Wa) = 2 0 1/2‘L|Jb
Ansatz for ‘lTh) ‘q;n)

Np

Ta) = ) 2z exp(—162,) [6,)

n=1
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Constructing Approximate TDDFT
Thermal States

Many-body state corresponding to TDDFT state

n [ Np

W) =y3 | [| ) 2 exo (—28e,) o1 [10)

a=1|n=1

L 1 t t
=V 2 ZY“GXP (—gﬁ(sn% Tt En%)) qbni‘ "'¢n%|0>

Where lim (x*x#),, = §%8

M—-o0
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What Happens When We Run TDDFT?

Initialize with an “Approximate TDDFT
Thermal State” for 32 atoms of Al at T=7900K

Calculate Projected Weights using 7900K
Mermin DFT reference states

Initial projected weights fluctuate around a
Fermi distribution

Run TDDFT - Back to the movies...
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Where is the Energy Going?

TDDFT energy is actually conserved very well:
Loss of ~2 meV out of ~14 eV added to system
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What About Band Energy?
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Electronic weight (and energy) is slowly moving
into higher and higher energy states
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Let’s Look In Detail At The Tails
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1/E2 Gives Decent Fit To Tails
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Is This Weird Behavior A Problem with
Our Test Rather Than TDDFT?

N(p)

N

(1) Fermi Liquid (FL) Theory
O Bare particle distribution is non-Ferm 5

T P
©® TDDFT maps the FL ground state to the Fermi
function, but we cannot expect this for general excited
states

(2) Perturbation theory plus conservation laws

© Thermal excitation perturbs the Hamiltonian (H,), and
thus higher energy eigenstates of H, get mixed in

©ODropping more quickly at the Fermi level allows for

éher conservation despite tails in the distributio[E Sandia
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Conclusions

* We investigated the long-time behavior of TDDFT

* The projected occupations evolve away from the Fermi
function even when the initial state is constructed to
have Fermi occupations

* The time scale for this change is long (several ps),
which seems to be related to slow development of the
extended high energy tail in the distribution

* This “Non-Fermi behavior” could results from:

— (A) Problems with our analysis in terms of K-S eigenstates
— (B) A failure of “detailed balance” in adiabatic LDA
—(C) An issue with equilibration in closed quantum systems
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What Happens When We Run TDDFT?

Evolution of Occupation Number

2.0 2.4 ps TDDFT run
. with adiabatic LDA
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Distribution function evolves away from Fermi function
with longer tails and a sharper drop at the Fermi level!
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