
Photos placed in
horizontal position
with even amount

of white space
between photos

and header

Photos placed in horizontal
position

with even amount of white
space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Toward Resilient Task
Parallel Programming
Models

Keita Teranishi

AICS Café at RIKEN AICS, Kobe 08/02/2017

Funded by ASC CSSE Program.

SAND2017-7991PE

Need for Scalable Resilience for HPC
Applications

 Today, we see large HPC systems suffer frequent
failures
 MTBF 0.5-7 days (failure = lost job)

 Global file system crashes

 60-80% of failures are due to software (*)

 Future systems are expected to be less reliable
 User expectations

 75-95% node utilization (30-40% in enterprise computing)

 Tightly coupled massively parallel applications

 More components (and shrinking of each component)
 Today: Millions of threads, Several Peta bytes of memory

 Exascale: Billions of threads, 100+ Peta bytes of memory

 Limited Power Budget
 Today (US): 5-10MW for 10-20Peta Flops

 Exascale systems: 20-30MW for 1Exa Flops !!

2

Hardware and System Based Resilience
and Fault Mitigation
 Redundancy

 Weather centers purchase two identical systems

 N-Modular Redundancy (typically N=3)

 Parity bits (ECC) in memory
 Recent advances in Chipkill (RAID-5 like redundancy)

improves the memory protection dramatically

 Replicate Threads/Processes

 System Cooling
 Lowering the temperature reduces the error rate

 Node temperature of the K-computer is kept at 30C

 85C for average data centers

 System Level Checkpointing
 OS stores process images to persistent storage

 Recovery is done through loading the image

3

Application/Runtime Approach

 System/Hardware Approach Ignores
 Application specific failure characteristics and patterns

 Application specific failure mitigation and recovery

 User’s capability to manage failures

 Application/Runtime approach can handle different types of
failures in different granularities
 Soft Failures (such as Silient Data Corruptions)

 Hard Failure (such as process crash)

 Our Goal: Programming Model Support for HPC application
resilience
 Libraries

 Language Extention

4

Coordinated Checkpoint and Restart (C/R)

 Periodically write the state of application to secondary storage
 Coordination (synchronization) is involved among execution streams
 Rollback to the checkpoint when failure occurs
 Triggers all execution streams to rollback or restart

 Performance depends on IO bandwidth

 ECP funds to the advanced C/R library (VeloC project at ANL and LLNL)
 Better IO usage for performance improvement
 Support of non-MPI code and multiple HPC middleware systems (MOAB, SLRUM)

5

Motivating Use Case – S3D Production
Runs

 24-hour tests using Titan (125k cores)

 Reported MTBF of 8 hours
 9 process/node failures over 24 hours

 Failures are promoted to job failures,
causing all 125k processes to exit

 Checkpoint (5.2 MB/core) has to be done
to the PFS

Total cost

Checkpoint (per timestep) 55 s 1.72 %

Restarting processes 470 s 5.67 %

Loading checkpoint 44 s 1.38 %

Rollback overhead 1654 s 22.63 %

Total overhead 31.40 %

Motivating Use Case – Problem
Summary

 Current checkpoint cost, ~1 min

 Total recovery+rollback cost, ~36 min

Traditional C/R or runtime-based offline techniques are
 not efficient in current systems
 not possible in future systems

Infeasible

Introduction

Our Solution: Online Failure Recovery

8

 Software framework to augment existing apps with resilience
capability
 The remaining processes stay alive with isolated process/node failure

 Multiple implementation options for recovery
 Roll-back, roll-forward, asynchronous, algorithm specific, etc.

 Hot Spare Process for recovery

1. Process recovery: Recover failures without promoting to job failures

2. Data recovery: Optimize checkpointing

• Store application-specific data in-memory

• Coordinate checkpoint creation implicitly

Solution #1 :Global Online Recovery

O.S.O.S.

RuntimeRuntime

App + libsApp + libs
FenixFenix

– Fully coordinated checkpointing consistency, but barrier-like constructs

– Uncoordinated checkpointing efficient, but no consistency guarantees

Implicitly Coordinated Checkpointing

Applications know consistent points!

– Implicit coordination: create consistent checkpoints without communication

– Consistency guaranteed by checkpointing at the same “logical” time

 Framework for online, semi-transparent recovery

 Targets SPMD, message passing applications

 Tolerates hard failures (spare or spawned ranks)

• Keep process memory (may contain valuable
data or checkpoints)

Fenix 1.0 Specification (SAND2016-9171)

 Fault Tolerant Programming Framework for
MPI Applications
 Separation between process and data recovery

 Allows third party software for data recovery

 Multiple Execution Models

 Process recovery

 Extend MPI-ULFM (prototype of MPI Fault
Tolerance) to shield the users from low-level MPI
features

 Process recovery through spare process pool

 Process failure is checked at PMPI layer and recovery
happens under the cover

 Data recovery

 In-memory data redundancy

 Multi-versioning (similar to GVR by U Chicago &ANL)

10

S3D Modifications

Topology module

Main function

• Only 35 new, changed, or
rearranged lines in S3D code

Original vs Fenix-enabled

Original vs Fenix-enabled

Only 35 new,
changed, or

rearranged lines
in S3D code

Global Online Recovery – Results

MTBF Total overhead

Production 2.6 h 31 %

Global recovery 189 s 10 %

Global recovery 94 s 15 %

Global recovery 47 s 31 %

• Uses S3D (scientific application)

• Titan Cray XK7 (#3 on top500.org)

• Injecting node failures (16-core failures)

Solution #2: Local Online Recovery

 Fenix-1.0 is the first step toward local recovery
 Avoid global termination and restart

 All processes rollback to the Fenix_Init() call

 Natural for algorithms and applications that makes collective calls
frequently

 Some applications fit more scalable recovery model
 Stencil Computation

 Master-Worker execution model

 Solution: Local Online Recovery

13

Local Recovery Methodology

1. Replace failed processes

2. Rollback to the last checkpoint (only replaced processes)

3. Other processes continue with the simulation

 How do we guarantee consistency?
 Implicitly coordinated checkpoint

 Log messages since last checkpoint in local sender memory

 Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

 Performance may not be optimal for many parallel applications

 Stencil computation provides built-in message logging == Ghost
Points

 Implemented in new framework: FenixLR

Target: Stencil-based Scientific Applications

 Application domain is
partitioned using a block
decomposition across
processes

 Typically, divided into
iterations (timesteps),
which include:
 Computation to advance

the local simulated data

 Communication with
immediate neighbors

 Example: PDEs using
finite-difference
methods, S3D

One failureNo failures

Rank Rank

Performance Model of Local Recovery
W

al
l t

im
e

Simulated execution of a 1D PDE

Multiple failures,
no delay overlap

One failureNo failures

Effect of Multiple Failures with Local
Recovery

Simulated execution of a 1D PDE

Rank Rank

W
al

l t
im

e

Experimental Evaluation with S3D

 Same experiment executed injecting different number of failures

 X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

 Note that total overhead is as if only one failure occurred (except in 4224c 8f)

Failure Masking

Experimental Evaluation
Goal

 Evaluate local recovery techniques using S3D on Titan to show

 Low overhead while recovering from node failures every 5 seconds

 Failure recovery is scalable

 Recovery overhead is not proportional to system size

Experiments

 Recovery scalability up to 262272 cores

 Total overhead of fault tolerance

Methodology

 Study the overheads related to the recovery processes

 Compare local vs global recovery

 Failure recovery cost can be decomposed into:

 Environment recovery

 Checkpoint fetching from neighbor (scalable, 130MB/core)

 Rollback cost (average of 1/2 iteration time, O(2.5 seconds), scalable)

Recovery Scalability

 Using MTBF of 10s

 Core count from 4224 to 262272 (including 128 spare cores)

 Result shows the average recovery time for all failures injected.

 Conclusion:

 Process recovery time is independent of system size

 Good scalability

Local Recovery

Total Overhead of Fault Tolerance

 End-to-end time vs
failure-free,
checkpoint-free time

 Overall overhead:

 Checkpointing

 Process/data
recovery

 Rollback

• 4096 cores + 640
spare cores

• Right-most bar,
global recovery
with MTBF of 47s

 Local recovery has
scalability advantages
over global recovery

• Conclusion:

– Local recovery is superior to global recovery in this scenario:

• compare MTBF 45s (8%)

• with MTBF 47/GR (31%)

Total overhead

Production (MTBF 2.6h) 31 %

Global recovery (MTBF 189s) 10 %

Global recovery (MTBF 47s) 31 %

Local recovery (MTBF 45s) 8%

Local recovery (MTBF 20s) 25%

Local Recovery

Solution #3: Toward Resilient Asynchronous
Many Task (AMT) Parallel Execution Model

22

 AMT allows
 Concurrent task execution

 Overlap of communication and computation

 Over-decomposition of Data

 Node/Process Failure is manifested as loss of task and data
 Generic model for online local recovery

 Recovery is done through task replay

Asynchronous Many Task Model (AMT)

 Static vs. Dynamic AMT
 Static: Task DAG is constructed before executing task

 All task dependencies are known to the scheduler

 Dynamic: Task DAG can be altered during task execution
 Conditional task launch

 Increases the scheduling overhead due to extra book keeping to prepare
conditional task launch

 Distributed vs. On-node AMT

 Distributed
 Data movement across processes is handled by AMT runtime

 On-node
 MPI or its equivalent is exposed to the users

 Performance concerns with MPI for multithreading

23

Example of AMT architecture

24

Threads
(backend)

Ready Queue

Task Graph

d1
d2

d3
d4

Data Object

Task

Task ID
Home Location (Process ID)
Current Location (Process ID)
Task Body
List of Input Data
List of Output Data
List of In-Out Data
List of Predecessor Tasks
List of Successor Tasks
ID for “parent” task
List of “children” tasks

Task with satisfied
dependencies

submitted into the
ready Queue

Data

Data ID
Data Version
Data Location
Data content
List of past data access
List of future data access

A table to record the
status of tasks and data Completed tasks are reported to

the scheduler

Resilience in AMT

d1
d2

d3 d4

d5

d6
d7

t1 t2 t3

t4 t5

subset

reads

 Task and Data are allowed to keep extra information to assist
recovery

 Task represents a transaction in a workflow

 Failure within a program means failure of a task
 Failure containment is relatively simple (do not launch dependent tasks)

 Recovery is done through task replay

 Failure is mitigated by replication of tasks and data

 Like MPI/SPMD model, availability of high performance
persistent storage is essential for scalability

25

Potential Benefit of AMT Resilience

 Online Recovery
 Fail-stop does not need to shut down the whole program

 Local Recovery
 Rollback happens within a task or sub-DAG

 Overlap of recovery and non-recovery tasks

 Tasks that are not dependent on the recovery tasks can continue

 Overlapping allows failure-masking

– Delays due to multiple task failures are masked by overlapping execution of
non-dependent tasks

 Task/Work stealing

 Recovery may block the progress of some pending tasks

 The scheduler could allocate the resources to the other tasks

26

Challenges in AMT Resilience

 What is necessary to enable task replay?
 Tasks?

 Possible to make individual tasks self-recoverable?

 Scheduler?

 How to schedule recovery tasks?

 How to replay/resubmit failed tasks?

 What information is necessary to retain a work-flow
(subgraph) of the lost/corrupted tasks
 Predecessor and Successor information

 How many generations need to be kept?

27

Challenge in AMT Resilience

 Static vs. Dynamic DAG
 Static DAG

 Tasks and the workflow is fixed in “task parallel” region of computation
 Less flexible
 Dependencies can be analyzed before running tasks
 Less info necessary for scheduling
 Less information to enable task replay

 Dynamic DAG
 Task is created on-fly (conditional statement in a task triggers new task launch)
 More flexible
 Dependency information is processed on-fly
 Scheduler needs flexible data structure to bookkeep the retired tasks and new tasks
 More information is required to enable task replay

 Distributed AMT vs. On-Node AMT
 Resilience mechanism for remote data access

 Anything other than Message Logging?
 Will abstraction help?

 Integration with (ongoing) MPI’s fault tolerance framework

28

Major Approaches: Replication and Replay

 Task Replication Model
 Analogue to N-modular redundancy

 Proactive resilience

 Failure may not trigger fail-stop or task replay

 Replication cost needs to be controlled

 Task Replay Model
 Replay tasks when they are failed.

 Task flow allows local rollback for local failure

29

Major Approaches: Scheduler and
Transaction

 Resilient Scheduler Model
 Control infrastructure (scheduler) monitors the state of tasks and data

 Correct the state if necessary

 Resilient Task Collection (data parallel computation)

 Resilient Task Scheduler (dependency aware)

 Resilient Transactional Model
 The initial data of the task is stored in persistent storage

 Task replays itself if it does not meet the “success” condition

 Task is self-healing; however, hard to recover from loss of tasks

 Containment Domains

 Resilient Tasks

30

Task Collection (TC)

 Work by Ma & Krishnamoorthy PNNL

 Designed for work-stealing of data
parallel computation

 Record of tasks and associated data
operations

 Idle processes steal tasks by updating
their metadata in the collection

 TC allows identifying lost tasks and
their operations

 Individual task info is mirrored

 Replication of control information

31

t1t1

t2t2

t3t3

t4t4

d1 d2 d3 d4

Mirror

Task Collection (TC)

 TC records the history of all “data”
transactions for each task
 No message/update content

 Collective recovery
 Lazy recovery is light-weight

 Let all tasks finish and check for corrupted
tasks

 Resubmit all corrupted tasks
 Cannot prevent failure propagation
 In the worst case, all tasks are re-executed

 More bookkeeping allows quick recovery
 More overhead with the absence of failures

 Multiple TC can be used to manage
multiple data parallel tasks

32

t1t1

t2t2

t3t3

t4t4

d1 d2 d3 d4

Mirror

Drawbacks of Resilient TC

 Not applicable for arbitrary task dependencies

 The order of data accesses implicitly describes the
dependency

 Extra information is necessary

 Collective operations can be expensive at large scale

33

Fault Tolerant Static Task Scheduling

 Work by Cao, Herault, Bosilca and Dongarra at UTK

 Use parameterized task graph (PTG) to trace back all predecessors
of failed tasks until the persistent input data (checkpoint) is reached

 Periodic task-based checkpointing and algorithm based fault
tolerance reduce the number of tasks to be re-executed

 Applicable for distributed AMT
 Failure notification is assumed underneath the runtime

34

Fault Tolerant Dynamic Task Scheduling

 Work by Kurt & G. Agrawal(OSU), Krishnamoorthy (PNNL) and K Agrawal
(Washington U)

 Extend dynamic task graph scheduling implemented on the top of work-
stealing data parallel tasking runtime (Cilk)

 Runtime Scheduler monitors the status of tasks
 Try-Catch block to access task status
 Correct the state of failed task and then resubmit a failed task using a new

“reincarnation” number
 Input data block error could trigger the recovery of predecessor tasks (tasks

executed in the past); the current task is pulled out from the queue

 Impose a few constraints in Task graph
 Graph is not expanded beyond the tasks being executed and their direct successors

35

1 2 2

1

1

2

1

2

1

Fault Tolerant Dynamic Task
Scheduling

 Task and Data need to contain more information than the
static task scheduling
 Reincarnation (EPIC) of tasks

 Flexible data structure for data dependency information

 Data versioning

 Some information may not be available
 Future data accesses

36

Task

Task ID
Home Location (Process ID)
Current Location (Process ID)
Task Body
List of Input Data
List of Output Data
List of In-Out Data
List of Predecessor Tasks
List of Successor Tasks
ID for “parent” task
List of “children” tasks
ID for reincarnation

Data

Data ID
Data Version
Data Location
Data content
List of past data access

(List of future data access)

Drawbacks of Fault Tolerant
Scheduling

 No coverage for hard failures (loss of tasks and data blocks)
 Duplication of scheduling information is essential

 One idea is mapping some schedule information to task-collection to
handle hard failures

 Large cost in meta data management (global lock) for
dynamic task graphs and work stealing support

 Assumption of the persistence of control information
 How to recover the loss/corruption of control information?

37

Transaction Model: Task Self-Replay

 By BSC on resilient OmpSs
 Add checkpoint/restart capability to

every task
 Checkpoint before the execution of body
 When task is not successful, repeat the

same task
 Input data is derived checkpoint
 DARMA team did similar work using

checksums

 Assume all failures can be contained
within single tasks

 Unclear how to cover a loss of tasks
(process/node failures)

 Possible to support Node-AMT+MPI
model
 Receiver-based message logging

38

Ex
ec

u
ti

o
n

Backup

Restore

Ex
ec

u
ti

o
n

Input

Domain
Body (code)

Detection

Checkpoint

Hierarchical Transaction Model:
Containment Domains

 Each domain defines
 Data to be protected

 Failure detection

 Body of the code

 Recovery is done through replay

 Hierarchical task representation allows localized recovery

 Many AMTs do not support hierarchical composition of tasks
39

Courtesy: Mattan Erez
at UT Austin

Selective Transaction Model

 Work by Rice U + Sandia

 Selective Transaction Model
 Create a big task that holds a graph

of children tasks

 Re-execute big tasks when failure
occurs
 Parent task stays in the scheduler

until all children finish

 All children tasks are not protected

 Can be seen as a variant of
Containment Domains

 Like CDs, runtime needs to
support parent-children task
model

 Reduce the potential overhead of
task execution latency
 Less frequent checkpointing

40

Repeat if failed

Ongoing work: SNL, Rice U and Rutgers U

 Resilient version of Open Community Runtime (OCR)
 Resilient tasks can spawn non-resilient tasks

 Resilient tasks are replayable upon crash

 Resilient task and resilient data objects are maintained by resilient data
warehouse (resilient tuple space) 41

T1T1
T3T3

T2T2

T4T4

T5T5

T6T6

D1
D2

L1 L3L2
L4

Tx – Resilient tasks
Lx – Local non-resilient tasks
Dx – Data-blocks

Spawn edges
Dependencies

Courtesy: Sanjay Chatterjee
Resilient Tuple

Space

Conclusion

 Scalable Application Recovery at Scale
 Extend Fault-Tolerant MPI prototype

 Hot spare procesess

 In-meory checkpoiting

 Application specific message logging to allow localized online recovery

 Future work explore resilience in AMT runtime
 Require vertical integration

 Lots of opportunities on the horizon

42

Acknowledgement

 Janine Bennett, Robert Clay, Michael Heroux, Nicole
Slattengren and Jeremiah Wilke (Sandia National Labs)

 Marc Gamell and Rob van der Wijngaart (Intel)

 Sanjay Chatterjee and Vivek Sarkar (Rice U)

 Manish Parashar (Rutgers U)

 George Bosilca, Aurélien Bouteiller and Thomas Herault
(University of Tennessee, Knoxville)

43

