l“ ‘l'.'r-'""_‘ml
} . qLF= s
s \ H’,I* -t
Elallal .
b .‘11-#1“"'-‘.

il
o Rp
]

"

SAND2017- 7991PE

Toward Resilient Task
Parallel Programming
Models

Keita Teranishi

AICS Café at RIKEN AICS, Kobe 08/02/2017

Funded by ASC CSSE Program.

\
U.S. DEPARTMENT OF - ' " /_
@kNERey MNYISA 4}

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Need for Scalable Resilience for HPC
Applications

= Today, we see large HPC systems suffer frequent
failures
= MTBF 0.5-7 days (failure = lost job)

= Global file system crashes
= 60-80% of failures are due to software (*)

= Future systems are expected to be less reliable

= User expectations
= 75-95% node utilization (30-40% in enterprise computing)
= Tightly coupled massively parallel applications
= More components (and shrinking of each component)
= Today: Millions of threads, Several Peta bytes of memory
= Exascale: Billions of threads, 100+ Peta bytes of memory
= Limited Power Budget
= Today (US): 5-10MW for 10-20Peta Flops
= Exascale systems: 20-30MW for 1Exa Flops !!

Hardware and System Based Resilience 4w
and Fault Mitigation

= Redundancy
= Weather centers purchase two identical systems
= N-Modular Redundancy (typically N=3)
= Parity bits (ECC) in memory

= Recent advances in Chipkill (RAID-5 like redundancy)
improves the memory protection dramatically

= Replicate Threads/Processes

= System Cooling
= Lowering the temperature reduces the error rate
" Node temperature of the K-computer is kept at 30C
= 85C for average data centers
= System Level Checkpointing
= (OS stores process images to persistent storage
= Recovery is done through loading the image

Application/Runtime Approach)

= System/Hardware Approach Ignores
= Application specific failure characteristics and patterns
= Application specific failure mitigation and recovery
= User’s capability to manage failures

= Application/Runtime approach can handle different types of
failures in different granularities
= Soft Failures (such as Silient Data Corruptions)
= Hard Failure (such as process crash)

= Qur Goal: Programming Model Support for HPC application
resilience
= Libraries

= |anguage Extention

Coordinated Checkpoint and Restart (C/RY &

= Periodically write the state of application to secondary storage
= Coordination (synchronization) is involved among execution streams
= Rollback to the checkpoint when failure occurs
= Triggers all execution streams to rollback or restart

= Performance depends on IO bandwidth

= ECP funds to the advanced C/R library (VeloC project at ANL and LLNL)

= Better |0 usage for performance improvement
= Support of non-MPI code and multiple HPC middleware systems (MOAB, SLRUM)

5
-

7| Netora

Motivating Use Case — S3D Production™
Runs

3901s 1617s 1612s «— Recovery+rollback overhead —— 4439s 1928s 6025s
] [[]] Ill_\] III_\] [i] [i [[] [Ill_\ [‘ i H
] []] [] [] [H] [L] |] [[l i i H
0 1 00(10 ‘ ZOOOF 31)000 40000 50000 ‘ 600’00 TOOO ‘ }BOOOO 86400
Execution wall time (s)

Total cost
= 24-hour tests using Titan (125k cores) Checkpoint (per timestep) 55 s 1.72 %
" Reported MTBF of 8 hours Restarting processes 470 s 5.67 %

= 9 process/node failures over 24 hours
F_) / o V . u Loading checkpoint 44 s 1.38 %

= Failures are promoted to job failures,
causing all 125k processes to exit Rollback overhead 1654 s 22.63 %
= Checkpoint (5.2 MB/core) has to be done Total overhead 31.40 %

to the PFS

Motivating Use Case — Problem Intragyctjon
Summary

3901s 1617s 1612s «— Recovery+rollback overhead —— 4439s 1928s 6025s

— —_— —_— — —_—— ———

]]] (]]]]]
(]]] (]]]]]

0 1000‘0‘ 2000F 31)000 40000 50000 ‘soo’oo 7’0000 ‘ koooo 86400
Execution wall time (s)

= Current checkpoint cost, ~“1 min _
Infeasible

= Total recovery+rollback cost, ~“36 min

Traditional C/R or runtime-based offline techniques are
= not efficient in current systems
= not possible in future systems

Our Solution: Online Failure Recovery

th

= Software framework to augment existing apps with resilience
capability
= The remaining processes stay alive with isolated process/node failure

= Multiple implementation options for recovery
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.

= Hot Spare Process for recovery

Solution #1 :Global Online Recovery @&

1. Process recovery: Recover failures without promoting to job failures
= Framework for online, semi-transparent recovery

. " App + libs
Targets SPMD, message passing applications -« Fenix
* Tolerates hard failures (spare or spawned ranks) Runtime
e Keep process memory (may contain valuable
: 0.S.
data or checkpoints)
2. Data recovery: Optimize checkpointing
e Store application-specific data in-memory
e Coordinate checkpoint creation implicitly
— Fully coordinated checkpointing —> consistency, but barrier-like constructs
— Uncoordinated checkpointing —> efficient, but no consistency guarantees

Implicitly Coordinated Checkpointing
Applications know consistent points!

— Implicit coordination: create consistent checkpoints without communication
— Consistency guaranteed by checkpointing at the same “logical” time

Fenix 1.0 Specification (SAND2016-9171 |1l &=.

= Fault Tolerant Programming Framework for
MPI Applications

= Separation between process and data recovery 7

= Allows third party software for data recovery

Unlimited Release

= Multi P le Execution Models Specification of Fenix MPI Fault Tolerance

library
version 1.0

= Process recove ry

= Extend MPI-ULFM (prototype of MPI Fault
Tolerance) to shield the users from low-level MPI
features

" Process recovery through spare process pool

" Process failure is checked at PMPI layer and recovery
happens under the cover () sonda Mol Lbortores

= Data recovery
" In-memory data redundancy
* Multi-versioning (similar to GVR by U Chicago &ANL)

10

Original

REAL :: stime

REAL, ALLOCATABLE, DIMENSION(:,:,:, :) :: yspc

! other initializations

! Setup MPI, Cartesian MPI grid, etc.
call initialize_topology(6, nx, ny, nz, &
npx, npy, npz, &
iorder, iforder)

! Setup grid - scale arrays for stretched grid
! used in derivatives, coordinates useful for
! generating test data
call initialize grid(6)

! Allocate derivative arrays
call initialize derivative(6)

allocate(T(nx,ny,nz))
allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs}))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx.nv.nz)) THK

! Setup test data

xshift = (xmax - xmin)*@.1

yshift = (ymax - ymin)*0.1

zshift = (zmax - zmin)*@.1

do k =1, nz
do j
do i
'HK in Kelvin
T(i,j.k) = 1000.0%(sin(x(i)-xshift)*sin(y(j)-yshift)=sin(z(k)-
zshift)) + 1500.0

non
Zoo
-

1.8 - sum(yspc(i,j,k, 1:nslvs-1))

P(i,j.k) = 12.0*pres_atm !HK.
enddo

enddo

enddo

12 atm expressed in SI units

TIMESTEPHlldo itime = 1, ntsteps
! ITERATE AND UPDATE YSPC

enddo TIMESTEP

VS

Fenix-enabled

€ #include "fenix f.h"

4= REAL, TARGET :: stime
REAL, ALLOCATABLE, DIMENSION(:,
-> INTEGER ckpt_itime, ckpt_yspc;
INTEGER, TARGET :: world;

t,), TARGET :: yspc

€itime = 1
! other initializations

€ allocate(T(nx,ny,nz))

-> allocate(P(nx,ny,nz))
allocate(deriv_result(nx,ny,nz,nslvs,3))
allocate(deriv_sum(nx,ny,nz,nslvs))
allocate(yspc(nx,ny,nz, nslvs))
allocate(wdot(nx,ny,nz, nslvs))
allocate(rho(nx,ny,nz)) THK

S3D Modifications

* Only 35 new, changed, or
rearranged lines in S3D code

onm_s1ze! , Npes, lerr

call MPI_Comm dup(MPI_COMM WORLD, gcomm, ierr)

used in the Boundary conditions

call MPI_Comm split(gcomm, xid, myid, yz comm,
call MPI_Comm split(gcomm, yid, myid, xz comm,
call MPI_Comm split(gcomm, zid, myid, xy comm,

ol o oo
: On |y 35 new
’ (::: I l iEEl I I‘!Egi ‘EEE ‘::I ‘:::’ I’.
) (::i I .
. !EE;':EE;’ |[:::’ (::I
z = call
=» € if(process status.eq.FENIX PROC_NEW) then
yspe(i,j,k,:) = 6.01
.1
7
= 0.05
i,j.k,4) =0.085
yspc(i,j,k,nslvs) = 1.6 - sum(yspc(i,j,k, 1:nslvs-1))
= € endif
P(i,j,k) = 12.@*pres_atm !HK. 12 atm expressed in SI units
enddo
enddo
enddo
> €d
if(mod(itime-1,CHECKPOINT PERIOD).eq.0) then
call FT_Checkpoint(ckpt_yspc);
- call FT_Checkpoint(ckpt_itime);

endif
! ITERATE AND UPDATE YSPC
€ itime = itime + 1

if(itime .gt. ntsteps) exit
enddo

! Create MPI Comminicators for boundary planes.

I Create communicator duplicate for global calls

! Create communicators for the x, y, and z directions

call MPI_Comm_split(gcomm, mypy+1886*mypz, myid, xcomm,ierr)
call MPI_Comm_split(gcomm, mypx+168@*mypz, myid, ycomm,ierr)
call MPI Comm split(gcomm, mypx+168@*mypy, myid, zcomm,ierr)

nction

y module

VS Fenix-enabled

= < call MPI_Comm_rank(world, myid, ierr)

call MPI Comm size(world, npes, ierr)

I Create communicator duplicate for global calls
= € gcomm = world

! Create communicators for the x, y, and z directions

call MPI_Comm_split(gcomm, mypy+1886*mypz, myid, xcomm,ierr)

call MPI_Comm split(gcomm, mypx+1888*mypz, myid, ycomm,ierr)

call MPI Comm split(gcomm, mypx+1888*mypy, myid, zcomm,ierr)
4 call FT_Comm_add(xcomm);

This is call FT_Comm_add(ycomm);
call FT Comm_add({zcomm);
ierr)
ierr) ! Create MPI Comminicators for boundary planes. This is
ierr) ~ used in the Boundary conditions

call MPI_Comm split(gcomm, xid, myid, yz comm, ierr)
call MPI_Comm_split(gcomm, yid, myid, xz_comm, ierr)
call MPI Comm split(gcomm, zid, myid, xy comm, ierr)
€ call FT_Comm add(yz comm);
call FT_Comm_add(xz_comm
call FT_Comm add(xy_comm

b

86400
I
i
600

€ sz = =

6025s
|
i
|
i
|
i

|
i
I
i
500

1928s
70000
|
I
|
]
|
]

60000
I
i
I
i
1
Hi

——> 4439s
]
I
]
]
400

Injecting node failures (16-core failures)

Uses S3D (scientific application)
Titan Cray XK7 (#3 on top500.0rg)

==

50000
I
i
1
i
1

|
I
1
1
]
|
Execution wall time (s)

Recovery+rollback overhead
40000
| |
1 I
| |
| I
11
1] I
300

31%
10 %
15 %
31%

== - ——

30000
I
i
|
i
I
i

161258 «——
|
|
T
i
I
i
200

94 s
a7 s

1617s

20000
MTBF
2.6 h
189 s

kpoint:
I
I
Proc. recovery |
Data recovery
100

I—— Failures —~

3901s
hec
1]
IH

10000
I
I

Global Online Recovery — Results
Total overhead

Global recovery
Global recovery
Global recovery

Production

o2 < ~
uni ® o <

-~

uonoNpoid () 491N weisAs paroalu)

Solution #2: Local Online Recovery @

= Fenix-1.0is the first step toward local recovery
= Avoid global termination and restart
= All processes rollback to the Fenix_Init() call
= Natural for algorithms and applications that makes collective calls
frequently
= Some applications fit more scalable recovery model
= Stencil Computation
= Master-Worker execution model

= Solution: Local Online Recovery

Local Recovery Methodology

1. Replace failed processes
2. Rollback to the last checkpoint (only replaced processes)
3. Other processes continue with the simulation

= How do we guarantee consistency?
= |Implicitly coordinated checkpoint
= |Log messages since last checkpoint in local sender memory

= Message logging has been studied in MPI fault tolerance and Actor
Execution Model (Charm++)

= Performance may not be optimal for many parallel applications

= Stencil computation provides built-in message logging == Ghost
Points

= |mplemented in new framework: FenixLR

Target: Stencil-based Scientific Application& .

Rank r4

Rank 75

Rank r;

Rank r3

Rank 79

Ghost from 7
Ghost from 79
Ghost from r3
Ghost from 71

i Data transfer

Application domain is
partitioned using a block
decomposition across
processes

Typically, divided into
iterations (timesteps),
which include:

= Computation to advance
the local simulated data

= Communication with
immediate neighbors

Example: PDEs using
finite-difference
methods, S3D

Performance Model of Local RecovefyE.

Simulated execution of a 1D PDE

Wall time

Rank

One failure

Rank

No failures

Effect of Multiple Failures with LocaI@ s,
Recovery

Simulated execution of a 1D PDE

==
J——t
——————————————————————ay———— _ ——————————————————
A

Wall time

Rank

One failure

Rank

No failures

Failur%ﬁag%ng

Experimental Evaluation with S3D * <&

= Same experiment executed injecting different number of failures

= X axis is rank number, but more complex to see than 1D, because 3D domain is mapped to
core ranking in a linear fashion

= Note that total overhead is as if only one failure occurred (except in 4224c 8f)

vt e L NN s, XWWINANAANNA A AN
-w" L'/)L"L*’I \/"""\"""”— -- e .M-” Lé\(,./\.;’ L \,),(A] A*,,,A,,,AA?(*,‘ __,'-ﬂr‘;\(*l lr"lr’] \ﬂ'\r""\r“_r"“\r‘"‘\ VaaVan Van f“%“-\ r—

(a) 4224c 1f (b) 4224c 2f (c) 4224c 4f (d) 4224c 8f

MMM AR AR VMMM AR AARAAAARAAR

AL MR IR AN Ao AL, m
IRy

L

LA | o | N S
'M‘ VA A~ 1a > 1 ey X)MWWWW\
2. SV - S ’ X AP VYA s
T v v v 1 1 YWY W M A A A AN A
AN AN AR v I M WA A A AN AR AR AN | ~ VMY YWY M YV VNSt mm o
ARV AN AN AN AMANANAAANANANAMAA A MAWMMAMAMAIAAN e s e MANNWANY NN A
AP AN AN ANAAANN A NNAANAANAANNAANIA JAMAMAMMAMMBAMARANAAAANASANMNARNNANNE Ly AN U NN P WA I A AN AN

e B I S S e

—
(q) 64128c 1f (r) 64128c 2f (s) 64128c 3f (t) 64128c 5f -

Experimental Evaluation UL

Goal

= Evaluate local recovery techniques using S3D on Titan to show
= Low overhead while recovering from node failures every 5 seconds
= Failure recovery is scalable
= Recovery overhead is not proportional to system size

Experiments
= Recovery scalability up to 262272 cores
= Total overhead of fault tolerance

Methodology

= Study the overheads related to the recovery processes
= Compare local vs global recovery

= Failure recovery cost can be decomposed into:

= Environment recovery
= Checkpoint fetching from neighbor (scalable, 130MB/core)
= Rollback cost (average of 1/2 iteration time, O(2.5 seconds), scalable)

Recovery Scalability Sl

= Using MTBF of 10s
= Core count from 4224 to 262272 (including 128 spare cores)
= Result shows the average recovery time for all failures injected.

0 0.05
()
E 0.04
S 0.03]
>
3
5 0.02]
@ 0.0H
S
& 0-
4224 8128 13952 32896 64128 140736262272
= Conch Core count (including 128 spare cores)

" Process recovery time is independent of system size
" Good scalability

Total Overhead of Fault Tolerance T

= End-to-end time vs 1.6-
failure-free, = 508 recovery (process+data+rollback) total time
checkpoint-free time g 15 checkpoint total time s
= Qverall overhead: Q . 240
. © 180
= Checkpoint
Total overhead
= Process/da 48
recovery Production (MTBF 2.6h) 31%]
= Rollback Global recovery (MTBF 189s) 10 %
e 4096 cores + Global recovery (MTBF 47s) 31% 48 | 48
sSpare cores Local recovery (MTBF 45s) 8% . .
e Right-most bar Local recovery (MTBF 20s) 25% | | |
global recover 40 45||47/G R
with MTBF ofl‘b]

= Local recovery has

scalability advantages
over global recovery * compare MTBF 45s (8%)

e with MTBF 47/GR (31%)

— Local recovery is superior to global recovery in this scenario:

Solution #3: Toward Resilient Asynchronous) s
Many Task (AMT) Parallel Execution Model
— i
= Qverlap of communication and computation
= QOver-decomposition of Data

= Node/Process Failure is manifested as loss of task and data
= Generic model for online local recovery
= Recovery is done through task replay

e Ji R J 0one [l Reoi

= AMT allows
= Concurrent task execution

22
-

Asynchronous Many Task Model (AMT) @&,

= Static vs. Dynamic AMT

= Static: Task DAG is constructed before executing task
= All task dependencies are known to the scheduler

= Dynamic: Task DAG can be altered during task execution
= Conditional task launch

= Increases the scheduling overhead due to extra book keeping to prepare
conditional task launch

= Distributed vs. On-node AMT
= Distributed

= Data movement across processes is handled by AMT runtime

= On-node
= MPI or its equivalent is exposed to the users
= Performance concerns with MPI for multithreading

23

Example of AMT architecture =

Task Graph A table to record the Threads

status of tasks and data Completed tasks are reported to (backend)
the scheduler

of || lo
N RN
..l lole]o]
Llolel. le]
. Ready Queue

Task ID

Home Location (Process ID)
Current Location (Process ID) Data ID

Task Body Data Version
List of Input Data Data Location

List of Output Data Data content
List of In-Out Data List of past data access

List of Predecessor Tasks List of future data access

Data Object

List of Successor Tasks
ID for “parent” task
List of “children” tasks

Resilience in AMT) S,

= Task and Data are allowed to keep extra information to assist
recovery

= Task represents a transaction in a workflow
= Failure within a program means failure of a task

= Failure containment is relatively simple (do not launch dependent tasks)
= Recovery is done through task replay

= Failure is mitigated by replication of tasks and data

= Like MPI/SPMD model, availability of high performance
persistent storage is essential for scalability ?

Potential Benefit of AMT Resilience @Ex.

= Online Recovery

= Fail-stop does not need to shut down the whole program

= Local Recovery
= Rollback happens within a task or sub-DAG
= Qverlap of recovery and non-recovery tasks

= Tasks that are not dependent on the recovery tasks can continue

= Qverlapping allows failure-masking

— Delays due to multiple task failures are masked by overlapping execution of
non-dependent tasks

= Task/Work stealing
= Recovery may block the progress of some pending tasks
= The scheduler could allocate the resources to the other tasks

26
-

Challenges in AMT Resilience UL

= What is necessary to enable task replay?
= Tasks?

= Possible to make individual tasks self-recoverable?
= Scheduler?

= How to schedule recovery tasks?
= How to replay/resubmit failed tasks?
= What information is necessary to retain a work-flow
(subgraph) of the lost/corrupted tasks

= Predecessor and Successor information

= How many generations need to be kept?

Challenge in AMT Resilience UL

= Static vs. Dynamic DAG

= Static DAG
= Tasks and the workflow is fixed in “task parallel” region of computation
= Less flexible
= Dependencies can be analyzed before running tasks
= Less info necessary for scheduling
= Less information to enable task replay

= Dynamic DAG
= Task is created on-fly (conditional statement in a task triggers new task launch)
= More flexible
= Dependency information is processed on-fly
= Scheduler needs flexible data structure to bookkeep the retired tasks and new tasks
= More information is required to enable task replay

= Distributed AMT vs. On-Node AMT

= Resilience mechanism for remote data access
= Anything other than Message Logging?
= Will abstraction help?

= |ntegration with (ongoing) MPI’s fault tolerance framework

28

Major Approaches: Replication and Rep|&i&.

= Task Replication Model
= Analogue to N-modular redundancy

= Proactive resilience
= Failure may not trigger fail-stop or task replay

= Replication cost needs to be controlled

= Task Replay Model
= Replay tasks when they are failed.

= Task flow allows local rollback for local failure

Major Approaches: Scheduler and =
Transaction

= Resilient Scheduler Model
= Control infrastructure (scheduler) monitors the state of tasks and data

= Correct the state if necessary
= Resilient Task Collection (data parallel computation)
= Resilient Task Scheduler (dependency aware)

= Resilient Transactional Model
= The initial data of the task is stored in persistent storage
= Task replays itself if it does not meet the “success” condition

= Task is self-healing; however, hard to recover from loss of tasks
= Containment Domains
= Resilient Tasks

30
-

Task Collection (TC) UL

= Work by Ma & Krishnamoorthy PNNL
n

= Designed for work-stealing of data i ®
parallel computation B2l 0 = .
= Record of tasks and associated data = . .
operations
= |dle processes steal tasks by updating B R Mirror x
their metadata in the collection e .
" TC allows identifying losttasksand & - g =

their operations
" |ndividual task info is mirrored
= Replication of control information

31

Task Collection (TC)

= TC records the history of all “data”
transactions for each task

= No message/update content

= Collective recovery
= Lazy recovery is light-weight

= Let all tasks finish and check for corrupted
tasks

= Resubmit all corrupted tasks

= Cannot prevent failure propagation

= |n the worst case, all tasks are re-executed
= More bookkeeping allows quick recovery

= More overhead with the absence of failures

= Multiple TC can be used to manage
multiple data parallel tasks

1 u u
2 O N N
13 n
4 n
- Mirror -
13 -

5 O = =

32

Drawbacks of Resilient TC) e,

= Not applicable for arbitrary task dependencies

= The order of data accesses implicitly describes the
dependency

= Extra information is necessary

= Collective operations can be expensive at large scale

Fault Tolerant Static Task Scheduling® .

=S

= Work by Cao, Herault, Bosilca and Dongarra at UTK

= Use parameterized task graph (PTG) to trace back all predecessors
of failed tasks until the persistent input data (checkpoint) is reached

= Periodic task-based checkpointing and algorithm based fault
tolerance reduce the number of tasks to be re-executed

= Applicable for distributed AMT

= Failure notification is assumed underneath the runtime

Fault Tolerant Dynamic Task Scheduling @ Ex.

iy drdreh

= Work by Kurt & G. Agrawal(OSU), Krishnamoorthy (PNNL) and K Agrawal
(Washington U)

= Extend dynamic task graph scheduling implemented on the top of work-
stealing data parallel tasking runtime (Cilk)
= Runtime Scheduler monitors the status of tasks
= Try-Catch block to access task status

= Correct the state of failed task and then resubmit a failed task using a new
“reincarnation” number

= |nput data block error could trigger the recovery of predecessor tasks (tasks
executed in the past); the current task is pulled out from the queue

= |mpose a few constraints in Task graph
= Graph is not expanded beyond the tasks being executed and their direct successors

35

Fault Tolerant Dynamic Task o
Scheduling

= Task and Data need to contain more information than the
static task scheduling

= Reincarnation (EPIC) of tasks

= Flexible data structure for data dependency information
= Data versioning

= Some information may not be available

= Future data accesses

Task ID

Home Location (Process ID) Data ID
Current Location (Process ID)
Task Body

List of Input Data

List of Output Data

List of In-Out Data

Data Location
Data content

(List of future data access)

ID for “parent” task
List of “children” tasks

Drawbacks of Fault Tolerant oy
Scheduling

= No coverage for hard failures (loss of tasks and data blocks)

= Duplication of scheduling information is essential

= Oneidea is mapping some schedule information to task-collection to
handle hard failures

= Large cost in meta data management (global lock) for
dynamic task graphs and work stealing support

= Assumption of the persistence of control information

= How to recover the loss/corruption of control information?

Transaction Model: Task Self-Replay® .

= By BSC on resilient OmpSs

= Add checkpoint/restart capability to _
every task Checkpoint
= Checkpoint before the execution of body

= When task is not successful, repeat the
same task

= |nput data is derived checkpoint
= DARMA team did similar work using

Domain
checksums Body (code)

= Assume all failures can be contained

within single tasks
|

Unclear how to cover a loss of tasks
(process/node failures)

= Possible to support Node-AMT+MPI
model

= Receiver-based message logging

38

Hierarchical Transaction Model:
Containment Domains

void task<inner> SpMV(in M, in V,, out R;) {
cd = create_CD(parentCD);
add_to_CD_via_copy(cd, M, ..);

<= = forall(..) reduce(..)
SpMV (M[..] ,Vi[-] /Ri[])
commit_ CD(cd);
. }
Preserve Tymeenaeg 4
Domain void task<leaf> SpMV(..) {
Body : cd = create CD(parentCD);
S : add_to_CD_via_copy(cd, M, ..);
Recover | .-eeseeeeee ’ add_to_CD_via parent(cd, V,, ..);
. . for r=0..N
" Each domain defines for c=rows[r]..rows[r+1] {
R;[r]+=M[c] *vec,[cIdx[c]];
= Datato be protected check {fault<fail>(c > prevC);}
. . prevC=c;
= Failure detection } Courtesy: Mattan Erez
commit CD(cd); .
= Body of the code } at UT Austin

= Recovery is done through replay
= Hierarchical task representation allows localized recovery

= Many AMTs do not support hierarchical composition of tasks
39

Selective Transaction Model) =,

Repeat if failed

= Work by Rice U + Sandia

= Selective Transaction Model

= (Create a big task that holds a graph
of children tasks

= Re-execute big tasks when failure
occurs

= Parent task stays in the scheduler
until all children finish

= All children tasks are not protected
= Can be seen as a variant of
Containment Domains
= Like CDs, runtime needs to
support parent-children task
model

= Reduce the potential overhead of
task execution latency

= Less frequent checkpointing

40

Ongoing work: SNL, Rice U and Rutgers (BEz.

Courtesy: Sanjay Chatterjee

T6
N
A
IX - II_Resnllent tasktc.ll) ~C - Spawn edges
x — Local non-resilient tasks ~) Dependencies
Dx — Data-blocks

= Resilient version of Open Community Runtime (OCR)
= Resilient tasks can spawn non-resilient tasks
= Resilient tasks are replayable upon crash

= Resilient task and resilient data objects are maintained by resilient data
warehouse (resilient tuple space) 41

Conclusion) 2=,

= Scalable Application Recovery at Scale

= Extend Fault-Tolerant MPI prototype
= Hot spare procesess
" |In-meory checkpoiting

= Application specific message logging to allow localized online recovery

= Future work explore resilience in AMT runtime

= Require vertical integration

= Lots of opportunities on the horizon

Acknowledgement

= Janine Bennett, Robert Clay, Michael Heroux, Nicole
Slattengren and Jeremiah Wilke (Sandia National Labs)

= Marc Gamell and Rob van der Wijngaart (Intel)
= Sanjay Chatterjee and Vivek Sarkar (Rice U)
= Manish Parashar (Rutgers U)

= George Bosilca, Aurélien Bouteiller and Thomas Herault
(University of Tennessee, Knoxville)

