
Holistic Measurement Driven System Assessment

Saurabh Jha∗, Jim Brandt†, Ann Gentile†, Zbigniew Kalbarczyk∗, Greg Bauer¶, Jeremy Enos¶,
Michael Showerman¶, Larry Kaplan§, Brett Bode¶, Annette Greiner‖, Amanda Bonnie‡, Mike Mason‡,

Ravishankar K. Iyer∗, and William Kramer∗¶
∗University of Illinois at Urbana-Champaign, Urbana-Champaign, IL 61801

†Sandia National Laboratories (SNL), Albuquerque, NM 87123
‡Los Alamos National Laboratory (LANL), Los Alamos, NM 87544

§Cray, Inc., Seattle, WA 98164
¶National Center for Supercomputing Applications (NCSA), Urbana, IL 61801

‖National Energy Research Science Computing Center (NERSC), Berkeley, CA 94720

Abstract—In High Performance Computing systems, applica-
tion performance and throughput are dependent on a complex
interplay of hardware and software subsystems and variable
workloads with competing resource demands. Data-driven in-
sights into the potentially widespread scope and propagation
of impact of events, such as faults and contention for shared
resources, can be used to drive more effective use of resources, for
improved root cause diagnosis, and for predicting performance
impacts. We present our work developing integrated capabilities
for holistic monitoring and analysis to understand and char-
acterize propagation of performance degrading events. These
characterizations can be used to determine and invoke mitigating
responses by system administrators, applications, and system
software.

I. INTRODUCTION

Extreme-scale High Performance Computing (HPC) systems
require a holistic approach to monitoring and coordination of
many disparate subsystems (both hardware and software) to
enable continued scaling and efficient execution of applications.
HPC systems are typically used for executing tightly coupled
simulation applications across hundreds of thousands to millions
of processor threads. Mismatches in processor, memory, inter-
connect, and/or storage performance can significantly influence
an application’s overall performance where variation of 50%
or more has been observed. A single component failure can
cause an entire application to fail at any time. Power and
cooling facilities can significantly influence both component
performance and failure probability. As a result, effective
failure/degradation mitigation response(s) in complex systems
require analysis of (i) propagation of faults/errors and (ii)
performance issues due to interference among applications
or resource exhaustion.

As part of an Office of Science resilience project, Holistic
Measurement Driven Resilience (HMDR), we have been
building integrated capabilities for extracting system and
application performance and failure related data. We use this
data to build fault-to-failure characterizations, and use these
characterizations to determine effective mitigating responses.

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research,
under Award Number 2015-02674.

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC.,
a wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under
contract DE-NA0003525.

We are now extending that work to more generally address
scenarios which result in performance degradation in which
timely and appropriate response can significantly improve both
application run times and system throughput. The eventual
product of this work will be an inter-operable set of capabilities
for extreme-scale systems which provides monitoring, analysis,
and appropriate response to both resilience and performance
issues. These capabilities will support both automated and
exploratory analysis both at run-time and in post-processing.
In order to enable analysis of the data sizes to be produced
on such systems, we include in our design the collection
and extraction of raw and derived information and impacts
necessary to facilitate the development of machine-learning-
based analyses.

II. TRACKING AND DIAGNOSING SYSTEM ISSUES AT
RUNTIME

This section illustrates the use of collected data and analysis
tools for monitoring, tracking, and diagnosis of failures and
performance degradation in systems and applications using
case studies. Further, these case studies illustrate methods for
building features that can help diagnose application resilience
and performance problems.

A. Tracking, predicting, and diagnosing failures

In a large-scale system, faults, errors, and failures are
inevitable and can occur in hardware or software from any
subsystem. These Events of Interest (EoI) can propagate to
manifest as serious system or application stability or correctness
issues and might be silently tolerated by the system either
through built in resiliency mechanisms or because they do not
coincide with resources being utilized by an application. The
volume, frequency, and variety of information output to log
files, whether just informational or to document actual errors,
in a large-scale system can hinder system administrators from
performing timely problem diagnosis and accurate root cause
analysis. Sophisticated and automated diagnostic tools are a
requirement for processing relevant information on the time
scales required to take effective mitigating action as opposed
to post impact analysis and recovery.

Correlating the observed EoIs to build likely fault-
propagation paths, such as the one described in “Case Study
1” below (shown in Figure 1), enables early identification of
adverse impact indicators and construction of probabilistic
predictors of locality and intensity. This pictorial representation

SAND2017-7999C



Pump 
gasket 
problem

Blade 
EPO

Pump 
gasket 
fixed

Multiple 
mezzanine 
failures, 
blades 
unreachable

Other
links 
fail

H
ea

t-
R

el
at

ed
 

Pr
ob

le
m

s
Li

nk
 

Fa
ilo

ve
r

Link 
failover 
begins

Route 
compute 
fails

Link 
failover 
fails

SWO 
Declared

Fig. 1: Network recovery-sequence cluster showing relationship
between failure and recovery events

of a fault propagation path was built using LogDiver’s [1]
semi-automatic clustering algorithm [2]. Our current focus is
to automate the task of feature discovery (using Baler) and to
build fault-propagation paths (using LogDiver), independent of
particular subsystem. Both Baler and LogDiver will leverage
machine learning methods (such as Bayesian networks) to
complete this task (see Section III).

Case Study 1: A pump gasket failure led to a system
wide outage by way of network component failures and
error propagation: Figure 1 (automatically generated by our
LogDiver [1] tool) depicts a network recovery-sequence cluster
capturing relationships between network failure and recovery
events in the system. The failure of a pump gasket (pump
gasket problem) caused the temperature to rise in a cabinet.
The eventual overheating triggered an emergency power-off of a
blade (blade EPO), a protection mechanism to guard the blade’s
components, including Gemini router ASICs, from permanent
damage. The associated Gemini router failure triggered link
failover (link-failover begins). As the link failover progressed,
additional failures occurred on other blades (“other links
fail” in another blade in the same cabinet) resulting in route
computation failure (route compute fails). The failure of the
route computation (and its retries) to establish an alternative
path for nodes to communicate with other nodes led to the
failure of the link failover (link-failover failed). The overheating
effect increased and propagated to nearby cabinets, causing
more blades to fail (multiple mezzanines failures and blades
unreachable). A system-wide outage (SWO) was declared to
manually fix the system and restore it to a healthy state.
B. Tracking, predicting, and diagnosing performance problems

Failure-related (e.g., link failure) and non-failure related
(e.g., design issues in application such as MPI rank mapping or
system such as network routing) performance problems (such
as contention for shared resources) can similarly propagate
in systems and result in performance-degradation, rather than
application failure. We present case studies using monitoring
data collected by LDMS [3] showcasing non-failure related
performance issues.

Case Study 2: Performance degradation due to failure:
Figure 2 shows the impact of network link failure and its
corresponding recovery on the Blue Waters [4] Gemini 3D
torus [5]. In this network, traffic from multiple applications may
pass through the same Gemini routers along their paths. The top
sub-chart shows the aggregate data passing through all of the
Gemini routers. Basic statistics such as this indicate bandwidth
utilization of the system. To understand if there is actual
performance degradation and, if so, which Gemini router may
be the source of the problem requires more in-depth analysis.

Converting raw network data into derived metrics which are
indicative of performance-degrading conditions and associating
these metrics with application performance measures is still an
area of active research.

The bottom sub-chart shows the “average packet transmis-
sion time” which is calculated by dividing “average packet
size” by bandwidth for all the links on a Gemini ASIC router.
Continuous derivation of this metric from raw monitored data
for each Gemini router can provide a detectable signal for
attributing the source of congestion. In this case, failure of one
of the links (4 tiles) on the Gemini at “9-7-1” x,y,z coordinates
in the torus (Gem 9-7-1 in figure) lead to the initiation of
network recovery and a network-wide quiesce. From the figure
it is clear that this particular Gemini router was showing early
indication of a problem, as the “average packet transmission
time” through this Gemini router was significantly higher than
for others. Such signals can be used for training, predicting,
and diagnosing problems.

Case Study 3: Performance degradation due to non-
failure related issues: Figure 3 shows where a 32-node job
caused high congestion in the system interconnect, triggering
two congestion protection events, first at 10:00 am (within 10
seconds of job launch) and then at 15:20 (red lightning bolt in
Figure 3 (i)). Congestion within the torus can adversely impact
the performance of the application generating the messages
and other runnning applications and is a major cause of
inconsistent application run times. Blue Waters uses topology
aware scheduling (TAS) [6] to maximize communication
performance for jobs in its 3D torus by placing a job in a
compact rectangular prism-shaped set of physical nodes. Such
assignment maximizes locality of inter-node communication
patterns within the prism-shaped allocation geometry. I/O calls
to the file system, however, are likely (but not necessarily)
to cause communication outside a job’s geometry. A linear
shape in the “Z” direction is more likely to funnel much of
the I/O traffic to shared links causing high congestion in the
system. Detection and diagnosis of the cause of congestion
helps optimize scheduling strategies for a job as well as improve
application communication performance. Using derived metrics
and anomaly detection algorithms can enable diagnosis and
detection of such issues.

Figure 3 (i) shows a plot of maximum credit and inq stall
metrics, indicating when traffic cannot be sent to a port of
a different Gemini router (credit) or within the same Gemini
router (inq) due to a lack of receiver buffer space, across links
in the job. These unprocessed metrics alone do not help in
diagnosis of congestion issues in the network or job.

Figure 3 (ii) shows a plot of the sum of stall rates on all links
for all the Gemini routers local to compute nodes used by the
job (normalized to the total stall rate throughout the duration of
the job). The two peaks (marked) in this sub-figure correspond
to the triggered congestion protection events.

Figure 3 (iii) shows a plot of the absolute difference between
job input data and output data transferred over the network
(normalized by total input or output data throughout the duration
of the job). This shows three large peaks which hint at I/O rather
than inter-process communication in the application. Only 2
of the 3 peaks in this sub-figure match congestion protection
events. Combined knowledge from Figure 3 (ii) and Figure



(i) System Bandwidth 

(iii) Average Transmission Time

Link failed

(ii) Network Log Events

Recovery 
complete

Av
er

ag
e 

pa
ck

et
 la

te
nc

y

Gem 9-7-1
Gem 2-13-9

Fig. 2: Case Study 2

(i)

(ii) (iv)

Max stall across links within application geometry (iii) Application input and output traffic

Sum of inq stall across routers within application geometry RDMA read/write traffic for by the application

M
ax

 s
ta

ll 
tim

e 
ac

ro
ss

 
lin

ks
 (

%
)

Su
m

 o
f s

ta
ll 

ra
te

s 
ac

ro
ss

 
ro

ut
er

s 
(N

or
m

al
iz

ed
)

Fig. 3: Case Study 3

3 (iii) enables correlation of the congestion protection events
with filesystem I/O.

Figure 3 (iv) shows a plot of read and write remote direct
memory access (RDMA) values for read and write for this job
normalized by total read/write RDMA bytes through the job’s
duration. It confirms that only large amounts of “read” RDMA
trigger congestion protection events.

Case studies 1, 2, and 3 illustrate the need for holistically
monitoring applications and systems for understanding applica-
tion resilience and performance bottlenecks. Moreover, these
case studies demonstrate extracting features from raw data can
help build machine learning models to distinguish and diagnose
application performance and resilience issues.

III. APPROACH

This section presents our approach to building an integrated
tool suite for monitoring, analysis, and response. This suite
is comprised of: 1) passive tools for gathering and analyzing
information that is produced by a normal system (e.g., sys-
tem and hardware error logs), 2) active querying tools that
collect data that is not naturally ejected from a system (e.g.,
performance counters, facilities power and cooling information),
and 3) active probing tools that inject stimuli into a system to
assess the system response in terms of behavioral characteristics
of information gathered by tools in categories 1 & 2. We
are extending our suite of tools with components for post
processing and run-time analytics. The tools are designed to
interact seamlessly together and with target system components
to provide efficient operation of platforms and applications.

The architecture for our “Holistic Measurement Driven
System Assessment” (HMDSA) infrastructure is shown in
Figure 4. We describe the major HMDSA components and their
functional interactions here. Our first target deployments are
Open Science platforms at NCSA. Currently, on Blue Waters,
the Integrated System Console (ISC) [7] provides capabilities
for data collection, analysis, visualization, and report generation.
HMDSA will provide next-generation advancements to the ISC,
with greater capabilities for extreme-scale automated analyses
and new capabilities for determining and invoking run-time
system-level and application-level responses.

System and Application Data Collection In HMDR, we
use LDMS to collect data which is, or can be, exposed on-

Baler

System 
Messages

LogDiver
Regex rules

LogDiver

Detect/Predict 
Issues

Diagnosis and 
localization

Resiliency Metrics

Metrics and insights

Resilience 
Monitoring

Performance 
Monitoring

OVIS/LDMS

syslogd
agent

Perf. Logs

Perf. Incidents 
Reports

Failure 
Reports

Message 
Pattern 

Database

Numeric 
Pattern 

Database
ML-based 
Resilience 

Issue Detectors

ML-based 
Perf. Issue 
Detectors

Fault 
Propagation

Application 
Resilience 
Tracking

Bolt - Plugin

Assess application 
impact

Map LogDiver
Regex Rules to 
Baler Message 

Patterns 
Baler Query 

Engine

O
perator

G
enerated 

model validation 
and verification

HPCArrow

Jenkins -
Continuous Testing

Notify 
Admins/Developers

Fig. 4: HMDSA Infrastructure. Data sources (left); analysis results
and responses (right). The capabilities will be implemented within
the next-generation ISC console to advances automated analyses and
provide system-level and application-level responses.

node, for example CPU, IO, and network utilization data.
An LDMS daemon is run on each node to collect data via
queries to the daemon. LDMS collects data at user configurable
intervals from milliseconds to minutes. This data is the basis
of our analyses to determine performance issues and inform
propagation scenarios. We are currently extending our collectors
to incorporate application-provided information. Timestamped
application phase and progress information will enable better
understanding of how system events, characteristics, and
conditions, including contention for underprovisioned resources,
impact an application’s performance.

Propagation Characterizations Log data is an important
information source for determining an initial problem and
the sequence of events in fault handling. Log Diver [1] is
our tool for extracting and assessing sequences of events in
log data. Currently, message patterns associated with EoIs
must be identified in advance and manually categorized as
to domain (e.g., network, storage). LogDiver then processes
logs, identifies significant messages, and determines spatio-
temporal relationships of significant messages. This enables
characterization of sequences, such as steps and timings in
failure recovery, as well as identification of failures in recovery,
identified by missing or additional warning lines in sequences.
An example is shown in Figure 1.

To facilitate identification of important log messages, partic-
ularly in new systems where the possible and meaningful



messages are unknown, we use Baler [8]. The user provides
a dictionary of words; Baler turns the log lines into patterns
by retaining dictionary terms and treating all other items as
variables (indicated by *), e.g., “handling failed link
*”. Baler can also turn numeric value ranges into distinct
patterns. Both patterns can be treated identically for queries
and analyses. This facilitates understanding relationships of
numerical characteristics and log events for automated detection
of EoIs, abnormal behaviors, and associations. Baler stores
patterns and occurrence data in a database.

We are currently integrating LogDiver and Baler (Fig 4) to
streamline the analysis process. Patterns determined by Baler
will be directly usable by LogDiver which will process the
pattern occurrence data in the Baler database. This will enable
more efficient extraction of sequences and timings and will
enable LogDiver extensions to include numerical data as well.

Diagnosis and Prediction By determining the text, numerical
sequences, and timings of interest, we seek to both diagnose and
predict stability and performance impacting issues. Detection
of numeric indicators that can be associated with propagation
characterizations (see Figure 1) could enable use of the
sequences to identify both initial cause and impending events
in the sequence. The run-time useability will depend on actual
time windows between events in a particular sequence.

Validation Through Fault and Performance Degradation
Injection In order to expand and refine our characterizations,
we augment our production data with that from controlled
experiments. We have built a toolkit for fault injection, HPCAr-
row [9], which includes both injection of faults into system
components and launch of applications in order to assess the
resulting impact on performance and stability. We capitalize
on HPCArrow’s flexibility and are extending it to perform
injection of performance-impacting events such as memory
leaks and contention for shared network and I/O resources.

Feedback to Applications and System Software To mitigate
performance-impacting scenarios, we seek to provide data,
diagnosis, and prediction information in actionable form to both
human and system software consumers. Feedback to system
administrators and users can be used for complex diagnosis,
improved understanding, and subsequent tuning. However,
more direct run-time mitigating response can be achieved by
providing direct feedback to applications and system software
where it can be used for load-balancing, task-mapping, or co-
scheduling decisions. We have previously shown [10] that
in certain congested network scenarios, remapping based
on dynamic monitoring of system information can be more
effective than that based on static architectural measures alone.
Providing information to on-node consumers is facilitated by the
LDMS daemons which innately host data. Validated propagation
scenarios can be used to prioritize event response, based on
potential severity of impact and window of opportunity.

Future instrumentation Historically, systems have provided
limited exposure of the information that we require for action-
able analysis. Often this is due to a lack of instrumentation. In
recent years more information is being exposed, for example the
number and scope of network performance counters has greatly
increased in the Cray Aries router ASIC [11] as compared to
the previous generation Cray Gemini router ASIC. However, in
some current and upcoming subsystems, while instrumentation

has increased, exposure of raw information to the user has been
minimized while the vendor utilizes it for making low level
fault and performance decisions. This trend limits the useability
of such information by the user and researchers for more global
analysis and decision-making processes. As part of our work
we seek to demonstrate the utility of processing low level
resource utilization/contention information in a global context
to form the basis for discussions with vendors for data exposure.
This includes identifying additional potentially actionable
information, including location and maximum refresh rates, that
would support earlier and more accurate discovery, diagnosis,
and prediction of stability/performance issues. Further, we are
pursuing advanced analytics, including machine learning and
low latency evaluation of raw and derived data against learned
behavioral models, to provide the most effective response
possible to degradation in stability and/or performance.

IV. RELATED WORK

There is a substantial body of research, reaching back over
a decade [12] in the area of intelligent use of monitoring data.
Much of that focuses on characterizing failure rates from text
logs in order to set checkpoint intervals for applications. There
is less in numerical analysis work due to the complexities
of collecting numerical data at sufficient fidelities with low
impact and of analyzing large datasets. Such work includes [13],
[14]. Our authors have previously developed infrastructures for
combined monitoring, analysis, and response [15], [7]. Here we
are developing more sophisticated tools for combined text and
numeric analyses to build detailed propagation characterizations
reflective of complex interactions among subsystems which
will require autonomous resource-utilization optimization in
order to deliver on the promise of extreme-scale computing.

REFERENCES

[1] C. D. Martino et al., “Logdiver: a tool for measuring resilience of
extreme-scale systems and applications,” in Proc. of the 5th Workshop
on Fault Tolerance for HPC at eXtreme Scale. ACM, 2015, pp. 11–18.

[2] S. Jha et al., “Analysis of gemini interconnect recovery mechanisms:
Methods and observations,” in Cray User Group, 2016.

[3] A. Agelastos et al., “Lightweight Distributed Metric Service: A Scalable
Infrastructure for Continuous Monitoring of Large Scale Computing
Systems and Applications,” in Proc. Int’l Conf. for High Performance
Storage, Networking, and Analysis (SC), 2014.

[4] “Blue Waters.” [Online]. Available: https://bluewaters.ncsa.illinois.edu
[5] R. Alverson et al., “The Gemini System Interconnect,” in Proc. 2010

IEEE 18th Ann. Symp. on High Perf. Interconnects (HOTI), 2010.
[6] J. Enos et al., “Topology-aware job scheduling strategies for torus

networks,” in Proc. Cray User Group, 2014.
[7] J. Fullop et al., “A diagnostic utility for analyzing periods of degraded

job performance,” in Proc. Cray User Group, 2014.
[8] N. Taerat, J. Brandt, A. Gentile, M. Wong, and C. Leangsuksun, “Baler:

deterministic, lossless log message clustering tool,” Computer Science -
Research and Development, vol. 26, no. 3-4, pp. 285–295, 2011.

[9] V. Formicola et al., “Understanding Fault Scenarios and Impacts Through
Fault Injection Experiments in Cielo,” in Proc. Cray User’s Group, 2017.

[10] J. Brandt et al., “Demonstrating Improved Application Performance
Using Dynamic Monitoring and Task Mapping,” in IEEE Int’l Conf. on
Cluster Computing, 2014.

[11] Cray Inc., “Aries Hardware Counters,” Cray Doc S-0045-20, 2015.
[12] R. Vilalta et al., “Predictive algorithms in the management of computer

systems,” IBM Systems Journal, vol. 41, no. 3, pp. 161–474, 2002.
[13] T. Evans et al., “Comprehensive Resource Use Monitoring for HPC

Systems with TACC Stats,” in Proc. of the First Int’l Wrk. on HPC
User Support Tools, 2014.

[14] S. Gallo et al., “Analysis of XDMoD/SUPReMM Data Using Machine
Learning Techniques,” in Proc. IEEE Int’l Conf. on Cluster Comp.,
2015.

[15] J. Brandt et al., “OVIS-2: A robust distributed architecture for scalable
RAS,” in Proc. IEEE Int’l Symp. on Parallel and Dist. Proc., 2008.

https://bluewaters.ncsa.illinois.edu

	Introduction
	Tracking and Diagnosing System Issues at Runtime
	Tracking, predicting, and diagnosing failures
	Tracking, predicting, and diagnosing performance problems

	Approach
	Related Work
	References

